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These le
tures are devoted to brief dis
ussion of the main positions of the twistor theory.

Twistor formalism dis
overed by R.Penrose in 1967 is e�e
tive in the study of dynami
al

systems possessing 
onformal symmetries. But their use is not limited to su
h theories.

Twistors are used

in gravity;

in the 
onstru
tion of new supersymmetri
 models;

in the higher spin (HS) theory;

in the 
al
ulation of s
attering amplitudes;

and in other areas of theoreti
al physi
s.

Twistors give us additional tools to explore existing theories and also provide alternative

des
ription of these theories in addition to the widely used spa
e-time formalism.

Here we will 
onsider the use of twistors to des
ribe irredu
ible representations of the

Poin
ar�e group in the 4D spa
e-time, that is, in elementary parti
le physi
s.
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le.



Conformal symmetry

The appearan
e of twistors and their wide appli
ation is asso
iated with the study of

systems with 
onformal symmetry.

Let us �rst 
onsider massless parti
le of zero heli
ity as the simplest illustrative, but, at the

same time, 
on
rete and physi
ally meaningful example.

Massless parti
le with zero heli
ity plays an important role in the subje
t of our study.

In addition to its relative simpli
ity, massless parti
le of zero heli
ity has all the ne
essary

formulations (purely spa
e-time, purely twistor and mixed ones) and interrelations between

them (Penrose twistor transformations), both at the 
lassi
al (me
hani
al) and at the

primary-quantized (�eld) level. This 
auses a 
onstant referen
e to it when 
onstru
ting

more 
omplex systems, su
h as spinning (super)parti
le, higher spin (super)parti
les or

(super)strings, where the full twistor pi
ture has not yet been established.

In spa
e-time des
ription the a
tion of massless zero-heli
ity (spinless) parti
le looks like

(||ηmk || = diag(+1,−1,−1,−1), m = 0, 1, 2, 3)

Ss.−t.
0 =

∫

dτ
(

pm ẋm − 1

2
ep2
)

⇒
∫

dτ
1

2e
ẋm ẋm

where xm(τ) and pm(τ) are the 
oordinate and momentum of the parti
le, {xm, pn}P = δm
n ;

τ is evolution parameter. The variable e(τ) is Lagrange multiplier for the mass 
onstraint

p2 ≡ pmpm ≈ 0 .
When quantized, this 
onstraint produ
es the massless Klein-Gordon equation

�Φ(x) ≡ ∂m∂mΦ(x) = 0 .



The a
tion is invariant under transformations (am
, ℓmn

, km, c are the 
onstant parameters)

δxm = am + ℓmnxn + cxm + 2(k · x)xm − x2km ,

δpm = ℓmnpn − cpm + 2(k · p)xm − 2(k · x)pm − 2(x · p)km ,

δe = 2ce + 4(k · x)e ,

whose generators (the Noether 
harges)

Pm = pm , Mmn = xmpn − xnpm , D = xmpm , Km = 2(x · p)xm − x2pm

form the algebra with respe
t to Poisson bra
kets {xm , pn}P = δm
n :

{Mmn,Mlk}P = ηml Mnk − ηmk Mnl − (m ↔ n) , {Mmn ,Pl}P = ηml Pn − (m ↔ n) ,

{Pm,Kn}P = 2Mmn − 2ηmnD , {Mmn ,Kl}P = ηml Kn − (m ↔ n) ,

{Pm,D}P = −Pm , {Km,D}P = Km .

This algebra is 
alled the 
onformal algebra.

This 
onformal algebra has another representation, more 
onvenient for our subje
t.

After 
olle
tion 15 generators into antisymmetri
 tensor JMN = −JNM, M = (1′, 0′;m),

Jmn = Mmn , Jm0′ =
1
2 (Pm + Km) , Jm1′ = 1

2 (Pm − Km) , J0′1′ = D ,

the 
onformal algebra takes the form

{JMN , JKL}P = ηMKJNL − ηMLJNK − (M ↔ N ) ,

where ηMN = ηNM has the following 
omponents: ηmn and ηm0′ = ηm1′ = η0′1′ = 0,
η0′0′ = −η1′1′ = +1, and, in fa
t, is the metri
 tensor of the 6-dimensional spa
es with the

signature (+ +−−−−).



This algebra is nothing but the so(2, 4) algebra. That is, 
onformal symmetry is des
ribed

by the group SO(2, 4), whi
h is the symmetry group of 6-dimensional spa
e with two times.

Poin
ar�e transformations, in
luding Lorentz transformations (parameters ℓmn
) and

Poin
ar�e translations (parameters am
) are realized by linear transformations. A

ounting

this symmetry is well known: the use of Lorentz-
ovariant quantities and the presen
e of


oordinates xm
outside the �elds only through the derivative ∂m in the �eld equations.

But 
onformal boosts are realized by nonlinear transformations. So, under 
onformal boosts

δ� = −4(kx)�+ 4km∂m ,

Therefore, the 
onformal invarian
e of even the Klein-Gordon equation implies the following

transformation of the massless s
alar �eld

δΦ = −2(kx) Φ .

Already 
onsideration of this simple system suggests to us the desire to have a formulation

in whi
h 
onformal SO(2, 4) transformations are realized by linear transformations. This

be
omes more relevant when 
onsidering more 
omplex physi
al systems.

One way to the linear realization of 
onformal SO(2, 4) symmetry is 
onsideration of the

spa
es (
oordinate or �eld spa
es) with SO(2, 4)-tensors.

But to be able to des
ribe all representations, in
luding spinor representations, it is

natural to 
onsider the 
orresponding spinor group, homomorphi
 to the SO(2, 4) group,
SO(2, 4) ∼= Spin(2, 4) ∼= SU(2, 2) (an analogue of SL(2,C) for SO(1, 3)):

G ∈ SU(2, 2) : det G = 1 , G+gG = g , g = diag(12,−12) .

Then all 
onformal transformations (linear homogeneous, inhomogeneous and nonlinear) are

realized as linear SU(2, 2)-spinor transformations of the 
orresponding spa
e.

The solution of this problem led R. Penrose to the twistor theory.



4D spinor notations used in these le
tures

The spa
e-time metri
 is ηmn = diag(+1,−1,−1,−1).

Totally antisymmetri
 tensor εmnkl has the 
omponent ε0123 = −1.

Four-
omponent Dira
 spinor Ψ is represented by two Weyl spinors Ψ =

(

ψα

χ̄α̇

)

.

Two-
omponent Weyl spinor indi
es are raised and lowered by ǫαβ , ǫ
αβ

, ǫα̇β̇ , ǫ
α̇β̇

with

nonvanishing 
omponents ǫ12 = −ǫ21 = ǫ21 = −ǫ12 = 1: ψα = ǫαβψ
β
, ψα = ǫαβψβ , et
.

The Dira
 matri
es γm obey the Cli�ord algebra {γm, γn} = 2ηmn .

In the Weyl representation they have the form γm =

(

0 (σm)αβ̇

(σ̃m)α̇β 0

)

.

Relativisti
 σ-matri
es are (σm)αβ̇ = (12;σ1, σ2, σ3)αβ̇ , where σ1, σ2, σ3 are the Pauli

matri
es. The matri
es (σ̃m)α̇β = ǫα̇δ̇ǫβγ(σm)γδ̇ = (12;−σ1,−σ2,−σ3)
α̇β

satisfy

σm
αγ̇ σ̃

n γ̇β + σm
αγ̇ σ̃

n γ̇β = 2 ηmnδβα , σm
αβ̇
σ̃β̇α

n = 2 δm
n .

The link between Minkowski four-ve
tors and spinorial quantities is given by

Aαβ̇ = 1√
2

Am(σm)αβ̇ , Aα̇β = 1√
2

Am(σ̃m)α̇β
, Am = 1√

2
Aαβ̇(σ̃m)β̇α

, so that AmBm = Aαβ̇Bβ̇α
.

The σ-matri
es with two ve
tor indi
es are de�ned by (σmn)αβ = − 1
4 (σm σ̃n − σnσ̃m)αβ

,

(σ̃mn)α̇β̇ = − 1
4 (σ̃mσn − σ̃nσm)α̇β̇ and satisfy the identities εmnklσkl = −2i σmn

,

εmnkl σ̃kl = 2i σ̃mn
. We represent the antisymmetri
 se
ond rank ve
tor tensor in the form

X[mn] = (σmn)
αβX(αβ) − (σ̃mn)

α̇β̇ X̄(α̇β̇) .



Twistor spa
e

In twistor theory, 
onformally invariant systems are formulated in the spa
e parameterized

by 
ommuting SU(2, 2)-spinor ZA, A = 1, ...,4. As we will see below, this spa
e a
tually
repla
es the usual phase spa
e formed by 4-ve
tors xm

and pm.

To obtain results in terms of ordinary 4D spin-tensor �elds, it is 
onvenient to 
onsider

the representation, in whi
h the SU(2, 2)-spinor

ZA = (πα, ω
α̇) , ZA → GA

B ZA , G ∈ SU(2, 2)

is formed from two 4D Weyl spinors of opposite 
hirality πα, ωα̇
(α = 1, 2, α̇ = 1, 2).

Following R.Penrose, we use spinor ωα̇
, whi
h has dotted index, but without `bar'.

We point out that spinors are c-number.

Conjugate 4D spinors π̄α̇ = (πα)∗, ω̄α = (ωα̇)∗ form the SU(2, 2)-spinor Z̄Ȧ = (π̄α̇, ω̄
α) ,

whi
h transforms a

ording to the 
omplex 
onjugate representation.

Using SU(2, 2)-invariant tensors gAḂ
, gAḂ , whi
h in the 
hosen representation have the form

gȦB =

(

0 −δα̇β̇

δαβ 0

)

, gAḂ =

(

0 δαβ

−δα̇β̇ 0

)

, gAĊgĊB = δB
A , gȦCgCḂ = δḂ

Ȧ
,

(

(G+)Ȧ
ḂgḂBGB

A = gȦA ,G ∈ SU(2, 2)
)

spinor Z̄Ȧ de�nes the SU(2, 2)-spinor

Z̄ A = Z̄ḂgḂA = (ω̄α,−π̄α̇) ,

whi
h transforms using the inverse SU(2, 2)-matrix: Z̄ A → Z̄ B (G−1)B
A ,.



Contra
tion of the spinor ZA and its 
onjugate Z̄ A
de�nes the Hermitian form

Λ ≡ i
2 Z̄ AZA = i

2 Z̄ḂgḂAZA = i
2 (ω̄απα − π̄α̇ω

α̇)

whi
h is SU(2, 2)-invariant and is the norm of the SU(2, 2)-spinor ZA.

