## Identification of discrete Painlevé equations

Trunina Elizaveta

#### XVII DIAS-TH Winter School "Supersymmetry and Integrability"

31.01.2022

Trunina Elizaveta

Dubna, 2022

Стр. 1 из 16

イロト イポト イヨト イヨ

# Introduction

- Painlevé equations are nonlinear differential equations of the second order whose only movable singularities are poles.
- There are six families of such equations.
- The discrete Painlevé equations are nonlinear recurrence relations that reproduce one of the Painlevé differential equations in the continuous limit.
- In 2001, H. Sakai suggested a classification of discrete Painlevé equations based on rational surfaces associated with affine root systems.
- Each discrete system in Sakai method is characterized by a pair of affine root systems, for example  $(A_2^{(1)}/E_6^{(1)})$ .

メロト メポト メヨト メヨト

# Problem of identification

• How to identify some discrete system as discrete Painlevé equation?

$$\begin{cases} x_{n+1} = \left(t - \frac{1}{2}y_n\right)y_n - x_n, \\ y_{n+1} = \frac{\left(y_n^2 - 2ty_n + 2x_n\right)^2}{y_n\left(2(n+1) - y_n^2 + 2ty_n - 2x_n\right)}, \end{cases} \quad \begin{cases} f_{n+1} + f_n = g_n - t - \frac{a_2}{g_n}, \\ g_{n-1} + g_n = f_n + t + \frac{a_1}{f_n}. \end{cases}$$

- The first system arises in random matrix theory, the second system is the standard equation of  $(A_2^{(1)}/E_6^{(1)})$ -type.
- We will show how to obtain explicit change of coordinates matching the two equations.

# Space of initial conditions

- First, we need to find the type of surface.
- Consider the space of initial conditions. Naturally, we think that it is  $\mathbb{C}^2$ .
- But for Painlevé equations, we want to consider poles as initial conditions. This is why we make the compactification:

$$\mathbb{C}^2 \longrightarrow \mathbb{P}^1 \times \mathbb{P}^1$$

- Here, we move from the complex plane  $\mathbb C$  to the projective line  $\mathbb P^1$ .
- This allows us to consider two charts for each variable: x, X = 1/x and y, Y = 1/y.
- However, such compactification leads to some problems.

Trunina Elizaveta

オロト オポト オモト オモト

### Base points

- After the compactification procedure, infinitely many solutions can pass through some points of P<sup>1</sup> × P<sup>1</sup>. Such points are called base points.
- In such points indeterminacies appear, i.e., both the numerator and the denominator of the map vanish.
- For example, in our system in point (x = 0, y = 0):

$$y_{n+1} = \frac{(y_n^2 - 2ty_n + 2x_n)^2}{y_n \left(2(n+1) - y_n^2 + 2ty_n - 2x_n\right)} = \frac{0}{0}.$$

Trunina Elizaveta

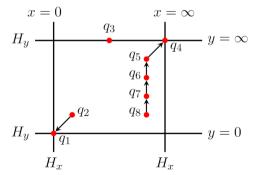
Dubna, 2022

Стр. 5 из 16

(日)

### Base points

• It turns out that every Painlevé equation has exactly eight base points. Their configuration defines the type of the surface. In our case:



• To resolve such indeterminacies, we need to perform a blow-up procedure.

Trunina Elizaveta

Dubna, 2022

ヘロト 人間ト ヘヨト ヘヨト

# Blow-up procedure

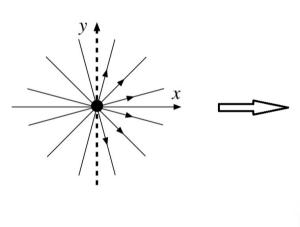
• The blow-up procedure in point (a, b) is given by:

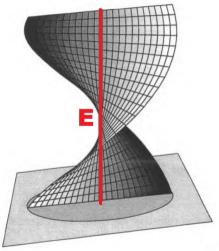
$$\begin{cases} x = a + u_i = a + U_i V_i, \\ y = b + u_i v_i = b + V_i \end{cases}$$

- We adding two additional charts in point, which is equivalent to the adding Riemann sphere (that's why we call it a "blow-up").
- Such procedure allows us to get rid of the indeterminacy.
- However, sometimes after blowing-up, we can find new base points in (u, v)-chart.

(日) (四) (日) (日) (日)

# Blow-up procedure



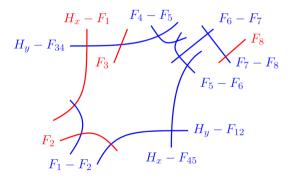


# Sakai surface

- We see that the point (a, b) of blowing-up becomes a line E that we call exceptional divisor.
- From this point, we will use the algebro-geometric language of divisors.
- After eight blowing-ups, our  $\mathbb{P}^1 \times \mathbb{P}^1$  initial space becomes Sakai surface  $\mathfrak{X}$ .
- Divisors forms a basis on Sakai surface called Picard lattice:  $Pic(\mathcal{X}) = Span\{H_x, H_y, E_1, \dots, E_8\}.$
- If we know the change of basis matching Picard lattice of our equation with the Picard lattice of the standard equation, it is easy to obtain an explicit change of coordinates.

