Introduction to twistors and supertwistors

Sergey Fedoruk

BLTP, JINR, Dubna, Russia

XVII International DIAS-BLTP Winter School
“Supersymmetry and Integrability”
31 January - 4 February, 2022, Dubna, Russia



These lectures are devoted to brief discussion of the main positions of the twistor theory.

Twistor formalism discovered by R.Penrose in 1967 is effective in the study of dynamical
systems possessing conformal symmetries. But their use is not limited to such theories.
Twistors are used

9 in gravity;

@ in the construction of new supersymmetric models;
@ in the higher spin (HS) theory;

@ in the calculation of scattering amplitudes;

@ and in other areas of theoretical physics.

Twistors give us additional tools to explore existing theories and also provide alternative
description of these theories in addition to the widely used space-time formalism.

Here we will consider the use of twistors to describe irreducible representations of the
Poincaré group in the 4D space-time, that is, in elementary particle physics.

Monographs/reviews on this subject
@ R.Penrose, W. Rindler, Spinors and Space-Time: V. 2, Spinor and Twistor Methods in
Space-Time Geometry, Cambridge University Press, 1986.
@ R.Penrose, M.A.H.MacCallum, Twistor theory: an approach to the quantization of
fields and spacetime, Phys. Rept. 6 (1972) 241.
@ L.P.Hughston, Twistors and particles, Lecture Notes In Physics, Vol. 97, Springer-
Verlag, Berlin, 1979.

@ S.A.Hugget, K.P.Tod, Introduction to the Twistor Theory, Cambridge U. Press, 1994.
The lectures will also use the results obtained in our work, carried out in collaboration with
I.L. Buchbinder, J. de Azcarraga, E.A. Ivanov, A.P.Isaev, J. Lukierski, V.G. Zima.

(see arXiv and inSPIRES).



Plan

@ Lecture 1:
¢ Conformal symmetry and twistors. Twistor space.
o Penrose twistor transform and twistor formulation of massless particles.
o Field twistor transform.
o Twistorial description of higher spin particle.
@ Lecture 2:
¢ Bitwistor formulation of massive particles and massless infinite spin
particles.
o Conformal supersymmetry and supertwistors.
o Twistor description of massless superparticles.
o Twistor transform for spinning particles.



Lecture 1

@ Conformal symmetry and twistors. Twistor space.
@ Penrose twistor transform and twistor formulation of massless particles.
o Field twistor transform.

o Twistorial description of higher spin particle.



Conformal symmetry

The appearance of twistors and their wide application is associated with the study of
systems with conformal symmetry.

Let us first consider massless particle of zero helicity as the simplest illustrative, but, at the
same time, concrete and physically meaningful example.

Massless particle with zero helicity plays an important role in the subject of our study.

In addition to its relative simplicity, massless particle of zero helicity has all the necessary
formulations (purely space-time, purely twistor and mixed ones) and interrelations between
them (Penrose twistor transformations), both at the classical (mechanical) and at the
primary-quantized (field) level. This causes a constant reference to it when constructing
more complex systems, such as spinning (super)particle, higher spin (super)particles or
(super)strings, where the full twistor picture has not yet been established.

In space-time description the action of massless zero-helicity (spinless) particle looks like
(H’?mk H = d|@(+l, _17 _17 _1)7 m= 07 17 27 3)

_ ’ . 1 " 1. .
syt = /dq— (pmxm -5 ep2> = /dTE Xmx™

where x™(7) and pm(7) are the coordinate and momentum of the particle, {x™,pn}, = o';
7 is evolution parameter. The variable e(7) is Lagrange multiplier for the mass constraint
p2=p"pm ~0.
When quantized, this constraint produces the massless Klein-Gordon equation
Od(x) = 0MIm®(x) = 0.



The action is invariant under transformations (a™, ™, km, C are the constant parameters)
XM = aM 4 £Mxy + ox™ + 2(k - x)x™ — x2k™,
dpm = £mnp" — cpm + 2(k - p)xm — 2(k - X)pm — 2(X - p)km ,
de = 2ce +4(k - x)e,
whose generators (the Noether charges)

Pm = pm, Mmn = XmPn — XnPm , D =x"pm, Km = 2(X - p)Xm — X?Pm
form the algebra with respect to Poisson brackets {x™,pn}, = o'
{Mmn, Mic }o = NmiMnk — 7lmkMni — (M <> n), {Mmn, Pi}p = 1miPn — (M < n),
{Pm,Kn}p = 2Mmn — 20mnD,  {Mmn, Ki}p = nmKn — (M < ),
{Pm,D}) = —Pm, {Km,D}; =Km.

This algebra is called the conformal algebra.

This conformal algebra has another representation, more convenient for our subject.
After collection 15 generators into antisymmetric tensor Iapn = —Iam, M = (1/,0°; m),

Jon =Mmn,  Imor = 3(Pm +Kmn), Iny = 3(Pm —Km), Joyrr =D,
the conformal algebra takes the form
{Imn Ikcte = mmdne — mmednve — (M < N),

where npmn = naam has the following components: nmn and nmor = Mm1r = Mor17 = 0,
noror = —m1712 = +1, and, in fact, is the metric tensor of the 6-dimensional spaces with the
signature (+ 4+ — — ——).



This algebra is nothing but the so(2,4) algebra. That is, conformal symmetry is described
by the group SO(2,4), which is the symmetry group of 6-dimensional space with two times.