By de�nition,

the twistor spa
e T is the spinor spa
e (spa
e C4
) of the 
onformal group SU(2, 2) with

Hermitian form Λ.

The SU(2, 2)-spinors ZA, de�ned on this spa
e, are 
alled twistors.

Depending on the value of the Hermitian form, the following subsets of the twistor spa
e are

distinguished:

the spa
e of positive twistors T+, when Λ > 0;

the spa
e of negative twistors T−, when Λ < 0;

the spa
e of isotropi
 twistors T0, when Λ = 0.

Physi
al meaning of the twistor norm Λ will be given below.

Comment: In some papers, the imaginary unit i is used as additional fa
tor in the de�nition

of the SU(2, 2)-metri
 gȦB
, and then this fa
tor is absent in the de�nition of the twistor

norm Λ. We use 
onventions where su
h a fa
tor will be used less in further expressions.



In�nitesimal 
onformal transformations are realized in twistor spa
e by linear

transformations:

δZA = LA
BZB , gȦBLB

A = (L+)Ȧ
ḂgḂA ,

or in spinor 
omponents

δπα = −ℓαβπβ − 1
2 c πα − 2kαβ̇ω

β̇ , δωα̇ = ℓ̄α̇β̇ω
β̇ + 1

2 c ωα̇ + aα̇βπβ .

The generators of these transformations are found after giving symple
ti
 stru
ture in the

twistor spa
e. De�ning Poisson bra
kets in twistor spa
e

{Z̄ A, ZB}P = δA
B ⇒ {ω̄α, πβ}P = δαβ , {ωα̇, π̄β̇}P = δα̇

β̇
,

we get that 
onformal transformations are generated by the following bilinear 
ombinations

of twistor 
omponents

Pαα̇ = παπ̄α̇ , K α̇α = ωα̇ω̄α , Mαβ = π(αω̄β) , M̄α̇β̇ = π̄(α̇ωβ̇) , D = 1
2 (ω̄απα+ π̄α̇ω

α̇) .

The generators form 
onformal algebra with respe
t to the Poisson twistor bra
kets and

preserve the twistor norm. In terms of 4-
omponent twistors, 
onformal generators are

represented as tra
eless produ
t of the twistor and its 
onjugate one:

Z̄ AZB − 1
4 δ

A
B Z̄ CZC .

Having linear realization of 
onformal symmetry in terms of twistor variables, we 
an

�nd twistor formulation of massless parti
le and its link with spa
e-time des
ription.

��������������

We use the notations Pαα̇ = 1√
2

Pmσm
αα̇, Pm = 1√

2
Pαα̇σ̃

α̇α
m , that is Pm ∼ Pαα̇

and M[mn] = (σmn)αβM(αβ) − (σ̃mn)α̇β̇M̄(α̇β̇).



Penrose twistor transform and twistor formulation of massless parti
les

Comparison of generators of 
onformal symmetry in spa
e-time and twistor formulations

leads to the following observations:

- four-momentum pm is represented in the form of the produ
t of the spinor πα and its


onjugate,

- se
ond twistor spinor ωα̇
is proportional to the produ
t of four-
oordinate xm

and the

spinor πα.

In fa
t, exa
t expressions for the link spa
e-time and twistor variables is determined by the

relations of the Penrose transform:

pαα̇ = παπ̄α̇ , (a)

ωα̇ = xα̇βπβ , ω̄α = π̄β̇x β̇α . (b)

Chara
teristi
 features of Penrose transform:

Important point is the Hermitianity of the matrix xα̇β = 1√
2

xmσ̃α̇β
m 
onstru
ted by

using the real ve
tor xm
: (xα̇β)∗ = x β̇α

.

When performing the Penrose transformation, the twistor representation of the


onformal generators goes over into the spa
e-time representation.

From the 
onformal transformations of twistors we obtain 
orresponding

transformations of spa
e-time variables.

Relations are 
onsistent with symple
ti
 stru
tures in twistor and spa
e-time phase

spa
es. Namely, Poisson bra
kets for pαα̇ and ωα̇
are is the same if they are 
omputed

with twistor bra
kets {ω̄α, πβ}P = δαβ or Poisson bra
kets {xα̇α, pββ̇}P = δαβ δ
α̇
β̇
.



Twistor transform equations have transparent physi
al and geometri
 meaning:

The equation (a) implies automati
ally that the parti
le four-momentum pαα̇ = παπ̄α̇
is light-like

p2 = pαα̇pαα̇ = 0

due to the automati
 ful�llment of the identity

παπα = ǫαβπβπα = ǫ[αβ]π(βπα) ≡ 0 ,

whi
h is valid for 
ommuting 4D Weyl spinors.

For �xed twistor ZA = (πα, ωα̇), the solution of the equations (b) (in
ident 
onditions)
with respe
t to spa
e-time 
oordinate xm

xα̇α = xα̇α
0 + aπαπ̄α̇ , xα̇α

0 = 2ωα̇ω̄α/(πβ ω̄
β + π̄β̇ω

α̇)


ontains an arbitrary real 
onstant a, whi
h parameterizes the light-like line (lightray)

in the Minkowski spa
e with the dire
tion ve
tor παπ̄α̇
.



In
ident 
onditions (b) have additional important 
onsequen
e: the twistor appearing in

them is isotropi
:

Λ = i
2 Z̄ AZA = i

2 (ω̄απα − π̄α̇ω
α̇) = 0 .

This result is a
hieved due to the Hermiti
ity of the matrix xα̇α
in (b). This 
onstraint

generates lo
al phase transformations

ZA = (πα, ω
α̇) → eiϕZA = (eiϕπα, eiϕωα̇)

and leaves the twistor transformations invariant.

What is the physi
al meaning of the twistor norm Λ?

The answer to this question is found after 
al
ulating the Pauli-Lubanski ve
tor

Wm = 1
2 εmnklP

nMkl , Wαα̇ = i
(

Pα
β̇M̄β̇α̇ − Pβ

α̇Mβα

)

.

In the twistor realization of Poin
ar�e generators, we have

Wαα̇ = ΛPαα̇ .

But as is known from the representation theory of the Poin
ar�e group, �the proportionality

operator� between the Pauli-Lubanski operator and the energy-momentum operator is

exa
tly equal to the heli
ity in 
ase of massless representations of �xed heli
ity.

Thus, the norm Λ of the twistor 
oin
ides with the heli
ity of the massless parti
le whi
h is

des
ribed by this twistor.



Thus, twistor transformations link the spa
e-time and twistor formulations of massless

parti
le of zero heli
ity.

In spa
e-time formulation there is mass 
onstraint p2 ≈ 0, and the 
ondition of

equality to zero of heli
ity Λ = 0 is ful�lled automati
ally;

In twistor formulation there is the spin (heli
ity) 
onstraint Λ ≈ 0 under resolved

massless 
ondition p2 = 0.

In twistor formulation the a
tion of massless parti
le of zero heli
ity has the form

Stwistor
0 = 1

2

∫

dτ
[

Z̄ AŻA − ˙̄Z AZA − i
2 l Z̄ AZA

]

,

where l(τ) is Lagrange multiplier for twistor 
onstraint Λ ≈ 0. Up to the total derivative,

this a
tion in terms of 4D spinors takes the form

Stwistor
0 =

∫

dτ
[

˙̄ωαπα + π̄α̇ω̇
α̇ − i

2 l(ω̄απα − π̄α̇ω
α̇)
]

.

We 
an 
he
k that the number of physi
al degrees of freedom is equal to six both in the

spa
e-time system and in twistor one

(the �rst 
lass 
onstraint eliminates two degrees of freedom in the phase spa
e systems).



Twistor wave fun
tion

Let us �nd the twistor wave fun
tion and link it with the s
alar �eld resulting from

quantization of this model in spa
e-time formulation.

In the transition to quantum theory, the Poisson bra
kets go over to the 
ommutator

[ ˆ̄Z A, ẐB ] = iδA
B : [ˆ̄ωα, π̂β ] = iδαβ , [ω̂α̇, ˆ̄πβ̇ ] = iδα̇

β̇
.

It is 
onvenient to quantize twistor parti
le in holomorphi
 representation (Penrose

representation), when the operators ẐA are diagonal, and

ˆ̄Z A
are realized by di�erentiation

operators

ˆ̄Z A = i
∂

∂ZA
or in spinor 
omponents

ˆ̄πα̇ = −i
∂

∂ωα̇
, ˆ̄ωα = i

∂

∂πα
.

In this holomorphi
 representation twistor wave fun
tion

Ψ(Z ) = Ψ(π, ω)

satis�es the equation

Λ̂Ψ(Z ) = 0 ,

whi
h is quantum 
ounterpart of the 
lassi
al twistor 
onstraint Λ ≈ 0.



Carrying out the Weyl ordering in the heli
ity operator

Λ = i
2 Z̄ AZA → Λ̂ = i

4 (ˆ̄Z AẐA + ẐA
ˆ̄Z A) = i

2 ẐA
ˆ̄Z A − 1 = − 1

2 ZA
∂

∂ZA
− 1 ,

we obtain that the equation for the twistor wave fun
tion has the form

1
2 ZA

∂

∂ZA
Ψ = −Ψ (∗)

or, in writing through the spinor 
omponents of the twistor,

1
2 (πα

∂

∂πα
+ ωα̇ ∂

∂ωα̇
)Ψ = −Ψ .

Thus, the twistor wave fun
tion of the system under 
onsideration is the holomorphi


homogeneous fun
tion of the homogeneity degree (−2):

Ψ(−2)(αZ ) = α−2Ψ(−2)(Z ) , (∗∗)
where α is an arbitrary 
omplex number.

Remark.

Equation (∗) is equivalent to the equation (∗∗):
A
ting the operator α ∂

∂α
on the left and right sides of the equation (∗∗) and after that

putting the value α = 1, we obtain the equation (∗).



Field twistor transform

In Penrose twistor approa
h, the usual spa
e-time �eld is obtained from the twistor �eld by

means of the Penrose twistor transform for the �elds. It is 
onstru
ted as follows.

As �rst step, the spinor ω in twistor �eld is resolved by using the in
iden
e 
ondition

Ψ(−2)(Z )
∣

∣

∣

ωα̇=xα̇απα

= Ψ(−2)(πα, xα̇απα) .

Due to the homogeneity of twistor �eld, this fun
tion is a
tually de�ned on the 
omplex

proje
tive spa
e CP1
and depends e�e
tively on one 
omplex variable if we take into a

ount

homogeneity. For example, from the ratio z ≡ π1/π2 at π2 6= 0.