# Sakai surface

• After eight blowing-ups, we have the following Sakai surface:



• Blue lines are -2 curves, if you look closely at them ...

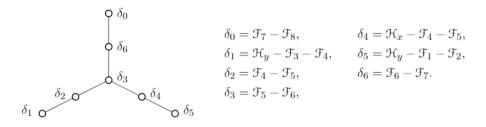
Trunina Elizaveta

Dubna, 2022

Стр. 10 из 16

# Sakai surface

• ... you will see that they form an  $E_6^{(1)}$  affine root system:



- This is the type of our surface!
- Comparing our choice of  $E_6^{(1)}$  roots with the standard one, we can obtain a preliminary change of basis on the Picard lattice.

Trunina Elizaveta

Стр. 11 из 16

イロト イポト イヨト イヨト

# Symmetries of surface

• For differential Painlevé equations, we have the special class of the so-called Backlund transformations that transform the solutions of equation to the solution of equation from the same Painlevé family. For example, P-II:

$$y'' = 2y^3 + ty + \beta - \frac{1}{2},$$

has two Backlunds  $s(\tilde{q} = q + \beta/p, \tilde{p} = p, \tilde{t} = t)$  and  $r(\tilde{q} = -q, \tilde{p} = -p + 2q^2 + t, \tilde{t} = t)$ .

- It turns out that the Backlund transformations preserve the type of Sakai surface.
- Discrete Painlevé equation is nothing but a some combination of Backlund transformations ( r o s is d-P (A<sub>1</sub><sup>(1)</sup>/E<sub>7</sub><sup>(1)</sup>)).

Trunina Elizaveta

Стр. 12 из 16

イロト イポト イヨト イヨト 二日

# Group of symmetries

- How to find all Backlund transformations?
- All symmetries of the  $E_6^{(1)}$  Sakai surface are described by  $\widetilde{W}(A_2^{(1)})$  group:

$$\widetilde{W}(A_2^{(1)}) = \operatorname{Aut}(A_2^{(1)}) \ltimes W(A_2^{(1)}) = \mathbb{D}_3 \ltimes W\left( \bigwedge_{\alpha_1 \circ \cdots \circ \alpha_2}^{\alpha_0} \right)$$

• We have three Backlunds  $w_0, w_1, w_2$  from the  $W(A_2^{(1)})$  group and two  $\pi_1, r$  from the automorphisms of  $W(A_2^{(1)})$ .

# Dynamic of the equation

• To finally obtain the change of variables, we need to compare the dynamics of our discrete system with the dynamics of the standard discrete  $(A_2^{(1)}/E_6^{(1)})$  Painlevé equation:

$$\psi = \mathbf{r} \circ \mathbf{w}_1 \circ \mathbf{w}_0, \quad \varphi_{st} = \mathbf{r} \circ \mathbf{w}_0 \circ \mathbf{w}_2$$

• We see that they are indeed equivalent up to small transformation of basis:

$$\psi_f = \mathbf{r} \circ \varphi_{st} \circ \mathbf{r}^{-1}$$

 Acting on our basis by r<sup>-1</sup>, we can obtain the final change of basis on the Picard lattice.

Стр. 14 из 16

# Change of variables

• After some calculations, we can obtain the explicit change of coordinates that matches our discrete system and standard d-P( $A_2^{(1)}/E_6^{(1)}$ ) Painlevé equation:

$$\begin{aligned} \mathcal{H}_{x} &= 2\mathcal{H}_{f} + \mathcal{H}_{g} - \mathcal{E}_{3567}, \\ \mathcal{H}_{y} &= \mathcal{H}_{f} + \mathcal{H}_{g} - \mathcal{E}_{56}, \\ \mathcal{F}_{1} &= \mathcal{H}_{f} + \mathcal{H}_{g} - \mathcal{E}_{567}, \\ \mathcal{F}_{2} &= \mathcal{E}_{8}, \quad \mathcal{F}_{3} &= \mathcal{E}_{4}, \\ \mathcal{F}_{4} &= \mathcal{H}_{f} + \mathcal{H}_{g} - \mathcal{E}_{356}, \\ \mathcal{F}_{5} &= \mathcal{H}_{f} - \mathcal{E}_{6}, \\ \mathcal{F}_{5} &= \mathcal{H}_{f} - \mathcal{E}_{5}, \\ \mathcal{F}_{7} &= \mathcal{E}_{1}, \quad \mathcal{F}_{8} &= \mathcal{E}_{2}. \end{aligned}$$

$$egin{aligned} &
ightarrow x(f,g)=f(g-f-c),\ &
ightarrow y(f,g)=\sqrt{2}(g-f-c). \end{aligned}$$

(日)

Trunina Elizaveta



Trunina Elizaveta

Стр. 16 из 16