Poincaré transformations, including Lorentz transformations (parameters (™) and
Poincaré translations (parameters a™) are realized by linear transformations. Accounting
this symmetry is well known: the use of Lorentz-covariant quantities and the presence of
coordinates X™ outside the fields only through the derivative Om in the field equations.

But conformal boosts are realized by nonlinear transformations. So, under conformal boosts
60 = —4(kx)d + 4k™ O ,
Therefore, the conformal invariance of even the Klein-Gordon equation implies the following
transformation of the massless scalar field
0P =-2(kx)®.

Already consideration of this simple system suggests to us the desire to have a formulation
in which conformal SO(2,4) transformations are realized by linear transformations. This
becomes more relevant when considering more complex physical systems.

One way to the linear realization of conformal SO(2,4) symmetry is consideration of the
spaces (coordinate or field spaces) with SO(2,4)-tensors.

But to be able to describe all representations, including spinor representations, it is
natural to consider the corresponding spinor group, homomorphic to the SO(2,4) group,
SO(2,4) =2 Spin(2,4) =~ SU(2, 2) (an analogue of SL(2,C) for SO(1, 3)):

GeSU(2,2): detG=1, G'gG=g, g=dag(ly,—1,).
Then all conformal transformations (linear homogeneous, inhomogeneous and nonlinear) are
realized as linear SU(2, 2)-spinor transformations of the corresponding space.

The solution of this problem led R. Penrose to the twistor theory.



4D spinor notations used in these lectures
The space-time metric is nmn = diag(+1, —1, —1, —1).
Totally antisymmetric tensor empy has the component gg103 = —1.
Yo
Four-component Dirac spinor W is represented by two Weyl spinors W = < -
Xa
Two-component Weyl spinor indices are raised and lowered by €z, €B €ap> €*P with

nonvanishing components €15 = —ep; = 2l = —2=1: ¢, = EQBwB, P = eaﬁwB, etc.

The Dirac matrices ym obey the Clifford algebra {ym, v} = 27mn.

0 .
In the Weyl representation they have the form ym = ( (6m)&# (Umo)o‘ﬁ )
om
Relativistic o-matrices are (om) 5 = (12:01,02,03) 4, where 01,07, 03 are the Pauli
aff af

matrices. The matrices (65m)%? = ed‘seﬁw(am)vs = (12; —01, —09, —03)%P satisfy

I L N e L DA UZ’B&E“ =25m.
The link between Minkowski four-vectors and spinorial quantities is given by
1 2 NG g .
Ani = 5 An(0™) 4 ASB = L An(6™M)4P ) Am = %Aaﬁ-(am)ﬁa, so that A"Bm = A_ sBF<.

V2 V2
The o-matrices with two vector indices are defined by (omn)a?® = —;11 (6m&n — oném)a’,
(6mn)% 5 = —% (6mon — &nom)® 4 and satisfy the identities €™ oy = —2i o™,

eMK 5, = 2i 5™, We represent the antisymmetric second rank vector tensor in the form
Xgmn) = (7mn)**X(ap) = (Gmn)* X 45 -



Twistor space

In twistor theory, conformally invariant systems are formulated in the space parameterized
by commuting SU(2,2)-spinor Za, A=1,...,4. As we will see below, this space actually
replaces the usual phase space formed by 4-vectors X™ and pm.

To obtain results in terms of ordinary 4D spin-tensor fields, it is convenient to consider
the representation, in which the SU(2, 2)-spinor

Zp = (70, w®),  Zn — GaABZn, GeSU(2,2)

is formed from two 4D Weyl spinors of opposite chirality 7a, w¥ (@a=1,2,4=1,2).
Following R.Penrose, we use spinor w®, which has dotted index, but without ‘bar’.
We point out that spinors are c-number.

Conjugate 4D spinors g = (7a)*, @ = (w)* form the SU(2, 2)-spinor ZA = (Tg, @),
which transforms according to the complex conjugate representation.

Using SU(2, 2)-invariant tensors gAB, gpg» Which in the chosen representation have the form
g% = ( 5:,3 % ) . Oap = ( _faﬁ " ) 08B =), 0"Cgcs =,
((Gﬂ*’\BgBBGBA = g™ G e su(, 2)) spinor Z, defines the SU(2, 2)-spinor

2 = ZBQBA = (@, -7a),

which transforms using the inverse SU(2,2)-matrix: ZA — ZB(G—1)g",.



Contraction of the spinor Z, and its conjugate ZA defines the Hermitian form
N= L7820 = £ 7505725 = § (070 — Taw®)

which is SU(2, 2)-invariant and is the norm of the SU(2, 2)-spinor Za.

By definition,
the twistor space T is the spinor space (space C*) of the conformal group SU(2,2) with
Hermitian form A.

The SU(2, 2)-spinors Za, defined on this space, are called twistors.

Depending on the value of the Hermitian form, the following subsets of the twistor space are
distinguished:

@ the space of positive twistors T4, when A > 0;
@ the space of negative twistors T_, when A < 0;

@ the space of isotropic twistors Tg, when A = 0.
Physical meaning of the twistor norm A will be given below.
Comment: In some papers, the imaginary unit i is used as additional factor in the definition

of the SU(2, 2)-metric g”B, and then this factor is absent in the definition of the twistor
norm A. We use conventions where such a factor will be used less in further expressions.