Integrating the twistor �eld over this variable, we obtain the usual spa
e-time �eld.

In 
ovariant notation, independent of the 
hoi
e of 
oordinate on CP1
, the �eld is integrated

with the measure πdπ ≡ παdπα

Φ(x) =
∮

πdπΨ(−2)(πα, xα̇απα) ,

so the integrand is the invariant of the transformation π → απ for the twistor �eld.

In this integral transformation, the integration is 
arried out along the 
losed 
ontour in the

spa
e of independent 
omplex variable, en
losing the poles of the twistor �eld Ψ(−2)
.

This integral transformation is the Penrose twistor transform for s
alar �eld. It is important

that the �eld Φ(x) obtained in this way automati
ally satis�es the Klein-Gordon equation

∂αα̇∂αα̇Φ(x) = 0 .
This is the result of the dependen
e of the twistor �eld on xα̇α

only in 
ombination xα̇απα
with 
ommuting spinor πα, for whi
h the identity παπα ≡ 0 holds.



Twistor formulation of massless parti
le of arbitrary �xed heli
ity

In the twistor formulation, the parti
le heli
ity is determined by the twistor norm.

Consequently, the phase spa
e of massless parti
le of heli
ity s must 
ontain the 
onstraint

Λ− s = i
2 Z̄ AZA − s = i

2 (ω̄
απα − π̄α̇ω

α̇)− s ≈ 0 ,

generalizing twistor 
onstraint for zero-heli
ity parti
le.

The a
tion

Stwistor
s =

∫

dτ
[

1
2 (Z̄ AŻA − ˙̄Z AZA)− l ( i

2 Z̄ AZA − s)
]

,

in whi
h the 
onstraint Λ− s ≈ 0 is introdu
ed through the term with the Lagrangian

multiplier l , determines the twistor formulation of massless parti
le of heli
ity s.

After quantization, the twistor 
onstraint Λ− s ≈ 0 generates the equation for the twistor

wave fun
tion

1
2 ZA

∂

∂ZA
Ψ = −(1 + s)Ψ .

Thus, the twistor �eld of massless heli
ity parti
le s is holomorphi
 homogeneous fun
tion

of the homogeneity degree (−2 − 2s):

Ψ(−2−2s)(Z ) , Ψ(−2−2s)(αZ ) = α−2−2sΨ(−2−2s)(Z ) .



Field twistor transform for arbitrary heli
ity

In the 
ase of non-zero heli
ity, the spa
e-time �elds 
an be obtained from the twistor ones

in the previously dis
ussed way, by using the in
iden
e 
onditions and the Penrose �eld

transforms:

Φα1...α2s (x) =
∮

(πdπ) πα1 . . . πα2sΨ
(−2−2s)(πα, xα̇απα) .

In 
ontrast to heli
ity-zero 
ase, this integrand 
ontains 2s 
omponents of the spinor π for


ompensation of the U(1)-
harge of the twistor �eld Ψ(−2−2s)
.

The resulting spa
e-time �eld is automati
ally symmetri
 with respe
t to the spinor indi
es

due to the 
ommutativity of the twistor 
omponents, Φα1...α2s = Φ(α1...α2s)
, and satis�es

automati
ally the Dira
-Weyl equation

∂β̇α1Φα1...α2s (x) = 0 .

That is, the 
omplex �eld Φα1...α2s (x) is the �eld strength of massless parti
le of heli
ity s.

heli
ity 1/2: the Dira
 equation

∂mγ
mΨ(x) = 0 , Ψ =

(

ψα

χ̄β̇

)

⇒ ∂β̇αψα(x) = 0 ;

heli
ity 1: the Maxwell equation

∂nFmn(x) = 0 , Fmn = −(σmn)α
βFα

β + (σ̃mn)
α̇
β̇Fα̇

β̇ ⇒ ∂γ̇αFαβ(x) = 0 .



Coordinate twistor transform for arbitrary heli
ity (di�
ulties)

The in
iden
e 
onditions 
onstru
ted earlier assume zero heli
ity of the parti
le. That is,

although in the twistor des
ription everything is �ne in des
ription of nonzero heli
ity, but

in the spa
e-time pi
ture it is not: something is missing to des
ribe the heli
ity.

Des
ription of the spinning parti
le requires 
onsideration of extended spa
es that in
lude

additional 
oordinates. From a physi
al point of view, these additional 
oordinates are

intended to des
ribe the spinning degrees of freedom.

One of the ways to introdu
e additional 
oordinates is to 
onsider instead of the real

Minkowski spa
e with 
oordinates (xα̇β)∗ = x β̇α
(xm = (xm)∗) its 
omplexi�
ation with


oordinates zα̇β 6= (zβ̇α)∗ (zm 6= (zm)∗, i.e. zm = xm + iym
). Modi�ed in
ident 
onditions

ωα̇ = zα̇βπβ , ω̄α = π̄β̇ z̄β̇α , where z̄β̇α 6= (zα̇β)∗

do not imply the zero norm of the twistor, whi
h is de�ned by the imaginary part ym
of the


omplexi�ed 
oordinate zm
. This way of des
ribing the nonzero heli
ity is presented in the

Penrose twistor theory, whi
h is a
tually used at the level of the �eld approa
h.

But when using the 
omplexi�ed Minkowski spa
e, some important element of the twistor

program asso
iated with the standard spa
e-time des
ription is 
ompletely lost.

There are other formulations of the massless spinning parti
le, in whi
h the spa
e-time

formulation uses other additional variables of di�erent type, for example, additional spinor


oordinates. This formulation will be des
ribed later after the presentation of the twistor

superparti
le, sin
e their des
riptions are quite similar.



Shirafuji model

But there is possibility of obtaining nonzero heli
ity of parti
le after quantization if we

use twistor variables in addition to the usual spa
e-time 
oordinates in the spa
e-time

formulation. Then the twistors present here will 
arry the des
ription of spinning degrees of

freedom of the parti
le.

The well-known Shirafuji model is just su
h a model. This type of model will be useful

in the presentation of twistorial formulation of the higher spin parti
les.

In the Shirafuji formulation, the Lagrangian of massless parti
le is, in fa
t, the term pmẋm
in

whi
h the momentum pm is resolved through twistor spinors by using the Cartan-Penrose

relation:

Smix
0 =

∫

dτπαπ̄α̇ẋα̇α .

In this system the Cartan-Penrose relation is reprodu
ed as the 
onstraint

pαα̇ − παπ̄α̇ ≈ 0 .
Additional 
onstraints in the system are the following ones

ζα ≈ 0 , ζ̄α̇ ≈ 0 ,
where ζα, ζ̄α̇ are 
anoni
ally 
onjugate variables to πα, π̄α̇:

{ζα, πβ}P = δαβ , {ζ̄α̇, π̄β̇}P = δα̇
β̇
.

From the eight 
onstraints, six 
onstraints are the se
ond 
lass, and two 
onstraints are the

�rst 
lass. That is, the system has six physi
al degrees of freedom, like all massless systems


onsidered earlier (the se
ond 
lass 
onstraint eliminates one degree of freedom of the phase

spa
e, in 
ontrast to the �rst 
lass 
onstraint, whi
h eliminates two degrees).



The dire
t quantization of this system is rather 
ompli
ated.

But we 
an move on to the equivalent system only with the �rst 
lass 
onstraints.

We introdu
e additional phase variables να, κα, {κα, νβ}P = δαβ , and 
.
.

Equivalent system only with �rst 
lass 
onstraints:

pαα̇ − (πα − να)(π̄α̇ − ν̄α̇) ≈ 0 , i
(

παζ
α + νακ

α − π̄α̇ζ̄
α̇ − ν̄α̇κ̄

α̇
)

≈ 0 ,

ζα + κα ≈ 0 , ζ̄α̇ + κ̄α̇ ≈ 0 .

Initial system is reprodu
ed in the gauge να ≈ 0, ν̄α̇ ≈ 0, κα ≈ 0, κ̄α̇ ≈ 0.

But, in extended system we 
an make the ex
hange of the variables πα → πα − να,
ζα → (ζα − κα)/2, να → πα + να, κα → (ζα + κα)/2. Than, the 
onstraints take the form

pαα̇ − παπ̄α̇ ≈ 0 , i
(

παζ
α − π̄α̇ζ̄

α̇
)

≈ 0 , κα ≈ 0 , κ̄α̇ ≈ 0 .

Variables να, κα and 
.
. are split o� and fully gauged.

For the remaining variables, 
onsider the representation in whi
h ζα, ζ̄α̇ are diagonal and

πα = i∂/∂ζα, π̄α̇ = i∂/∂ζ̄α̇.

The wave fun
tion is Ψ = Ψ(xm , ζα, ζ̄α̇).



The wave fun
tion Ψ(xm, ζα, ζ̄α̇) is de�ned by the equations of the 
onstraints

a)
(

i∂αα̇ − ∂

∂ζα
∂

∂ζ̄α̇

)

Ψ = 0 , b)
(

ζα
∂

∂ζα
− ζ̄α̇

∂

∂ζ̄α̇

)

Ψ = 2s Ψ ,

where 2s is some ordering 
onstant. The uniqueness of the wave fun
tion Ψ requires that 2s
be integer number: 2s ∈ Z.

Requiring the polynomial dependen
e of the �eld Ψ on the spinor variables ζα, ζ̄α̇, we �nd
that the equation b) has the following solution in the form of an in�nite series:

Ψ(x, ζ, ζ̄) = ζα1 . . . ζα2s

∞
∑

k=0

ζβ1 ζ̄β̇1 . . . ζβk ζ̄β̇k ψα1...α2sβ1...βk β̇1...β̇k
(x) .

Equation a) leads to the following 
on
lusions:

Higher terms of expansion ψα1...α2sβ1...βk β̇1...β̇k
(x) at k 6= 0 are not independent:

ψα1...α2sβ1...βk β̇1...β̇k
= ik∂β1β̇1

. . . ∂βk β̇k
ψα1...α2s ,

Independent �eld ψα1...α2s (x) satis�es Dira
-Weyl equation

∂β̇α1ψα1...α2s (x) = 0

and des
ribes massless parti
le of heli
ity s.



Twistorial des
ription of higher spin parti
le

In a 
ertain terminology, higher spin parti
le (HS parti
le) means the model whi
h des
ribes

the states of all spins, from zero to in�nity.

Most often, su
h system des
ribes massless states with all possible heli
ities.

