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Introduction

• Painlevé equations are nonlinear differential equations of the second order whose
only movable singularities are poles.

• There are six families of such equations.
• The discrete Painlevé equations are nonlinear recurrence relations that reproduce

one of the Painlevé differential equations in the continuous limit.
• In 2001, H. Sakai suggested a classification of discrete Painlevé equations based on

rational surfaces associated with affine root systems.
• Each discrete system in Sakai method is characterized by a pair of affine root

systems, for example (A
(1)
2 /E

(1)
6 ).
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Problem of identification

• How to identify some discrete system as discrete Painlevé equation?
xn+1 = (t − 1

2
yn) yn − xn,

yn+1 =
(y 2

n − 2tyn + 2xn)2

yn (2(n + 1)− y 2
n + 2tyn − 2xn)

,


fn+1 + fn = gn − t − a2

gn
,

gn−1 + gn = fn + t +
a1

fn
.

• The first system arises in random matrix theory, the second system is the standard
equation of (A(1)

2 /E
(1)
6 )-type.

• We will show how to obtain explicit change of coordinates matching the two
equations.
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Space of initial conditions

• First, we need to find the type of surface.
• Consider the space of initial conditions. Naturally, we think that it is C2.
• But for Painlevé equations, we want to consider poles as initial conditions. This is

why we make the compactification:

C2 → P1 × P1

• Here, we move from the complex plane C to the projective line P1.
• This allows us to consider two charts for each variable: x , X = 1/x and y ,
Y = 1/y .

• However, such compactification leads to some problems.
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Base points

• After the compactification procedure, infinitely many solutions can pass through
some points of P1 × P1. Such points are called base points.

• In such points indeterminacies appear, i.e., both the numerator and the
denominator of the map vanish.

• For example, in our system in point (x = 0, y = 0):

yn+1 =
(y 2

n − 2tyn + 2xn)2

yn (2(n + 1)− y 2
n + 2tyn − 2xn)

=
0
0
.
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Base points

• It turns out that every Painlevé equation has exactly eight base points. Their
configuration defines the type of the surface. In our case:

• To resolve such indeterminacies, we need to perform a blow-up procedure.
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Blow-up procedure

• The blow-up procedure in point (a, b) is given by:{
x = a + ui = a + UiVi ,

y = b + uivi = b + Vi

• We adding two additional charts in point, which is equivalent to the adding
Riemann sphere (that’s why we call it a “blow-up”).

• Such procedure allows us to get rid of the indeterminacy.
• However, sometimes after blowing-up, we can find new base points in (u, v)-chart.
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Blow-up procedure
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Sakai surface

• We see that the point (a, b) of blowing-up becomes a line E that we call
exceptional divisor.

• From this point, we will use the algebro-geometric language of divisors.
• After eight blowing-ups, our P1 × P1 initial space becomes Sakai surface X.
• Divisors forms a basis on Sakai surface called Picard lattice:
Pic(X) = Span{Hx ,Hy ,E1, . . .E8}.

• If we know the change of basis matching Picard lattice of our equation with the
Picard lattice of the standard equation, it is easy to obtain an explicit change of
coordinates.
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Sakai surface

• After eight blowing-ups, we have the following Sakai surface:

• Blue lines are −2 curves, if you look closely at them ...
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Sakai surface

• ... you will see that they form an E
(1)
6 affine root system:

• This is the type of our surface!
• Comparing our choice of E (1)

6 roots with the standard one, we can obtain a
preliminary change of basis on the Picard lattice.
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Symmetries of surface

• For differential Painlevé equations, we have the special class of the so-called
Backlund transformations that transform the solutions of equation to the solution
of equation from the same Painlevé family. For example, P-II:

y ′′ = 2y 3 + ty + β − 1
2
,

has two Backlunds s(q̃ = q + β/p, p̃ = p, t̃ = t) and r(q̃ = −q,
p̃ = −p + 2q2 + t, t̃ = t).

• It turns out that the Backlund transformations preserve the type of Sakai surface.
• Discrete Painlevé equation is nothing but a some combination of Backlund

transformations ( r ◦ s is d-P (A
(1)
1 /E

(1)
7 )).
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Group of symmetries

• How to find all Backlund transformations?
• All symmetries of the E

(1)
6 Sakai surface are described by W̃ (A

(1)
2 ) group:

W̃ (A
(1)
2 ) = Aut(A(1)

2 )⋉W (A
(1)
2 ) = D3 ⋉W

(
α1 α2

α0
)

• We have three Backlunds w0,w1,w2 from the W (A
(1)
2 ) group and two π1, r from

the automorphisms of W (A
(1)
2 ).
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Dynamic of the equation

• To finally obtain the change of variables, we need to compare the dynamics of our
discrete system with the dynamics of the standard discrete (A(1)

2 /E
(1)
6 ) Painlevé

equation:
ψ = r ◦ w1 ◦ w0, φst = r ◦ w0 ◦ w2

• We see that they are indeed equivalent up to small transformation of basis:

ψf = r ◦ φst ◦ r−1

• Acting on our basis by r−1, we can obtain the final change of basis on the Picard
lattice.
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Change of variables

• After some calculations, we can obtain the explicit change of coordinates that
matches our discrete system and standard d-P(A

(1)
2 /E

(1)
6 ) Painlevé equation:

Hx = 2Hf +Hg − E3567,

Hy = Hf +Hg − E56,

F1 = Hf +Hg − E567,

F2 = E8, F3 = E4, → x(f , g) = f (g − f − c),

F4 = Hf +Hg − E356, → y(f , g) =
√

2(g − f − c).

F5 = Hf − E6,

F6 = Hf − E5,

F7 = E1, F8 = E2.
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