Infinitesimal conformal transformations are realized in twistor space by linear
transformations: . L

6Zp = LpBZg, 9"®Le" = (L7)"0®,
or in spinor components

e = —ZaﬁWﬁ — %Cwa — 2kanB, Sw® :ZdBwB + %de + adﬁﬂ'ﬁ.

The generators of these transformations are found after giving symplectic structure in the
twistor space. Defining Poisson brackets in twistor space

{Z", 25}, = o = {@%, 75}, =63, {w®, Tate = 5“; ,
we get that conformal transformations are generated by the following bilinear combinations
of twistor components
Pag = Taftg, K& =w%a®, Mg = T(ag) MdB =R(aWsy DIE % (DT +Taw?).
The generators form conformal algebra with respect to the Poisson twistor brackets and

preserve the twistor norm. In terms of 4-component twistors, conformal generators are
represented as traceless product of the twistor and its conjugate one:

Z°7g — 168 Z%2c .

Having linear realization of conformal symmetry in terms of twistor variables, we can
find twistor formulation of massless particle and its link with space-time description.

2 ad?

and M) = (m)**Mag) = (Bm)* Mg 5.

We use the notations P,q = % Pmo™., Pm = % PaadSe, that is Pm ~ Pag



Penrose twistor transform and twistor formulation of massless particles

Comparison of generators of conformal symmetry in space-time and twistor formulations
leads to the following observations:

- four-momentum pm is represented in the form of the product of the spinor 7, and its
conjugate,

- second twistor spinor w® is proportional to the product of four-coordinate x™ and the
spinor 7q.

In fact, exact expressions for the link space-time and twistor variables is determined by the
relations of the Penrose transform:
Paa = TaTé (a)
. 33 —a _ = B
w(\. — X(\. 7.[_3 , w(\. — ’/TBX «@ . (b)
Characteristic features of Penrose transform:

B

@ Important point is the Hermitianity of the matrix x&8 = % ch"r,?‘-1 constructed by

using the real vector xM: (x¢#)* = xBe,

@ When performing the Penrose transformation, the twistor representation of the
conformal generators goes over into the space-time representation.

@ From the conformal transformations of twistors we obtain corresponding
transformations of space-time variables.

® Relations are consistent with symplectic structures in twistor and space-time phase
spaces. Namely, Poisson brackets for p,s and w® are is the same if they are computed
with twistor brackets {&%,mg}, = d5 or Poisson brackets {X**,pgs}, = 656;‘.



Twistor transform equations have transparent physical and geometric meaning:

@ The equation (@) implies automatically that the particle four-momentum pyg = Ta T4
is light-like ]
p? = p**Poe =0
due to the automatic fulfillment of the identity

T = eO‘BW[ﬁra = E[O‘B]W(ﬁwa) =0,
which is valid for commuting 4D Weyl spinors.
@ For fixed twistor Zy = (7%, w®), the solution of the equations (b) (incident conditions)
with respect to space-time coordinate x™
X5 = x§* fanFd,  xg* = 2w4a/(mp@f + 7 gw®)

contains an arbitrary real constant &, which parameterizes the light-like line (lightray)
in the Minkowski space with the direction vector 7#®7®.



Incident conditions (b) have additional important consequence: the twistor appearing in
them is isotropic:

A= iEZAZA = %(&awa — 7qw®) =0.

This result is achieved due to the Hermiticity of the matrix x®® in (b). This constraint
generates local phase transformations

Zp = (Ta,w®) —  e%Zp = (e!¥my,eYw?)

and leaves the twistor transformations invariant.

What is the physical meaning of the twistor norm A?
The answer to this question is found after calculating the Pauli-Lubanski vector
Wi = L emmaP™H, Wo, =i (PQBMBd—PﬁdM5Q>.
In the twistor realization of Poincaré generators, we have
Waa = APos -

But as is known from the representation theory of the Poincaré group, “the proportionality
operator” between the Pauli-Lubanski operator and the energy-momentum operator is
exactly equal to the helicity in case of massless representations of fixed helicity.

Thus, the norm A of the twistor coincides with the helicity of the massless particle which is
described by this twistor.



Thus, twistor transformations link the space-time and twistor formulations of massless
particle of zero helicity.

@ In space-time formulation there is mass constraint p? ~ 0, and the condition of
equality to zero of helicity A = O is fulfilled automatically;

@ In twistor formulation there is the spin (helicity) constraint A =~ 0 under resolved
massless condition p? = 0.

In twistor formulation the action of massless particle of zero helicity has the form

G %/dT [ZAZA—ZAZA - ;-IZAZA] )

where I(7) is Lagrange multiplier for twistor constraint A ~ 0. Up to the total derivative,
this action in terms of 4D spinors takes the form

GIEE = /dT [i)”ﬂ'a + T — 5 1(0%Ta — ﬁ'dwa)] .

We can check that the number of physical degrees of freedom is equal to six both in the
space-time system and in twistor one
(the first class constraint eliminates two degrees of freedom in the phase space systems).



Twistor wave function

Let us find the twistor wave function and link it with the scalar field resulting from
quantization of this model in space-time formulation.