The simplest, but at the same time, very illustrative model is the HS generalization of the

Shirafuji model. In this model, there is no 
onstraint whi
h �xes the heli
ity.

This is obtained by adding additional �kineti
 terms� of spinor variables to the Shirafuji

a
tion, that is, by 
onsidering the a
tion

Smix
hs =

∫

dτ
(

παπ̄α̇ẋα̇α + παζ̇
α + π̄α̇

˙̄ζα̇
)

.

The last terms in this a
tion tell us that the 
ommuting spinors (ζα, πα), (ζ̄α̇, π̄α̇) form
pairs of 
anoni
ally 
onjugate variables.

The model is des
ribed by only ve
tor 
onstraint of the �rst 
lass:

pαα̇ − παπ̄α̇ ≈ 0 .

There are no additional 
onstraints in this system.



As before, let us 
onsider the representation in whi
h ζα, ζ̄α̇ are diagonal

and πα = i∂/∂ζα, π̄α̇ = i∂/∂ζ̄α̇ are realized by di�erentiation operators.

Requiring a polynomial dependen
e of the wave fun
tion, we have the following expression

for it as the in�nite series:

Φhs(x
m , ζα, ζ̄α̇) =

∞
∑

k=0

∞
∑

n=0

ζα1 . . . ζαk ζ̄α̇1 . . . ζ̄α̇kϕα1...αk α̇1...α̇k (x) .

Twistorial 
onstraint yields the Vasiliev unfolded equation

(

i∂αα̇ − ∂

∂ζα
∂

∂ζ̄α̇

)

Φhs = 0 .

Independent spa
e-time �elds in the expansion of the �eld Φ are self-dual ϕα1...αk (x),
k = 0, 1, . . . k and anti-self-dual ϕα̇1...α̇k (x), n = 0, 1, . . . k �eld strengths of all heli
ities.

Basi
 unfolded equation leads to Klein-Gordon and Dira
 equations for them.

All other 
omponent �elds are expressed as x-derivatives of the basi
 �elds.

Reality 
ondition for the HS �eld Φ = (Φ)∗ leads to the reality 
onditions

ϕα̇1...α̇k = (ϕα1...αk )
∗
for physi
al �elds. Thus, the massless HS multiplet des
ribed by the

real HS �eld Φ(xm, ζα, ζ̄α̇) 
ontains all heli
ities and ea
h heli
ity appearing only on
e.



Twistor formulation of HS parti
le is obtained after passing to the variables

ωα̇ = ζ̄α̇ + xα̇βπβ̇ , ω̄α = ζα + π̄β̇x β̇α ,

whi
h are pre
isely the 
omponents of the twistors.

Up to total derivative in the Lagrangian, the a
tion of HS parti
le takes the following form

in twistor formulation

Shs =

∫

dτ
(

˙̄ωαπα + π̄α̇ω̇
α̇
)

= 1
2

∫

dτ
(

Z̄ AŻA − ˙̄Z AZA

)

.

Twistor wave fun
tion of this model is holomorphi
 twistor fun
tion

Ψhs(Z ) = Ψhs(πα, ω
α̇)

without any additional equations of 
onstraints.

This twistor �eld des
ribes in�nite tower of massless states of all heli
ities, whi
h are

des
ribed by homogeneous 
omponents in the expansion in spinor variables. Ordinary

spa
e-time �elds with heli
ity s 
an be extra
ted by means of the integral transformation

ϕα1...α2s (x) =
∮

(πdπ) πα1 . . . πα2sΨhs(πα, x
α̇απα) .

In this integral, only the term with the 
orre
t degree of homogeneity 
ontributes;

other terms with di�erent homogeneities do not 
ontribute to this integral.

Therefore, this model des
ribes the tower of massless states whose heli
ities start from zero

and 
ontinue to in�nity.



HS system 
ontains in�nite number of massless �elds of arbitrary spins (heli
ities).

Therefore, we 
an expe
t that su
h a system has in�nite-dimensional symmetry, mixing all

the spins with ea
h other. The main and, in pra
ti
e, the only requirement for su
h a

symmetry is that it must be an extension of 
onformal symmetry. For this reason, twistors

realizing 
onformal symmetry linearly play important role in des
ribing the symmetry of

higher spins. In other variables, for example, spa
e-time variables, the full symmetry group

of higher spins is hidden.

Symmetry in HS theory is usually 
hara
terized by its algebra, 
alled HS algebra.

We have seen that twistor �eld is the fun
tion Ψhs(ZA) = Ψhs(πα, ω
α̇) in a twistor spa
e.

This �eld spa
e is preserved by 15 
onformal algebra generators Z̄ AZB − 1
4 δ

A
B Z̄ CZC , formed

by all bilinear 
ombinations of the twistor and its adjoint 
omponents:

Pαα̇ = παπ̄α̇ , K α̇α = ωα̇ω̄α , Mαβ = π(αω̄β) , M̄α̇β̇ = π̄(α̇ωβ̇) , D = 1
2 (ω̄απα+π̄α̇ω

α̇) ,

and the operator

i
2 Z̄ AZA = i

2 (ω̄απα − π̄α̇ω
α̇) .

Other 20 se
ond degree generators

Rαβ = παπβ , R̄α̇β̇ = π̄α̇π̄β̇ , R̃αβ = ω̄αω̄β , ¯̃Rα̇β̇ = ωα̇ωβ̇ , Fα
β̇ = παω

β̇ , F̄α̇
β = π̄α̇ω̄

β

are formed by the produ
ts of the twistor 
omponents between themselves and its 
onjugate

in analogous way:

ZAZB = (Rαβ ,
¯̃Rα̇β̇ , Fα

β̇) , Z̄ AZ̄ B = (R̄α̇β̇ , R̃
αβ , F̄α̇

β) .

With respe
t to twistor Poisson bra
kets, all these 36 generators form the Sp(8) algebra,
whi
h is one of the �nite-dimensional extensions of the 
onformal algebra.

In fa
t, the twistors de�ne os
illatory representation of the SU(2, 2) and Sp(8) algebras.



A natural way to obtain in�nite-dimensional HS symmetry is to relax the twistor bilinearity

requirement for generators. Introdu
ing the notation for twistor monomials of n-th degree

ZA(k) ≡ ZA1
. . . ZAk

, Z̄ B(l) ≡ Z̄ B1 . . . Z̄ Bl ,

and also for their spinor 
omponents πα(k) ≡ πα1 . . . παk , π̄α̇(l) ≡ π̄α̇1 . . . π̄α̇l , et
.

Generators of in�nite-dimensional symmetry that preserve HS �eld have the form

GB(r )
A(p) = ZA(p) Z̄ B(r ) ≡ Gβ(m),α̇(n)

α(k),β̇(l)
= πα(k) π̄β̇(l) ω̄

β(m) ωα̇(n) , k + n = p,m + l = r .

These generators form in�nite-dimensional Lie algebra:

{G(N1),G(N2)}P = G(N1+N2−2)

in terms of the quantities G(N) ≡ GB(r )
A(p) , N = p + r .

Generators in G(2)
form Sp(8) subalgebra: {G(2),G(2)}P = G(2)

.

Even a minimal extension of the algebra by generators G(3)
generates an in�nite set of

generators:

{G(3),G(3)}P = G(4) , {G(3),G(4)}P = G(5) , · · ·



The presented algebra is redu
ible and 
ontains other (in�nite-dimensional) subalgebras.

For example, generators G(N)
of even degree form a subalgebra. A further restri
tion arises

when SU(2, 2)-irredu
ible representations in generators are singled out.

Obtaining the SU(2, 2) irredu
ible representations o

urs by sele
ting the tra
e parts,

formed here by the twistor norm ( i
2 Z̄ AZA), and non-tra
e parts.

Irredu
ible parts of generators are generators

T (n)B(r )
A(p) = ( i

2 Z̄ AZA)
n 〈ZA(p) Z̄ B(r )〉 ,

where the tensors in bra
kets 〈 〉 are tra
eless by de�nition, 〈MAB...
AC...

〉 ≡ 0. The generators

T (n)B(r )
A(p) at r = p produ
e Fradkin-Linetsky-Vasiliev hsc(2, 2) algebra.

Note that the higher spin algebra, whi
h is an extension of the 
onformal algebra, is not

unique. Depending on the 
hoi
e of the symmetry algebra, we obtain a di�erent set of spin

states, on whi
h the transformations realizing this algebra are 
losed. For example, one way

to extend 
onformal su(2, 2) algebra is to 
onsider the su(2, 3) algebra rather than that

sp(8) algebra. In this way, it is obtained another HS algebra, based on the so-
alled bosoni


supersymmetry (some dis
ussion of it will be in the next le
ture).



Le
ture 2

Bitwistor formulation of massive parti
les and massless in�nite spin

parti
les.

Conformal supersymmetry and supertwistors.

Twistor des
ription of massless superparti
les.

Twistor transform for spinning parti
les.



The twistor approa
h is based on 
onformal symmetry, whi
h leads to a natural des
ription

of 
onformally-invariant systems. But one of the tasks of the twistor approa
h is to present

an alternative to the spa
e-time des
ription of the physi
al world, whi
h in
ludes


onformally-non-invariant systems, for example, massive parti
les that possess, in general,

non-zero spin.

Let us brie�y re
all the irredu
ible relativisti
 representations.

Irredu
ible unitary representations of the Poin
ar�e group ISO↑(1, 3) are de�ned by values

of the Casimir operators

C2 := PmPm , C4 := W mWm ,

where Wm = 1
2 εmnklPnMkl

is the Pauli-Lubanski ve
tor.

Physi
ally interesting unitary irredu
ible representations:

P2 = PnPn W 2 = W nWn

Massless �nite spin irreps. 0 0

Massless in�nite spin irreps. 0 −µ2
, where µ ∈ R, µ 6= 0

Massive irreps. m2 6= 0 −m2 j(j + 1), where j ∈ Z≥0/2

So far, we have 
onsidered massless �nite spin irredu
ible representations (heli
ity states).

These are the standard massless representations that des
ribe all 
urrently known massless

parti
les su
h as photon, gluons, graviton, massless heli
ity-1/2 fermion (until some time, it

was believed that it is neutrino).



The ne
essity of bitwistor formalism

So far, we have 
onsidered the one-twistor 
ase.

As it was said, the basi
 relation in the twistor des
ription is the resolution of the

4-momentum through 
ommutating Weyl spinor πα: Pαα̇ = παπ̄α̇.

