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Motivation

[ 1o}

Particle creation in a free theory

Particle creation in external classical fields is usually considered in a
tree-level approximation

In this approximation, number of created particles is estimated using the

following relation:
N = {in (a3 a5 in)

Creation-annihilation operators and mode functions in the past and future
infinity are related by a Bogoliubov transformations:

£ =" [on it = Ban(£i)]

k

ap® = [annall + Bri(ai)']
k

Hence, for the initial vacuum state, we get the following identity:

Nrflree — Z |ﬂkn|2
k
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Motivation
oe

Interactions are important!

® Nevertheless, in an interacting theory, quantum averages receive substantial
loop corrections due to the change of the initial quantum state:
ni(t) = (in|UT(t, to) (ai) ai" U (t, to)|in)
kit (t) = (in|UT (¢, to)al al"U(t, to)|in)
® Therefore, the expression for the created particle number should be corrected:
N, = (in|UT (¢, t0)(a2") T aS™ U (¢, to)|in)
= NY* 4+ (nn + BrnBin) at + Y WhnBinkirt + D Vin Bt
k,l k,l k,l

® Moreover, the exact quantum averages and particle number cannot be
calculated perturbatively due to the secular growth of loop corrections

® For example, one faces such a secular growth in the nonlinear dynamical
Casimir effect or theory of interacting light fields in de Sitter space

® Today, | consider a simplified model of these systems — a nonstaionary O(N)
model in (0 + 1) dimensions
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Quantization
o0

The model and its quantization

® Consider the system of N > 1 quantum mechanical oscillators with a
time-dependent frequency and O(N)-symmetric quartic coupling:

_ Lig 2@ A
S = /dt |:2¢Z¢Z - 2 ¢’L¢’L - W((bl(bl)

® The quantized field is decomposed as usual:
$i(t) = a; f(t) +alf*(t), o al] =0y

® Due to the nonstationarity of the model, mode function contains a
reflected wave:

1 —iw_t
——c as t— —o0
f(t) = 2 ; t’ ﬁ ; t 7
[0 —w w
oo e "t + Taos et as t — +oo,

where |a|* — |3 =1 and w(t) — w4 as t — +oo
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Quantization
(o] J

Bogoliubov coefficients o and 3

® For simplicity, | assume that variations of the frequency are small:
w(t) = w+ dw(t) with w = const and |dw| < w for all ¢
® |n the nonresonant case, Bogoliubov coefficient 3 is small:

2

18] ~ 1BF /OO Sw(t)e *™dt| < 1
|of? —o0

® In the resonant case, e.g., w(t) = w[l + 2vycos(2wt)], v <K 1, it
exponentially grows with the duration of oscillations tg:

a = cosh (wytg), [ = —isinh(wytr)

® Note that in quantum mechanics, we can calculate the average number of
excitations AV, which is an analog of the created particle number

® |f we neglect interactions and assume that the initial state is close to the
vacuum, this number is as follows:

Mree = N|ﬂ|2
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Effective Hamiltonian
°0

Effective Hamiltonian in the RWA

® Let us substitute the modes into the interacting Hamiltonian (A¢*), neglect
rapidly oscillating terms and transform it to the normal-ordered form:

ol + 4o +18I*) (alalaja; + 2afalaia; ) +

3 a? 32
(‘ |2 + |8 )a aia;a; + W

o
16N2

3\af
4Nw?

Hlnt

a;a;a;a; + h.c.

® |n other words, let us work in the limit A — 0, t — 0o, At = const
® This approximation is somewhat similar to the rotating-wave
approximation (RWA) from quantum optics

® Note that the quadratic terms that appear after the normal ordering lead to
the renormalization of the frequency and Bogoliubov coefficients:

AN +2)

(o +187), o=t S B

AN +2)

4>
Wi T TN
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Effective Hamiltonian
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Quantum averages for small

e Using the effective Hamiltonian and assuming small deviations from the
stationarity (small 3), we readily estimate the evolution operator and
calculate the correction to the initial quantum state:

* 2 -
|\If(t)>z|0)+9ﬁ]|§| {exp<_1)\t)+%—1:| al]0)+

2w3 2w3
3(67)° —iM totatgt 1 4
+ 1N e 27 )~ 1| ajajaja}|0) + O Nz )T O (8Y)

® \We can also straightforwardly calculate the resummed quantum averages:
8ij . At
() T8l s () +0 (5 ) +0.6).