In the transition to quantum theory, the Poisson brackets go over to the commutator

27, Zg] = idh - [&%, 7tg] =85, (0%, &gl =165 .
It is convenient to quantize twistor particle in holomorphic representation (Penrose

representation), when the operators ZA are diagonal, and ZA are realized by differentiation
operators
A

. . . N .0
=l— or in spinor components 75 = —I =4 .
()ZA Ow™ 0T

N

In this holomorphic representation twistor wave function
V(Z) =V(mw)

satisfies the equation R
AV(Z)=0,

which is quantum counterpart of the classical twistor constraint A ~ 0.



Carrying out the Weyl ordering in the helicity operator

o A A Ane N AL 9
A= 17°2Z, — A= 2 (ZPZN+2p2%) = S 2027 -1 = — 1zAaz =4l
we obtain that the equation for the twistor wave function has the form
0
1Zp—v=-v (*)
OZp
or, in writing through the spinor components of the twistor,
1o} , 0
1 & _
i(mam T Owe W=-v.

Thus, the twistor wave function of the system under consideration is the holomorphic
homogeneous function of the homogeneity degree (—2):

V(=2 (az) = a~2u(-3(2), (%)

where « is an arbitrary complex number.

Remark.

Equation (*) is equivalent to the equation (:x):
Acting the operator a% on the left and right sides of the equation (xx) and after that

putting the value o = 1, we obtain the equation ().



Field twistor transform

In Penrose twistor approach, the usual space-time field is obtained from the twistor field by
means of the Penrose twistor transform for the fields. It is constructed as follows.

As first step, the spinor w in twistor field is resolved by using the incidence condition
v(=2z) =D, x%7,) .
wWE=XX¥¥,,
Due to the homogeneity of twistor field, this function is actually defined on the complex
projective space CP! and depends effectively on one complex variable if we take into account
homogeneity. For example, from the ratio z = w1 /7, at m # 0.

Integrating the twistor field over this variable, we obtain the usual space-time field.
In covariant notation, independent of the choice of coordinate on CPY, the field is integrated
with the measure wd7w = 7%dnq

d(x) = fﬂdﬂ‘ \U(fz)(ﬂ‘mxdaﬂ‘w);

so the integrand is the invariant of the transformation @ — am for the twistor field.
In this integral transformation, the integration is carried out along the closed contour in the
space of independent complex variable, enclosing the poles of the twistor field w(=2),

This integral transformation is the Penrose twistor transform for scalar field. It is important

that the field ®(x) obtained in this way automatically satisfies the Klein-Gordon equation
%% ®(x) = 0.

This is the result of the dependence of the twistor field on x& only in combination X&%,

with commuting spinor 7w, for which the identity 7*mo = 0 holds.



Twistor formulation of massless particle of arbitrary fixed helicity

In the twistor formulation, the particle helicity is determined by the twistor norm.
Consequently, the phase space of massless particle of helicity S must contain the constraint
AN—s= %ZAZA—s: %(@aﬂa—ﬁdwd)—szo,

generalizing twistor constraint for zero-helicity particle.

The action

S /dT [% (ZRZp — ZRZp) =1 (5 Z7Zp - S)] )
in which the constraint A —s &~ 0 is introduced through the term with the Lagrangian
multiplier |, determines the twistor formulation of massless particle of helicity s.

After quantization, the twistor constraint A — s ~ O generates the equation for the twistor
wave function

o
1zp—vwv=—(1 v
2AaZA ( +S)

Thus, the twistor field of massless helicity particle S is holomorphic homogeneous function
of the homogeneity degree (—2 — 2s):

\U(fzfzs) (Z) , \U(fzfzs)(az) — a*Z*ZSﬂ,(*Z*ZS)(Z) .



Field twistor transform for arbitrary helicity

In the case of non-zero helicity, the space-time fields can be obtained from the twistor ones
in the previously discussed way, by using the incidence conditions and the Penrose field
transforms:

¢al-~025 (X) = f(ﬂ'dﬂ) Ty« Mg W(izizs)(ﬂ'a,xdaﬂa) .

In contrast to helicity-zero case, this integrand contains 2S components of the spinor 7 for
compensation of the U(1)-charge of the twistor field W(=2-2s),

The resulting space-time field is automatically symmetric with respect to the spinor indices
due to the commutativity of the twistor components, ®a;...ay; = P(a;...ay), and satisfies
automatically the Dirac-Weyl equation

9PN Do, (X)) =0.
That is, the complex field ®q;...a,(X) is the field strength of massless particle of helicity s.

.o

helicity 1/2: the Dirac equation

O™ VU(x) =0, V= ( ;_ﬁg ) = 9%y, (x)=0;
helicity 1: the Maxwell equation

anan(X):(), Frmn :—(Umn)aBFaﬁ'F(a'mn)dBFdB = 84{04':043()():0'



Coordinate twistor transform for arbitrary helicity (difficulties)

The incidence conditions constructed earlier assume zero helicity of the particle. That is,
although in the twistor description everything is fine in description of nonzero helicity, but
in the space-time picture it is not: something is missing to describe the helicity.

Description of the spinning particle requires consideration of extended spaces that include
additional coordinates. From a physical point of view, these additional coordinates are
intended to describe the spin

g degrees of freedom.