But from this we get important 
onsequen
es:

We get that the square of the 4-momentum is zero: PnPn = 0. Therefore, the
des
ription of massive parti
le is impossible in frame of the one-twistor formalism.

Moreover, in the one-twistor 
ase, we have seen that there is the expression

Wn = Λ · Pn

for the Pauli-Lubanski ve
tor, where Λ is heli
ity operator. Therefore, W nWn = 0 and

we 
an only des
ribe massless �nite spin representations (heli
ity representations).

Thus, to des
ribe massive states or massless in�nite spin states, it is ne
essary to use more

than one twistor.

For our purposes, it is enough to use two twistors: ZA and YA, and we will 
onsider this

bitwistor des
ription below.

Let us �rst 
onsider the 
ase of massless in�nite spin parti
le.



Massless in�nite spin parti
le: spa
e-time formulation

In�nite (
ontinuous) spin representations are in�nite-dimensional ones.

In 
ontrast to other irreps, in�nite spin representation expands into in�nite set of massless

states with all possible heli
ities. Heli
ity in 
ontinuous spin representations takes standard

dis
rete values: integer 0,±1,±2, . . . ,±∞ or half-integer ±1/2,±3/2, . . . ,±∞.

In Wigner-Bargmann spa
e-time formulation in�nite spin �elds are des
ribed by the

fun
tion Φ(x, y) de�ned on the spa
e whi
h is parametrized by


ommuting 4-ve
tor xm
(the position 
oordinates on Minkowski spa
e);

additional 
ommuting 4-ve
tor ym
(des
ribes the spin degrees of freedom).

Equations of motion of these �elds (Wigner-Bargmann equations) have the form

∂

∂xm

∂

∂xm
Φ = 0 ,

∂

∂xm

∂

∂ym
Φ = 0 ,

∂

∂ym

∂

∂ym
Φ = µ2 Φ , − i ym ∂

∂xm
Φ = Φ ,

where µ ∈ R, µ 6= 0 is a dimensionful parameter.

One 
an verify that for su
h �elds the square of the Pauli-Lubanski ve
tor is equal to

W nWn = −µ2 .



The Wigner-Bargmann spa
e-time �eld formulation of in�nite spin parti
le is reprodu
ed by

means of one-dimensional dynami
al model with the following Lagrangian

Lsp.−time
∞ = pmẋm + wmẏm + e pmpm + e1 pmqm + e2

(

qmqm + µ2
)

+ e3
(

pmym − 1
)

.

Here, pm(τ), qm(τ) are the momenta for xm(τ), ym(τ):
{

xm, pn
}

= δm
n ,

{

ym, qn
}

= δm
n .

In the Lagrangian the variables e(τ), e1(τ), e2(τ), e3(τ) are the Lagrange multipliers for the

�rst 
lass 
onstraints

pmpm ≈ 0 , pmqm ≈ 0 , qmqm + µ2 ≈ 0 , pmym − 1 ≈ 0 .

After 
anoni
al quantization these 
onstraints yield the Wigner-Bargmann equations.

Let us now 
onstru
t physi
ally equivalent system in the twistor formulation.

It is important to emphasize that the 
lassi
al physi
al equivalen
e of systems does not

imply their quantum equivalen
e. For example, the presen
e of spinor variables in the

system will make it possible to obtain spinor representations after quantization.



Twistorial formulation of in�nite spin parti
le

Following standard pres
riptions of twistor approa
h in 
onsidered 
ase we need to use

• twistor spinor πα, π̄α̇ = (πα)∗ for resolving the 
onstraint pmpm ≈ 0
by the Cartan-Penrose relation pαα̇ = παπ̄α̇ ;

• spinor of 2-nd twistor ρα, ρ̄α̇ = (ρα)∗ for resolving the 
onstraint pmqm ≈ 0
in the form qαα̇ = παρ̄α̇ + ραπ̄α̇ .

Thus, in twistorial formulation in�nite spin parti
le is des
ribed by 8 
omplex variables

(ω̄α, πα), (η̄α, ρα) and 
.
. ones, whi
h obey the Poisson bra
kets

{

ω̄α, πβ
}

=
{

η̄α, ρβ
}

= δαβ
and are subje
ted to four �rst 
lass (abelian) 
onstraints

M := παρα ρ̄α̇π̄
α̇ − µ2/2 ≈ 0 ,

F := η̄απα − 1 ≈ 0 , F̄ := π̄α̇η
α̇ − 1 ≈ 0 ,

U := ω̄απα − π̄α̇ω
α̇ + η̄αρα − ρ̄α̇η

α̇ ≈ 0 .

The Hamiltonian in the �rst order twistorial Lagrangian is linear 
ombination of these


onstraints with Lagrange multipliers:

Ltw
∞ = πα ˙̄ωα + π̄α̇ω̇

α̇ + ρα ˙̄ηα + ρ̄α̇η̇
α̇ + l M + k U + ℓF + ℓ̄ F̄ .



Link with the Wigner-Bargmann spa
e-time formulation is 
arried out by using the

generalized Cartan-Penrose relations

pαα̇ = παπ̄α̇ , qαα̇ = παρ̄α̇ + ραπ̄α̇

and the in
iden
e relations

ωα̇ = xα̇απα + y α̇αρα , ω̄α = π̄α̇xα̇α + ρ̄α̇y α̇α ,

ηα̇ = y α̇απα , η̄α = π̄α̇y α̇α .

We note that, in 
ontrast to the �xed heli
ity parti
le, in the in
iden
e 
onditions for the

in�nite heli
ity parti
le the y-dependent terms mix the spinors of di�erent twistors.

Noti
e the following points:

• Twistor spinors in this formulation form two Penrose twistors

ZA :=
(

πα, ω
α̇
)

, YA :=
(

ρα, η
α̇
)

; Z̄ A :=

(

ω̄α

−π̄α̇

)

, Ȳ A :=

(

η̄α

−ρ̄α̇

)

.

So the des
ription of in�nite spin parti
les uses with ne
essity two twistors.

• The U(1) twistor 
onstraint has the form U = i (Z̄ AZA + Ȳ AYA) ≈ 0 .
But the heli
ity operator is Λ = i

2 Z̄ AZA . So in the 
onsidered model of in�nite

(
ontinuous) spin parti
le, heli
ity is not �xed sin
e it is proportional to −Ȳ AYA.



Performing operator quantization of the model we obtain the twistor wave fun
tion

Ψ(c)(π, π̄; ρ, ρ̄) = δ
(

(πρ)(ρ̄π̄)− µ2/2
)

e−iq0/p0 Ψ̂(c)(π, π̄; ρ, ρ̄) ,

where (πρ) := πβρβ , (ρ̄π̄) := ρ̄β̇ π̄
β̇
, q0/p0 =

∑

α=α̇
(παρ̄α̇ + ραπ̄α̇) /

∑

β=β̇

πβ π̄β̇ ,

Ψ̂(c)(π, π̄; ρ, ρ̄) = ψ(c)(π, π̄) +
∞
∑

k=1

(ρ̄π̄)k ψ(c+k)(π, π̄) +
∞
∑

k=1

(πρ)k ψ(c−k)(π, π̄) ,

Constant c plays the role of the U(1) 
harge and takes (half-)integer values: 2c ∈ Z .

Fields ψ(c+k)(π, π̄) are eigenve
tors of the operator Λ = −1

2

(

πβ
∂

∂πβ
− π̄β̇

∂

∂π̄β̇

)

:

Λψ(c+k)(π, π̄) = λψ(c+k)(π, π̄) , λ = −
(

c + k
)

.

Heli
ity operator � = ~
J

~
P/P0 where

~
J is total angular momentum, a
ts in the following way:

�Ψ(c) = δ
(

(πρ)(ρ̄π̄)− µ2/2
)

e−iq0/p0

(

Λψ(c) +
∞
∑

k=1

(ρ̄π̄)kΛψ(c+k) +
∞
∑

k=1

(πρ)k Λψ(c−k)

)

,

Thus, twistorial wave fun
tion of in�nite spin parti
le Ψ(c)
des
ribes in�nite number of

massless states ψ(c+k)
whose heli
ities λ = −

(

c + k
)

, −∞ < k <∞ are equal to integer (for

integer c) or half-integer (for half-integer c) values and run from −∞ to +∞.



Heli
ity 
ontent of the �eld Ψ(c)
is the same for all integer or all half-integer values c. We


an 
onsider the twistorial �eld Ψ(0)(π, π̄; ρ, ρ̄) to des
ribe in�nite integer spin representation

and Ψ(−1/2)(π, π̄; ρ, ρ̄) to des
ribe in�nite half-integer spin representation.

Twistor �elds produ
e spa
e-time �elds by using the Penrose integral transform

The Wigner-Bargmann �elds on the spa
e with auxiliary 4-ve
tor 
oordinate yαα̇
are

obtained by the integral transformation

Φ(x; y) =

∫

d4πd4ρ e iπαπ̄α̇xα̇α
e i(παρ̄α̇ + ξαρ̄α̇)y α̇α

Ψ(0)(π, ρ̄; ξ, ρ̄) ,

where we perform integration over the twistor spa
e with the integration measures

d4π = 1
4 dπα ∧ dπα ∧ dπ̄α̇ ∧ dπ̄α̇, d4ρ = 1

4 dρβ ∧ dρβ ∧ d ρ̄β̇ ∧ d ρ̄β̇ . Due to the twistor

equations of motion for twistor �eld Ψ(0)(π, π̄; ρ, ρ̄), the �elds Φ(x; y) satis�es automati
ally

the Wigner-Bargmann equations.

Other spa
e-time systems, but with additional spinor variables, 
an be derived in this way.



Twistor formulation of massive parti
le

To resolve the time-like 4-momentum, it is ne
essary to 
hange the twistor relation

pαα̇ = πα π̄α̇, used earlier for the light-like momenta.

The only way to solve this problem is to repla
e the one-twistor formalism with two-twistor

formalism. That is, to des
ribe massive states, we use two spinors

πi
α , π̄α̇ i = (πi

α)
∗ , i = 1, 2 ,

that de�ne halves of two twistors

Z i
A :=

(

πi
α, ω

α̇ i
)

, Z̄ A
i :=

(

ω̄α
i

−π̄α̇ i

)

.

Note: it is 
onvenient to 
ombine two twistors into one SU(2) spinor with SU(2)-spinor
index i = 1, 2, sin
e in the standard momentum frame (in the rest frame) of massive parti
le

the small group is SU(2) ∼= SO(3).

Then the momentum of massive parti
le is represented in the twistor-like form

pαα̇ = πi
α π̄α̇ i .