) = 1851522 [oxp (557) + 24 1] +0 (35) +0 ()

2
2wy T

® And average number of excitations:

N Mree + 36|5|4 |:3 —+ cos <2>\t2 ) — 4 cos <45\Jt2):| + O <]17) + O (BS)

+
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Diagram calculations

® These results can be generalized to arbitrary 3 using the

Schwinger — Keldysh diagram technique:
\/

® The tree-level propagators are defined as follows:
. 1
iGhij (b, t2) = (Bia(tr)dja(ta)), = §<0H¢i(t1)7¢j(t2)}‘0>7

iGo st ta) = (Gia(ti)dja(ta))y = 0(tr — t2)(0 [#i(t1), ¢;(2)]]0),
iGiij(t1,12) = (fia(t1)Bj.alta))y = O(t2 — £1){0|[¢;(t2), $i(t1)]]0),

® The exact Keldysh propagator contains the quantum averages (no sum):

iG5.(0,0) = | (e + 1ok0)) Fu(OF () 4 ok (O (0)ul0) +
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Diagram calculations
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O(1) corrections to lines

® |n the leading order in 1/N, loop corrections to the propagators are summed
with the following Schwinger — Dyson equations:

~ i\ ~ -
Gt ta) = Gy (ta, 1) — v dtGOl,c(tl,t)Gﬁc(t,t)GkRj(t,tQ),

to

- A ~ -
Gg(t17t2) Golj(tl,tQ) ZV/ dt[G{fik(tl,t)G,ﬁ(t,t)ij(utg)—i—

to

JFG(I)(,ik(tlv G (2, t)ij(t t2)}

® These corrections simply renormalize the frequency, i.e., they are not
related to the change in the quantum state:

w(t) = W (t) + AGE(t,t) = Wi + QL (Jof> +18*) + O(N*) + O (;)
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Diagram calculations
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O(1) corrections to vertices

® |n the same order in 1/N, loop corrections to the vertices are summed with a
similar Schwinger — Dyson equation:
21\ R K w
B(t1,t2) = 2G5 (t1, t2) G (t, t2)_W dtaGo,kz(tl, t3)Go ki (t1, t3) B(ta, t2)

to

g J
) X = X+ ) X+
a - , a -
i) j o S

® This equation has the following approximate solution (f; = f(¢;)):
0(t12) ARtiz . 14+6|8)24+6|8]* . ARtia\ , sev2 .2
(2w4)? {(CO 4w? ! R S 2 (F)" 12
B ARtz . 1+6|8)% + 6\ﬁ|4 A2 o e
(co 4w+ +1 R 4w+ fi (fz)

*\2 ¢ g%)2 by 232 A *\2
6(c )R(ﬂ) ; ft;2f1f2 GO‘RB sin ﬁ}tf (f1)* (f3) }

B(t,ts) =

+
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Diagram calculations
00000

O(1/N) corrections to lines

Substituting the exact vertices into the expression for the Keldysh propagator, we
obtain the O(1/N) corrections to the propagator and quantum averages:

i 41314 Y 1
n;; :72Lj% sin? —SR|+O0( -],
N R dwd N

%a*ﬂ*\alzlﬁ\Q (Il +161%) {1+6|5|2+6|5|4 COS( At R) i m( A ) B

Kij = 36

R2 R2 2w_2~_ R s 2wi
2 At 2 At 1—6|8%> —6|p|* 1
—ECOS <4M3LR> + ESIH <4wiR> +T +O N .

1x /;ON 2%

(a)
2% /;% 2x

@
o NI

()
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Diagram calculations
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Average number of excitations for arbitrary 3

® Using the resummed corrections to the quantum averages, we estimate the
average number of excitations at large evolution times and arbitrary f:

la*[8]* (Jel? + [8]%) At Mt
~ ree — 5 —4 S| ——
N = Npree + 36 i 3 + cos 202 R cos e R

® |n a strongly nonstationary case (e.g., for resonant oscillations), tree-level and
loop contributions are proportional to the same power of S:

1 At At
N0 = VB + 5151 [3-+cos ( S5 19PVE) —scos (51025 ) =
~ NIBP + 5182

® Thus, loop corrections act as additional “phantom” degrees of freedom
that modify the average number and energy of excitations: N — N + 3
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Conclusion
°

Conclusion

| considered a toy model of interacting nonstationary quantum theory —
a system of NV coupled harmonic oscillators with time-dependent frequency
and O(N) symmetric quartic coupling

Using two different methods, | resummed loop corrections to the average
number of excitations in the limit A — 0, ¢ — 0o, A\t = const and N > 1

At large deviations from the stationarity, loop contribution can be interpreted
as additional “phantom” degrees of freedom, N — N + £, that modify the
average number and energy of excitations at large evolution times

In fact, this method and conclusion can be also extended to the nonlinear
dynamical Casimir effect, at least for weak deviations from the stationarity®

| also note that a deformation of the considered model can be used as a
convenient testing ground for the study of quantum chaos — in particular, of
the relation between the out-of-time ordered correlation functions and
classical Lyapunov exponents

1See arXiv:2108.07747
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