One of the ways to introduce additional coordinates is to consider instead of the real

Minkowski space with coordinates (x8)* = x8® (x™ = (x™)*) its complexification with

coordinates z8 # (zP*)* (z™ # (z™)*, i.e. z™ = x™ +iy™). Modified incident conditions
Wt =287, % = 7?5230‘ , where 79 #£ (z48)*

do not imply the zero norm of the twistor, which is defined by the imaginary part y™ of the

complexified coordinate z™M. This way of describing the nonzero helicity is presented in the
Penrose twistor theory, which is actually used at the level of the field approach.

But when using the complexified Minkowski space, some important element of the twistor
program associated with the standard space-time description is completely lost.

There are other formulations of the massless spinning particle, in which the space-time
formulation uses other additional variables of different type, for example, additional spinor
coordinates. This formulation will be described later after the presentation of the twistor
superparticle, since their descriptions are quite similar.



Shirafuji model

But there is possibility of obtaining nonzero helicity of particle after quantization if we
use twistor variables in addition to the usual space-time coordinates in the space-time
formulation. Then the twistors present here will carry the description of spinning degrees of
freedom of the particle.

The well-known Shirafuji model is just such a model. This type of model will be useful
in the presentation of twistorial formulation of the higher spin particles.

In the Shirafuji formulation, the Lagrangian of massless particle is, in fact, the term pmx™ in
which the momentum pm is resolved through twistor spinors by using the Cartan-Penrose
relation:

S(r)mx :/dﬂ'myﬁ'd)'(““.

In this system the Cartan-Penrose relation is reproduced as the constraint
Paa — TaTaq = 0.
Additional constraints in the system are the following ones
(* =0, (¢ ~o0,
where ¢, (% are canonically conjugate variables to 7, T4 :
(¢ mede =05, (T8 g} = 05

From the eight constraints, six constraints are the second class, and two constraints are the
first class. That is, the system has six physical degrees of freedom, like all massless systems
considered earlier (the second class constraint eliminates one degree of freedom of the phase
space, in contrast to the first class constraint, which eliminates two degrees).



The direct quantization of this system is rather complicated.
But we can move on to the equivalent system only with the first class constraints.

We introduce additional phase variables v, &%, {k%,vg}p = 65, and c.c.

Equivalent system only with first class constraints:
Pac — (Ma = va)(Fa — 7a) 20, 1 (7aC® +var® = 74" — 7a7%) ~ 0,

C*+r* =0, fd-f—ﬁdzo.

Initial system is reproduced in the gauge vq ~0, Uy =0, k* ~ 0, &% ~ 0.

But, in extended system we can make the exchange of the variables 7o — 7o — Va,
¢* = (C* — k%)/2, va = Ta + Va, K% = ((* + k*)/2. Than, the constraints take the form

Pas — TaTa =0, i(waga—ﬁd&)zo, k=~ 0, R*=~0.

Variables vo, k% and c.c. are split off and fully gauged.

For the remaining variables, consider the representation in which (%, ¢ are diagonal and

Ta =10/3CY, Tg = 10/8C.

The wave function is W = W(x™, (%, (%).



The wave function W(x™, ¢, (%) is defined by the equations of the constraints
. g 0 15} _. 0
a) (I@ad——T)W:O, b) (Ca——C“T)\U:ZS\U,
8(04 8(04 (’)Ca 8(04
where 2s is some ordering constant. The uniqueness of the wave function W requires that 2s
be integer number: 2s € Z.

Requiring the polynomial dependence of the field W on the spinor variables ¢, %, we find
that the equation b) has the following solution in the form of an infinite series:

oo

W(x,(, E) = (o, (o Z 45155‘1 o Cﬁkg_Bk wa1---a2551---5k61---[3k (x).

k=0

Equation a) leads to the following conclusions:

@ Higher terms of expansion wal---QZSBl---Bkél---Bk (x) at k # 0 are not independent:
. R . X
wal---a2551---5k51---5k =1 85151 ’ "8ﬁkﬁkw°‘1"'°‘25 ’

@ Independent field 1q,...a, (X) satisfies Dirac-Weyl equation

Py .y (X) =0

and describes massless particle of helicity s.



Twistorial description of higher spin particle

In a certain terminology, higher spin particle (HS particle) means the model which describes
the states of all spins, from zero to infinity.
Most often, such system describes massless states with all possible helicities.

The simplest, but at the same time, very illustrative model is the HS generalization of the
Shirafuji model. In this model, there is no constraint which fixes the helicity.

This is obtained by adding additional “kinetic terms” of spinor variables to the Shirafuji
action, that is, by considering the action

Srﬂnsix = /dT (W(\ﬁ(;).(da + 7ol + Tr(;(;("> .
The last terms in this action tell us that the commuting spinors ((%, 74 ), (%, 7g) form

pairs of canonically conjugate variables.

The model is described by only vector constraint of the first class:
Paa — TaTa = 0.

There are no additional constraints in this system.



As before, let us consider the representation in which ¢, ¢4 are diagonal
and mq =10/0C%, 75 = 10/0C% are realized by differentiation operators.

Requiring a polynomial dependence of the wave function, we have the following expression
for it as the infinite series:

Grs(X™,¢%, ) =D D ¢ (RN LM ay agdg.ni (X) -

k=0 n=0

Twistorial constraint yields the Vasiliev unfolded equation
. o 0
(100 = 555 ) o =0

Independent space-time fields in the expansion of the field ® are self-dual ¢q;...0q (X),
k=0,1,...k and anti-self-dual @g,...a,(X), N =0,1,...k field strengths of all helicities.
Basic unfolded equation leads to Klein-Gordon and Dirac equations for them.