But then we get the following 
orollary:

when des
ribing massive parti
le with mass m determined by the mass 
ondition p2 = m2
,

used two spinors πi
α must be limited by the 
onstraint

|παiπαi |2 = m2
or stronger 
onstraints παiπαi = m , π̄α̇i π̄

α̇i = m .

These 
onditions violate the 
onformal invarian
e.

Consider �rst the twistor formulation of the massive parti
le with spin.

The 
orresponding spa
e-time formulation will be 
onsidered later.



In 
ontrast to the massless 
ase where the twistor des
ription of the arbitrary heli
ity

parti
le 
an be a
hieved by using only one twistor, in the massive 
ase it is ne
essary to use

some spinning variables in addition to the twistor ones.

Additional spin variables should give the des
ription of the nonrelativisti
 integer or

half-integer spin in in the rest frame. Therefore, we will use 
ommuting spinors ξi
as spin

variables.

As a result, massive spinning parti
le in the twistor formulation is des
ribed by the variables

πi
α , π̄α̇ i = (πi

α)
∗ ; ωα̇i , ω̄α

i = (ωα̇i )∗ ; ξi , ξ̄i = (ξi)∗ ; i = 1, 2 ,

whi
h satisfy the Poisson bra
kets {ω̄α
i , π

j
β}P = δαβ δ

j
i , {ωα̇ i , π̄β̇ j}P = δα̇

β̇
δi

j , {ξi , ξ̄j}P = − i
2 δ

i
j ,

and is subje
ted to the set of the �rst 
lass 
onstraints

h := παiπαi − m ≈ 0 , h̄ := π̄α̇i π̄
α̇i − m ≈ 0 ,

Da := (σa)j
i
[

i
2

(

ω̄α
i π

i
α − π̄α̇iω

α̇i
)

+ ξ̄iξ
j
]

≈ 0 ,

S := ξ̄iξ
i − s ≈ 0 .

The 
onstraints Da ≈ 0 form SU(2) algebra with respe
t to the Poisson bra
kets.

The 
onstraints S ≈ 0 
ontained the 
onstant s de�nes the parti
le spin.

The mass 
onstraints are also presented in the form

h = Z i
AIABZBi − m ≈ 0 , h̄ = Z̄ A

i IABZ Bi − m ≈ 0 ,

where SU(2, 2)-noninvariant so-
alled in�nity twistors (asymptoti
 twistors)

IAB =

(

ǫαβ 0
0 0

)

, IAB =

(

0 0
0 ǫα̇β̇

)

.

are used.



Twistor �elds of massive parti
les

Let us �nd twistor massive �elds by 
anoni
al quantization of twistor massive parti
le.

We impose gauge-�xing 
onditions for the 
onstraints h ≈ 0, h̄ ≈ 0. After the introdu
tion of

the Dira
 bra
kets, these 
onstraints are satis�ed in the strong sense, that is, 
onditions

παiπαi = m , π̄α̇i π̄
α̇i = m

hold. These 
onditions state that determinant of the matrix Π ≡ m−1/2||πi
α|| is equal to

one, i.e. Π ∈ SL(2,C).

In π-representations, twistor massive wave fun
tion Ψ(π, π̄) is de�ned by the equations

(S − J) Ψ =
(

1
2 a+ iai − J

)

Ψ = 0 ,

DaΨ = (Da +∆a)Ψ = 0 , a = 1, 2, 3 ,

where Da = 1
2

[

πi
α(σa)i

j ∂

∂πj
α

− ∂

∂π̄α̇i
(σa)i

j π̄α̇j

]

, ∆a = 1
2 a+ i (σa)i

j aj .

The operators ai ≡
√

2 ˆ̄ξi and a+ i ≡
√

2ξ̂i
are usual annihilation and 
reation operators of

two-dimensional os
illator; they are de�ned by the 
ommutators [ai , a+ j ] = δj
i .

The wave fun
tion Ψ is taken in �lling numbers spa
e of these operators.

Constant J is 
lassi
al 
onstant s renormalized by ordering 
onstants.



By means dire
t 
al
ulations we obtain that square of Pauli-Lubanski ve
tor takes the form

W nWnΨ = −m2DaDaΨ .

Sin
e the 
ondition DaΨ = (Da −∆a)Ψ holds and using ∆a∆a = 1
2 a+ i ai(

1
2 a+ j aj + 1), we

obtain

W nWnΨ = −m2J(J + 1) ,

i.e. we have massive parti
le with �xed spin J in the spe
trum of this model.

The operators ∆a form su(2)-algebra whi
h realized by two os
illators ai , a+ i
, i = 1, 2.

Let integer nonnegative numbers n1 and n2 are 
orresponding �lling numbers

i.e. n1 and n2 are the eigenvalues of operators a+1a1 and a+2a2.

The 
onstraints (S − J)Ψ = 0 gives us that

1
2 (n1 + n2) = J.

Then the number

1
2 (n1 − n2) = M takes (2J + 1) values M = −J,−J + 1, ..., J − 1, J and

twistor �eld is (2J + 1)-
omponent �eld ΨM (π, π̄).

By de�nition, this �eld satis�es

∆3ΨM = MΨM , ∆±ΨM = (∆1 ± i∆2)ΨM =
√

(J ∓ M)(J ± M + 1)ΨM .

From (Da +∆a)Ψ = 0 we have

D3ΨM = −MΨM , D±ΨM = (D1 ± iD2)ΨM = −
√

(J ∓ M)(J ± M + 1)ΨM .



The operators Da are generators of SU(2)-transformations, a
ting on index i of πi
α and last

equations state that the wave fun
tion ΨM(π, π̄) is de�ned up to the transformations a
ting

on index M:

Ψ′
M (π′) = DJ

MN (h)Ψ′
N(π) , π′i

α = hi
jπ

j
α , h ∈ SL(2,C) .

Here DJ
MN is the matrix of SU(2)-transformations of weight J.

Thus twistor wave fun
tion of massive spinning parti
le is de�ned on the homogeneous spa
e

SL(2,C)/SU(2).

In the form of the SU(2)-indi
es i , j , ... = 1, 2, the index M is 
olle
tive index M = (i1 . . . i2J).
Then the wave fun
tion (twistor �eld of massive spinning parti
le) is

Ψi1...i2J
(π, π̄) ,

whi
h is 
ompletely symmetri
 with respe
t to SU(2)-indi
es:

Ψi1...i2J
= Ψ(i1...i2J )

.



Twistor transform for massive �elds

The relation of the twistor �elds with the usual spa
e-time spin-tensor �elds is established by

means of the integral transformation in the following way. One 
onstru
ts SU(2)-invariant

expressions by 
ontra
ting the twistor �elds Ψi1...i2J
(π, π̄) with twistor spinors π

i1
α1 . . . π

i2J
α2J .

After integration with invariant measure d3π on the 
oset spa
e SL(2,C)/SU(2) with the

standard Fourier exponent exp(ixmpm) where pm = pαα̇σ̃
α̇α
m we obtain spa
e-time �elds

Φα1...α2J (x) =
∫

d3π eixmpmπ
i1
α1 . . . π

i2J
α2J Ψi1...i2J

(π, π̄) .

These �elds are totally symmetri
 in spinor indi
es Φα1...α2J = Φ(α1...α2J )
and give us

standard (2J + 1)-
omponent �eld des
ription of massive spin J. Due to the presen
e of the

exponent in the integrand, Φα1...α2J satis�es automati
ally massive Klein-Gordon equation

(

∂n∂n + m2
)

Φα1...α2J (x) = 0 .

Similarly, but with using the spinor π̄α̇i
, twistor �eld produ
es the �eld with dotted indi
es:

Φα̇1...α̇2J (x) =
∫

d3π eixmpm π̄α̇1 i1 . . . π̄α̇2J i2J Ψi1...i2J
(π, π̄) .

It is easy to show that the �elds Φα1...α2J (x) and Φα̇1...α̇2J (x) are related by

the (2J + 1)-order Weinberg equations

(i∂n1σ
n1
α1β̇1

) . . . (i∂n2Jσ
n2J
α2J β̇2J

)Φβ̇1...β̇2J (x) = Φα1...α2J (x) .

Coordinate twistor transformation and 
orresponding spa
e-time des
ription of massive spin

parti
le will be presented after 
onsideration of twistor des
ription of the superparti
le.



Superparti
le

Twistor 
onstru
tions for a massless superparti
le of zero superspin largely repeat the

stru
tural elements of an ordinary massless parti
le. New details that will arise are related

to the twistor realization of supertranslations and super
onformal boosts, whi
h is re�e
ted

by the presen
e of additional Grassmann superspa
e 
oordinates.

Let us �rst des
ribe superparti
le model in whi
h the target spa
e is des
ribed by the

superspa
e 
oordinates and whose quantization produ
es the super�eld in the spe
trum.

Note: We will 
onsider only non-extended N= 1 supersymmetry.

Superspa
e formulation of massless superparti
le

The a
tion of the superparti
le in the �rst-order formalism is similar to the a
tion of bosoni


massless parti
le:

Ssuper
0 =

∫

dτ
(

pαα̇ω
α̇α − epαα̇pα̇α

)

,

where instead of ẋα̇α
is supertranslation-invariant ve
tor

ωα̇α ≡ ẋα̇α − i θ̄α̇θ̇α + i ˙̄θα̇θα .

The Weyl spinor θα, θ̄α̇ = (θα)∗ is Grassmannian variable ((θα)2 ≡ 0 ∀α),
whi
h, together with the usual 
oordinate xα̇α

, parameterizes the traje
tory of the

superparti
le in the superspa
e.



This supersymmetri
 system is invariant under the following global transformations:

Poin
ar�e transformations δxα̇α = aα̇α + xα̇β lβα + l̄ α̇β̇x β̇α ,

δθα = θβ lβ
α , δpαα̇ = −lαβpβα̇ − pαβ̇ l̄ β̇ α̇ ;

dilatations δxα̇α = cxα̇α
, δθα = 1

2 cθα, δpαα̇ = −cpαα̇, δe = 2ce;


onformal boosts δxα̇α = xα̇βkββ̇x β̇α − 4θαθ̄α̇ θβkββ̇ θ̄
β̇
, δθα = θβkββ̇(x

β̇α + i θ̄β̇θα);

δpαα̇ = −(pαβ̇kβα̇ + kαβ̇pβα̇)x
β̇β − 2i(pαβ̇kβα̇ − kαβ̇pβα̇)θ̄

β̇θβ , δe = 2(x β̇βkββ̇)e ,


hiral transformations of spinors δθα = − 1
2 iφθα ;

supertranslations δxα̇α = −(θ̄α̇ǫα − ǭα̇θα), δθα = ǫα;

super
onformal boosts δxα̇α = 2i(θ̄α̇η̄β̇x β̇α − xα̇βηβθ
α)− 4θ̄α̇θα(θβηβ + η̄β̇ θ̄

β̇),

δθα=−4iθα θβηβ+η̄β̇(x
β̇α+i θ̄β̇θα), δpαα̇= 4i(ηαθβpβα̇−pαβ̇ θ̄

β̇ η̄α̇), δe= −4ieθβηβ+c.c.

In supertranslation and super
onformal boost transformations, the transformation

parameters ǫα and ηα are Grassmann Weyl spinors.

The generators of these transformations (a
tually, Noether 
harges) form the SU(2, 2|1)
super
onformal algebra. In addition to the usual inhomogeneous translations and nonlinear


onformal boosts, super
onformal transformations in
lude inhomogeneous supertranslations

and non-linear super
onformal boosts.

Below, by introdu
ing supertwistors, the super
onformal algebra SU(2, 2|1) will be realized
by homogeneous linear transformations

(new (anti-)
ommutators of this superalgebra will be presented there).



Let us brie�y des
ribe the quantization of this superparti
le model and the form of the

obtained super�eld.

Phase spa
e xm
, pm, θα, pα, θ̄α̇, p̄α̇ with Poisson bra
kets {xα̇α, pββ̇}P = δαβ δ

α̇
β̇
,

{θα, pβ}P = δαβ , {θ̄α̇, p̄β̇}P = δα̇
β̇
is limited by the 
onstraints

pαα̇pαα̇ ≈ 0 ; Dα ≡ pα + ipαα̇θ̄
α̇ ≈ 0 , D̄α̇ ≡ p̄α̇ + iθαpαα̇ ≈ 0 .

Sin
e the nonzero Poisson bra
kets of the 
onstraints are {Dα, D̄α̇}P = 2ipαα̇ and matrix

pαα̇ is singular for massless parti
le, the 
onstraint p2 ≈ 0 is �rst 
lass 
onstraint, whereas

odd 
onstraints Dα ≈ 0, D̄α̇ ≈ 0 are the mixture of 2 �rst 
lass 
onstraints and 2 se
ond


lass ones.

Not independent �rst 
lass 
onstraints are the 
onstraints

F α̇ ≡ pα̇αDα ≈ 0 , F̄α ≡ D̄α̇pα̇α ≈ 0 ,

whi
h generate κ-symmetry δθα = κ̄α̇pα̇α
, δθ̄α̇ = pα̇ακα with lo
al odd parameter κα(τ).



With Gupta-Bleuler quantization, when all �rst 
lass 
onstraints and half, 
ommuting in

weak sense, se
ond 
lass ones are putted on the wave fun
tion, independent 
ovariant

equations for the wave fun
tion Φ(x, θ, θ̄) have the form
�Φ = 0 , D̄α̇ Φ = 0 , ∂α̇αDα Φ = 0 ,

where Dα = i(∂α − i∂αα̇θ̄
α̇), D̄α̇ = i(∂̄α̇ − iθα∂αα̇) are 
ovariant derivatives.

When determining the 
omplete system of equations for the wave fun
tion, it is ne
essary to

require the preservation of symmetries in passing to quantum theory, in addition to standard

pro
edure for the quantum realization of 
lassi
al 
onstraints. Under super
onformal boosts,

the transformation of the operator in one of the equations has the form

δ (∂α̇αDα) = 4i(η̄θ̄) ∂α̇αDα + iηαDαD̄α̇ − i η̄α̇DαDα − 2ηα∂α̇α .

That is, we obtain the ne
essary transformation of the wave fun
tion δΦ = −2i(θη)Φ , as
well as the requirement to impose additional 
ondition

DαDα Φ = 0 .

The solution of the equation D̄α̇ Φ = 0 is the 
hiral super�eld

Φ = Φ(xL , θ) = A(xL ) + θαψα(xL ) + θ2B(xL ) .

living on the 
hiral superspa
e with the super
oordinates

xα̇α
L

= xα̇α + i θ̄α̇θα , θα .

The remaining equations vanish the highest 
omponent in the B = 0 expansion and lead to

the Klein-Gordon and Dira
 equations for 
omplex s
alar and spinor �elds. That is, the

spe
trum of this superparti
le model is des
ribed by massless supermultiplet with zero

superheli
ity, whi
h in
ludes massless parti
les of 0 and 1/2 heli
ities.



Supertwistor formulation solves the main problem: super
onformal transformations in it are

realized by linear transformations. Moreover, reformulation of superparti
le dynami
s in

terms of supertwistors leads to its des
ription in physi
al variables, with resolution of lo
al

symmetries, in
luding κ-invarian
e.

Supertwistor formulation of superparti
le

By analogy with the purely bosoni
 
ase, supertwistors are de�ned as spinors of the

super
onformal group SU(2, 2|1). Among the �ve 
omponents of the supertwistor

ZA = (ZA; χ) = (πα, ω
α̇; χ) , A = 1, . . . , 5

four c-numeri
al 
omponents are formed by ordinary twistor � SU(2, 2)-spinor ZA.

The �fth Grassmann 
omponent of the supertwistor is 
omplex Lorentz-s
alar

χ , χ̄ = (χ)∗ , (χ)2 ≡ χχ ≡ 0 .

Conjugate supertwistor has the form Z̄A = (Z̄ A; 2iχ̄) = (π̄α,−ω̄α̇ . 2iχ̄) .
It 
an be written using the 
omplex 
onjugate twistor

Z̄A = Z̄ḂGḂA , Z̄Ḃ = (π̄α̇, ω̄
α; χ̄)

after using SU(2, 2|1)-invariant tensor GȦB =

(

gȦB 0
0 2i

)

, where gȦB
is SU(2, 2)-inv. tensor.

SU(2, 2|1)-invariant twistor norm is de�ned by

� ≡ i
2 Z̄AZA = i

2 Z̄ḂGḂAZA = i
2 (ω

απα − π̄α̇ω̄
α̇)− χ̄χ .



SU(2, 2) 
onformal transformations a
t only on the bosoni
 
omponents of the supertwistor

and were de�ned above.

Supertranslations and super
onformal boosts are realized linearly in the supertwistor spa
e

and mix the bosoni
 and fermioni
 
omponents of the supertwistor

δπα = 2iηαχ , δωα̇ = 2i ǭα̇χ , δχ = ǫαπα − η̄α̇ω
α̇ .

Chiral transformations of the supertwistor 
omponents are

δπα = i
2 φπα , δωα̇ = i

2 φω
α̇ , δχ = iφχ .

Introdu
ing (graded) symple
ti
 stru
ture into supertwistor spa
e by the previously used


anoni
al Poisson bra
kets for bosoni
 
omponents and {χ, χ̄}P = i
2 for Grassmann


omponents, we �nd the following expressions for generators of

supertranslation Qα = 2i χ̄πα , Q̄α̇ = −2i χπ̄α̇ ,

super
onformal boosts Sα = 2i χ ω̄α , S̄α̇ = −2i χ̄ ωα̇ ,


hiral transformations A = i
2 (ω̄

απα − π̄α̇ω
α̇) − 4χ̄χ .

Previously de�ned generators Pαα̇,K α̇α
,Lα

β
,L̄α̇

β̇ , together with generators

Qα,Q̄α̇,Sα
,S̄α̇

,A form super
onformal algebra SU(2, 2|1). In addition to SU(2, 2) subalgebra

onsidered above, it has nonzero Poisson bra
kets between the generators Q and S:

{Qα, Q̄α̇}P = 2iPαα̇ , {Sα, S̄α̇}P = 2iK α̇α , {Qα,Sβ}P = −2iLα
β − i(D − iA)δαβ

and 
.
.

That is, the 
losure of fermioni
 symmetries generates full superalgebra SU(2, 2| 1).
Other non-zero bra
kets of fermion generators are

{Qα,K β̇β}P = 2i δβα S̄β̇ , {Sα,Pββ̇}P = 2i δαβ Q̄β̇ , {Qα,A}P = 2i Qα , {Sα,A}P = 2i Sα



Supertwistor 
oordinate transform

The relationship between supertwistor variables and superspa
e variables is determined by

supersymmetri
 generalization of the Penrose transform

pαα̇ = παπ̄α̇ ;

ωα̇ = xα̇απα + i θ̄α̇χ , ω̄α = π̄α̇xα̇α − iχ̄ θα ;

χ = θαπα , χ̄ = π̄α̇θ̄
α̇ .

With su
h link of the super
oordinates of the two formulations, super
onformal

symmetries of supertwistor formulation go over into the 
orresponding symmetries of

superspa
e approa
h. In addition, simple expressions for super
onformal generators in

supertwistor approa
h 
an easily be used to �nd expressions for them in spa
e-time

approa
h.

As in the 
ase of non-supersymmetri
 parti
le, the supertwistor transform in
ludes the

Cartan resolution of the lightlike momentum ve
tor.

Supersymmetri
 generalization of in
iden
e 
onditions is �twistor shift� of spinor ωα̇
by

the term depending on Grassmann variables χ. Note that in these in
iden
e 
onditions,

in fa
t, there is 
omplex ve
tor 
oordinate of the 
hiral superspa
e xL :

ωα̇ = xα̇α
L
πα .

Grassmann supertwistor variable χ, whi
h is de�ned as λ-proje
tion of θ-spinor, is
invariant under κ-transformation: δχ = δθαλα = κ̄α̇pα̇αλα = 0. That is, supertwistor
des
ription uses only one (
omplex) Grassmann degree of freedom, whi
h is physi
al

degree of freedom 
ovariantly extra
ted from the spa
e-time system. Therefore, there is

no κ-invarian
e now in twistor twistor formulation. This, in a 
ertain slang, 
an be

de�ned as the resolution of κ-symmetries in the transition to supertwistors.



Supertwistor superparti
le

Supertwistor transformations make it possible to reformulate the superparti
le system in

terms of supertwistor variables. As a result, we obtain the supertwistor a
tion of the

massless superparti
le

Ssuper
tw = 1

2

∫

dτ
[

Z̄AŻA − ˙̄ZAZA − iℓ Z̄AZA
]

,

That is, in the supertwistor formulation, the superparti
le a
tion is formally obtained from

the non-supersymmetri
 parti
le a
tion, in whi
h the 
hange ZA → ZA is made.