All other component fields are expressed as X-derivatives of the basic fields.

Reality condition for the HS field ® = (®)* leads to the reality conditions
Pé...ax = (Poy...oq )" for physical fields. Thus, the massless HS multiplet described by the
real HS field ®(x™, (%, %) contains all helicities and each helicity appearing only once.



Twistor formulation of HS particle is obtained after passing to the variables

W =88 4 xSy, @ =+ AaxP,

which are precisely the components of the twistors.

Up to total derivative in the Lagrangian, the action of HS particle takes the following form
in twistor formulation

S = /dT (L«L}”ﬂa +7_r(;,tb‘s’> = % /d'r (ZAiA - ZAZA> .

Twistor wave function of this model is holomorphic twistor function
Vps(Z) = \Uhs(ﬂ'mwd)

without any additional equations of constraints.

This twistor field describes infinite tower of massless states of all helicities, which are
described by homogeneous components in the expansion in spinor variables. Ordinary
space-time fields with helicity S can be extracted by means of the integral transformation

4P0<1<~0<25(X) = %(Wdﬂ') Toug - - 7TOlzswhs(ﬁouXdoéﬁoz) .

In this integral, only the term with the correct degree of homogeneity contributes;
other terms with different homogeneities do not contribute to this integral.

Therefore, this model describes the tower of massless states whose helicities start from zero
and continue to infinity.



HS system contains infinite number of massless fields of arbitrary spins (helicities).
Therefore, we can expect that such a system has infinite-dimensional symmetry, mixing all
the spins with each other. The main and, in practice, the only requirement for such a
symmetry is that it must be an extension of conformal symmetry. For this reason, twistors
realizing conformal symmetry linearly play important role in describing the symmetry of
higher spins. In other variables, for example, space-time variables, the full symmetry group
of higher spins is hidden.

Symmetry in HS theory is usually characterized by its algebra, called HS algebra.

We have seen that twistor field is the function Wpg(Za) = Whs(ma,w®) in a twistor space.

This field space is preserved by 15 conformal algebra generators ZAZg — %1 5@ ZCZ¢ , formed

by all bilinear combinations of the twistor and its adjoint components:

Poa = maTs K& = &g s MQB = 7'('(&(:}6) s Mdﬁ} = ﬁ(de) , D= % (@aﬂ'a-i-ﬁ'dwd),
and the operator iEZAZA = 'é (@%To — Taw®).

Other 20 second degree generators

Rap = mams, Rag=7ams, R =00, RY =uwif, Fof =mawl, Fib =7a0f

are formed by the products of the twistor components between themselves and its conjugate
in analogous way:

ZaZg = (Rap, R Fo?),  ZAZB =Ry, R Fs”).
With respect to twistor Poisson brackets, all these 36 generators form the Sp(8) algebra,

which is one of the finite-dimensional extensions of the conformal algebra.
In fact, the twistors define oscillatory representation of the SU(2,2) and Sp(8) algebras.



A natural way to obtain infinite-dimensional HS symmetry is to relax the twistor bilinearity
requirement for generators. Introducing the notation for twistor monomials of n-th degree

ZA(k)EZA;l“'ZAkv ZB(l)Ezsl...zB|,

and also for their spinor components mok) = Tay - - - Tay, Ta(l) = ey - - - Ty €6C.

Generators of infinite-dimensional symmetry that preserve HS field have the form

B(r) _ 58 _ Bm),é(n) _ -
Gad =Za@Z%0 = B — g 7 P MWt kit =pmtl=r.

These generators form infinite-dimensional Lie algebra:

{GMN),| (_:,(Nz)}P — G(N1tN2—2)

in terms of the quantities G(N) = GB((r)) N=p+r.

Generators in G(?) form Sp(8) subalgebra: {G(?), G2}, = G(?)

Even a minimal extension of the algebra by generators G(3) generates an infinite set of

generators:
{G®), G(3)}P =G, {G®), G(4)}P =GO ...



The presented algebra is reducible and contains other (infinite-dimensional) subalgebras.
For example, generators GWMN) of even degree form a subalgebra. A further restriction arises
when SU(2, 2)-irreducible representations in generators are singled out.

Obtaining the SU(2, 2) irreducible representations occurs by selecting the trace parts,
formed here by the twistor norm ('5 ZAZ,), and non-trace parts.

Irreducible parts of generators are generators

TR — (5 Z°2,)" (2 2201,

where the tensors in brackets () are traceless by definition, (MAZ-) = 0. The generators

T(”)igg)) at r = p produce Fradkin-Linetsky-Vasiliev hsc(2, 2) algebra.

Note that the higher spin algebra, which is an extension of the conformal algebra, is not
unique. Depending on the choice of the symmetry algebra, we obtain a different set of spin
states, on which the transformations realizing this algebra are closed. For example, one way
to extend conformal su(2,2) algebra is to consider the su(2,3) algebra rather than that
sp(8) algebra. In this way, it is obtained another HS algebra, based on the so-called bosonic
supersymmetry (some discussion of it will be in the next lecture).



Lecture 2

@ Bitwistor formulation of massive particles and massless infinite spin
particles.