In the supertwistor 
omponents, the a
tion has the form

Ssuper
tw =

∫

dτ
(

˙̄ωαπα + π̄α̇ω̇
α̇ + i( ˙̄χχ− χ̄χ̇)− ℓ�

)

,

where ℓ(τ) is Lagrange multiplier for the 
onstraint

� ≡ i
2 Z̄

AZA = i
2 (ω

απα − π̄α̇ω̄
α̇)− χ̄χ ≈ 0 .

This 
onstraint is dire
t 
onsequen
e of the expressions for twistor transform.

The supertwistor norm � 
oin
ides with the superheli
ity of massless superparti
le

des
ribed by this supertwistor. Thus, the fundamental twistor transformations a
tually


orrespond to superparti
le whose superheli
ity is equal to zero.



Twistor super�eld

Twistor super�eld is found by quantizing twistor superparti
le, by analogy with obtaining

twistor �eld.

The Poisson bra
kets yield the (anti)
ommutators of basi
 operators

[ˆ̄ωα, π̂β ] = iδαβ , [ω̂α̇, ˆ̄πβ̇ ] = iδα̇
β̇
, {χ̂, ˆ̄χ} = − 1

2 .

We 
onsider the representation, in whi
h the operators ẐA are diagonal and

ˆ̄ZA
are realized

by di�erentiation operators

ˆ̄πα̇ = −i
∂

∂ωα̇
,

ˆ̄ωα = i
∂

∂πα
,

ˆ̄χ = − 1
2

∂

∂χ
.

Supertwistor wave fun
tion Ψ̃(Z) = Ψ̃(Z , χ) = Ψ̃(π, ω, χ) is de�ned by the quantum


ounterpart of the 
lassi
al supertwistor 
onstraint:

�̂Ψ̃(Z ) = 0 : 1
2

(

πα
∂

∂πα
+ ωα̇ ∂

∂ωα̇
+ χ

∂

∂χ

)

Ψ̃ = −Ψ̃ .

Thus, similarly to non-supersymmetri
 
ase, the twistor super�eld of the system under


onsideration is the holomorphi
 homogeneous fun
tion of the homogeneity degree (−2):

Ψ(−2)(αZ) = α−2Ψ(−2)(Z) , α ∈ C .

In its expansion in respe
t to the Grassmann variable χ

Ψ̃(−2)(Z , χ) = Ψ(−2)(Z ) + χΨ(−3)(Z )

the �elds Ψ(−2)(Z ) and Ψ(−3)(Z ) des
ribe massless parti
les with heli
ities 0 and 1/2
respe
tively.



Supertwistor super�eld transform

Obtained twistor super�eld produ
es the usual superspa
e-de�ned super�eld through

integral transformation, whi
h is a supersymmetri
 generalization of Penrose �eld transform.

Similar to purely bosoni
 
ase, some of the variables in the twistor super�eld

Ψ̃(Z) = Ψ̃(Z , χ) = Ψ̃(π, ω, χ) are resolved by using the in
iden
e 
onditions:

Ψ̃(−2)(Z)
∣

∣

∣





ωα̇ = xα̇α
L
πα

χ = θαπα





= Ψ̃(−2)(πα, xα̇α
L
πα; θ

απα) .

The subsequent 
ontour integral over λ produ
es the super�eld

Φ(xL , θ) =

∮

λdλ Ψ̃(−2)(πα, xα̇α
L
πα; θ

απα) .

The super�eld obtained in this way is automati
ally 
hiral D̄α̇ Φ = 0 and automati
ally

satis�es the mass shell equations �Φ = 0, ∂α̇αDα Φ = 0, DαDα Φ = 0. That is, the
supertwistor formalism give us the o�-shell des
ription of 
hiral supermultiplets.

���������

After des
ribing the twistor formulation of the superparti
le, let us return to systems that

des
ribe massless/massive parti
les with nonzero heli
ity/spin.

We have so far left unanswered the question of the spa
e-time formulation of su
h systems.



Modi�ed twistor formulation of massless parti
le with nonzero heli
ity

In the twistor program of zero-heli
ity massless parti
le, its spa
e-time des
ription and its

link through twistor Penrose transformations with twistor formulation are well de�ned. For

parti
les with nonzero heli
ity, twistor formulation is also well de�ned. But two important

questions arise regarding the other two elements of the twistor program: what kind of

twistor transformations for non-zero heli
ity and what spa
e-time system 
orresponds to the

twistor one in this 
ase?

To answer these two questions, we modify the twistor formulation and use the


onstru
tion that has analogies with the 
ase of the 
onsidered superparti
le.

Let us 
onstru
t dynami
al system that is equivalent to the twistor formulation of

spinning parti
le and is similar to the twistor model of superparti
le.

As su
h a system, we 
onsider the system des
ribed by the a
tion

Stw
s =

∫

dτ
[

1
2 (Z̄ AŻA − ˙̄Z AZA) + i( ˙̄ξξ − ξ̄ξ̇)− l

(

i
2 Z̄ AZA − ξξ̄

)

− v
(

ξξ̄ − s
)

]

.

In addition to the Penrose twistor ZA, among the dynami
al variables of this system there is


omplex c-number s
alar ξ , ξ̄ = (ξ) ,
whose 
omponents are 
anoni
ally self-
onjugate: due to the kineti
 term for ξ in a
tion,

their 
anoni
al bra
kets are { ξ, ξ̄ }P = i
2 .

The a
tion 
ontains additional 
onstraint

ξξ̄ − s ≈ 0 .
This 
onstraint is the �rst 
lass and gauges away exa
tly the two degrees of freedom present

in ξ. After eliminating the variable ξ, we obtain the twistor system of the massless spin

parti
le 
onsidered earlier.



Twistor transform in 
ase of nonzero heli
ities

Starting from the modi�ed formulation of the twistor parti
le of non-zero heli
ity, we 
an

restore both the twistor transformations and the spa
e-time formulation, if we use analogies

with the superparti
le formulation.

By analogy with supertwistor transformations for superparti
les, twistor transformations for

massless parti
le of non-zero heli
ity, 
onne
ting the twistor formulation with the


orresponding spa
e-time one, are de�ned as follows:

pαα̇ = παπ̄α̇ ;

ωα̇ = xα̇απα + i ζ̄α̇ξ , ω̄α = π̄α̇xα̇α − i ξ̄ ζα ;

ξ = ζαπα , ξ̄ = π̄α̇ζ̄
α̇ .

In these expressions, the Weyl spinor ζα, ζ̄α̇ = (ζα)∗ arises in a natural way, whi
h belongs

to the spa
e-time des
ription. But now, unlike to the super
ase, spinor ζα is 
ommuting

c-numeri
. It is intended to des
ribe the spinning degrees of freedom of relativisti
 parti
le.

Modi�ed twistor transformations solve the main problem, whi
h is to des
ribe the twistor of

non-zero norm. Namely, these relations resolve the 
onstraint

i
2 Z̄ AZA − ξξ̄ ≈ 0 ,

present in the a
tion, whi
h is equivalent at ξξ̄ ≈ s to the de�nition of the (nonzero for

s 6= 0) twistor norm.



Spa
e-time formulation of massless spinning parti
le

Applying twistor transformations to the twistor system of massless spinning parti
le

transforms it into equivalent system des
ribed by the spa
e-time 
oordinate xα̇α
and


ommuting Weyl spinor ζα. The resulting a
tion looks like

Ss.−t.
0,s =

∫

dτ
[

pαα̇w̃ α̇α − epαα̇pαα̇ − v(ζαpαα̇ζ̄
α̇ − s)

]

,

where the kineti
 term is determined by the quantity

w̃ α̇α = ẋα̇α − i ζ̄α̇ζ̇α + i ˙̄ζα̇ζα

and e(τ) and v(τ) are the Lagrange multipliers.

This system is like the superparti
le. But instead of the Grassmann spinor θα, the

ommuting spinor ζα is used here. Also, there is additional term in a
tion �xing the heli
ity.

In the Hamiltonian formalism, this system is des
ribed by 3 �rst 
lass 
onstraints and 2

se
ond 
lass 
onstraints.

After quantization the system is des
ribed by the wave fun
tion

Φ(x, ζ) = ζα1 . . . ζα2sΦα1...α2s (x) ,

whi
h links to twistor �eld by the �eld twistor transform presented above.



Twistor transform in massive 
ase

The resulting spa
e-time formulation of massless spinning parti
le has a natural

generalization to massive 
ase. When generalizing, it is ne
essary to make a natural

repla
ement of the mass 
onstraint p2 → (p2 − m2). Therefore, the a
tion of massive spin-s
parti
le, in whi
h spin degrees of freedom are des
ribed by the Weyl spinor ζα, has the form

Ss.−t.
m,s =

∫

dτ
[

pαα̇w̃ α̇α − e
(

pαα̇pαα̇ − m2
)

− v
(

ζαpαα̇ζ̄
α̇ − s

)]

,

where w̃ α̇α = ẋα̇α − i ζ̄α̇ζ̇α + i ˙̄ζα̇ζα . In the Hamiltonian formalism, this system is des
ribed

by 1 �rst 
lass 
onstraint and 4 se
ond 
lass ones. and after quantization the system is

des
ribed by the wave fun
tion Φ(x, ζ) = ζα1 . . . ζα2sΦα1...α2s (x) , where (2J + 1)-
omponent

�eld Φα1...α2s (x) = Φ(α1...α2s )
(x) satis�es �Φα1...α2s (x) = 0 and des
ribes massive spin J.

This spa
e-time formulation is inter
onne
ted with the previously 
onsidered twistor

formulation of massive spinning parti
le through twistor transform:

pαα̇ = πi
απ̄α̇i ;

ωα̇i = xα̇απi
α + i ζ̄α̇ξi , ω̄α

i = π̄α̇ix
α̇α − i ξ̄i ζ

α ;

ξi = ζαπi
α , ξ̄i = π̄α̇i ζ̄

α̇ .

Here there are used 2 twistors Z i
A = (πi

α, ω
α̇i ) , as was the 
ase earlier in the massive 
ase.

The SU(2)-spinor ξi
, used as the spin degrees of freedom of massive spinning parti
le, has

now arisen in a very natural way.

����������������-

Thus, we have des
ribed all the twistor designs planned in these le
tures.



Some issues not dis
ussed (due to la
k of time)

Twistor formulation of strings, membranes,...

Supertwistors in superstring theories.

Twistors in diverse spa
e-time dimensions.

Twistors and heli
ity spinors.

Twistors in 
al
ulating S-matrix and MHV formalizm.

Momentum twistors.



Thank you very mu
h for your attention !
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