@ Conformal supersymmetry and supertwistors.
@ Twistor description of massless superparticles.

o Twistor transform for spinning particles.



The twistor approach is based on conformal symmetry, which leads to a natural description
of conformally-invariant systems. But one of the tasks of the twistor approach is to present
an alternative to the space-time description of the physical world, which includes
conformally-non-invariant systems, for example, massive particles that possess, in general,
non-zero spin.

Let us briefly recall the irreducible relativistic representations.
Irreducible unitary representations of the Poincaré group 1SOT(1,3) are defined by values
of the Casimir operators
Cy :=P"Pp, Cy:=WMWp,
where Wm = %emnHP”Mk' is the Pauli-Lubanski vector.

Physically interesting unitary irreducible representations:

P2 = PP, W2 =WnWh
Massless finite spin irreps. 0 0
Massless infinite spin irreps. 0 —p?, where p€R, u#0
Massive irreps. m2 #£ 0 —m?j(j +1), where je€ Z%0/2

So far, we have considered massless finite spin irreducible representations (helicity states).
These are the standard massless representations that describe all currently known massless
particles such as photon, gluons, graviton, massless helicity-1/2 fermion (until some time, it
was believed that it is neutrino).



The necessity of bitwistor formalism

So far, we have considered the one-twistor case.

As it was said, the basic relation in the twistor description is the resolution of the
4-momentum through commutating Weyl spinor mo: Paa = Ta s

But from this we get important consequences:

@ We get that the square of the 4-momentum is zero: P"Pn = 0. Therefore, the
description of massive particle is impossible in frame of the one-twistor formalism.

@ Moreover, in the one-twistor case, we have seen that there is the expression
Wn = A - Py

for the Pauli-Lubanski vector, where A is helicity operator. Therefore, W"W, = 0 and
we can only describe massless finite spin representations (helicity representations).

Thus, to describe massive states or massless infinite spin states, it is necessary to use more
than one twistor.

For our purposes, it is enough to use two twistors: Za and Yp, and we will consider this
bitwistor description below.

Let us first consider the case of massless infinite spin particle.



Massless infinite spin particle: space-time formulation

Infinite (continuous) spin representations are infinite-dimensional ones.

In contrast to other irreps, infinite spin representation expands into infinite set of massless
states with all possible helicities. Helicity in continuous spin representations takes standard
discrete values: integer 0, +1, £2, ..., 400 or half-integer +1/2,4+3/2,..., +o0.

In Wigner-Bargmann space-time formulation infinite spin fields are described by the
function ®(x,y) defined on the space which is parametrized by

@ commuting 4-vector X™ (the position coordinates on Minkowski space);

@ additional commuting 4-vector y™ (describes the spin degrees of freedom).

Equations of motion of these fields (Wigner-Bargmann equations) have the form
o 0 o 0 o 0 9]
——$=0, —— $=0, —— b =420, —iy" =9,
OX™ OXm OX™ OyYym oy™M OyYym oxm

where p € R, u # 0 is a dimensionful parameter.

One can verify that for such fields the square of the Pauli-Lubanski vector is equal to

W'W, = —p? .



The Wigner-Bargmann space-time field formulation of infinite spin particle is reproduced by
means of one-dimensional dynamical model with the following Lagrangian

L2798 = pX™ + Wiy ™ + € pmp™ + €1 PmA™ + €2 (Amq™ + %) + €3 (Pmy™ — 1) .

Here, pm(7), dm(7) are the momenta for x™(7), y™(7):

(X" pn} =357, {y™ an} =0T

In the Lagrangian the variables e(7), e1(7), e2(7), e3(7) are the Lagrange multipliers for the
first class constraints

pmp™ ~ 0,  pmq™ ~ 0,  amg™+4® ~ 0,  pmy™ -1 ~ O.

After canonical quantization these constraints yield the Wigner-Bargmann equations.
Let us now construct physically equivalent system in the twistor formulation.

It is important to emphasize that the classical physical equivalence of systems does not
imply their quantum equivalence. For example, the presence of spinor variables in the
system will make it possible to obtain spinor representations after quantization.



Twistorial formulation of infinite spin particle

Following standard prescriptions of twistor approach in considered case we need to use

e twistor spinor ma, T4 = (ma)* for resolving the constraint pmp™ =
by the Cartan-Penrose relation poe = TaTs

e spinor of 2-nd twistor pa, ps = (pa)* for resolving the constraint pmq™ ~
in the form Quq = TaPa + PaTe -

Thus, in twistorial formulation infinite spin particle is described by 8 complex variables
(&%, 7o), (7%, pa) and c.c. ones, which obey the Poisson brackets {@%,mg} = {7%, ps} = o5
and are subjected to four first class (abelian) constraints

M = 7% paT — p?/2 ~ 0,
F = 7%q—1=0, Fi=7an®—1=0,

U = 3% — Taw® + ﬁaﬂa _ ﬁdna ~

The Hamiltonian in the first order twistorial Lagrangian is linear combination of these
constraints with Lagrange multipliers:

LW = 1,0 + #aw® + pafi® + pan® + IM + kU + LF + I F.



Link with the Wigner-Bargmann space-time formulation is carried out by using the
generalized Cartan-Penrose relations

Paa = TaTa , Jag = TaPa + PaTa
and the incidence relations
on — Xda’ﬂ'a +ydmzpa , % = ﬁdxdw I ﬁayaa ,
,r]('\ — yrfxaﬂ_” , ,,—/a — ﬁ(_\yrfu,x .
We note that, in contrast to the fixed helicity particle, in the incidence conditions for the
infinite helicity particle the y-dependent terms mix the spinors of different twistors.
Notice the following points:
e Twistor spinors in this formulation form two Penrose twistors
. . — =2(89 _ te%
ZA S (ﬂ-a’wa) ) YA = (pa777a) ' ZA = UJ_ 3 YA = 77— .
—a —Pa
So the description of infinite spin particles uses with necessity two twistors.
e The U(1) twistor constraint has the form U = i (ZAZp + YAY,) = 0.

But the helicity operator is A = iEZAZA. So in the considered model of infinite
(continuous) spin particle, helicity is not fixed since it is proportional to —YAY.



Performing operator quantization of the model we obtain the twistor wave function
WO, 7:p,5) = 6 ((np)(57) — u/2) e7190/POHO (m, 7: p, 7)

where (mp) := 7P pg, (pT) := 5[37?6; Go/Po = > (Tapa +pafia)/ 22 mpfs,
a=d =

O, 7ip,5) = O (m, w)+2< ) O, 7) + 3 (mp) ) (, 7),
k=1

Constant ¢ plays the role of the U(1) charge and takes (half-)integer values: 2c € Z.

1 1o} 0
Fields w(°+k)(7r,7’r) are eigenvectors of the operator A = —= | 73 —— — g o— |t
2 ‘ aﬂg 8’”/3

A7) = A (r, 7), A= —(c+k).

Helicity operator A = J [I_"/[Po where J is total angular momentum, acts in the following way:

. e} e}
AW =6 ((mp)(57) — 2 /2) @190/ Po (Aw“) + 5 (a7 M) 4 37 (p) Aw“—”) :
k=1 k=1
Thus, twistorial wave function of infinite spin particle W(¢) describes infinite number of
massless states 1(¢TK) whose helicities A = f(c TP k), —o00 < k < oo are equal to integer (for
integer ¢) or half-integer (for half-integer c) values and run from —oco to +oo.



Helicity content of the field W(®) is the same for all integer or all half-integer values c. We
can consider the twistorial field \U(O)(ﬂ, 7 p, p) to describe infinite integer spin representation
and W(=1/2) (7 7; p, 5) to describe infinite half-integer spin representation.

Twistor fields produce space-time fields by using the Penrose integral transform

The Wigner-Bargmann fields on the space with auxiliary 4-vector coordinate y*% are
obtained by the integral transformation

o(xiy) = / d*rd4peiTaTaX™® gi(Tafa +£aPaly ™ wO(r 5 ¢ 5),

where we perform integration over the twistor space with the integration measures

d4r = % dn® Admo AdTE Ad7g, d4p = % dp® Adpg A dﬁB AdpP. Due to the twistor
equations of motion for twistor field WO (7, 7; p, p), the fields ®(x;y) satisfies automatically
the Wigner-Bargmann equations.

Other space-time systems, but with additional spinor variables, can be derived in this way.



Twistor formulation of massive particle

To resolve the time-like 4-momentum, it is necessary to change the twistor relation
Paé = Ta Ta, used earlier for the light-like momenta.

The only way to solve this problem is to replace the one-twistor formalism with two-twistor

formalism. That is, to describe massive states, we use two spinors
i = iyx A
Ta s 71'o'zi:(ﬂ-oz) ) i=12,

that define halves of two twistors

Z, = <7r'a,wa'>, ZiA = ( _Uj_;di ) .

Note: it is convenient to combine two twistors into one SU(2) spinor with SU(2)-spinor
index i = 1,2, since in the standard momentum frame (in the rest frame) of massive particle
the small group is SU(2) = SO(3).

Then the momentum of massive particle is represented in the twistor-like form

— 0 =
Paa = To Téi -

But then we get the following corollary:
when describing massive particle with mass m determined by the mass condition p? =m?,
used two spinors 7}, must be limited by the constraint

| mail? = m? or stronger constraints ¥ =m, Tei® =m.

These conditions violate the conformal invariance.

Consider first the twistor formulation of the massive particle with spin.
The corresponding space-time formulation will be considered later.



In contrast to the massless case where the twistor description of the arbitrary helicity
particle can be achieved by using only one twistor, in the massive case it is necessary to use
some spinning variables in addition to the twistor ones.

Additional spin variables should give the description of the nonrelativistic integer or
half-integer spin in in the rest frame. Therefore, we will use commuting spinors &' as spin
variables.

As a result, massive spinning particle in the twistor formulatlon is described by the variables
Toy Tai=(me)* W, Di":(w"'), g, 7(5)*‘ i=12,
which satisfy the Poisson brackets {&o® ,T(J [N= 66 I {w® ,WBJ}P = 66 s {e, SJ}P = - -,

and is subjected to the set of the first class constraints

h = %7, —-m=0, h = 7,79 —m=~0,
Da = (ca);' [IE (‘Dia“iy *ﬁdiwdi> +fi€q ~0
S = §& —s=~0.

The constraints Da ~ 0 form SU(2) algebra with respect to the Poisson brackets.
The constraints S &~ 0 contained the constant S defines the particle spin.

The mass constraints are also presented in the form
h = z\I"BZg —m~~0, h = ZMapZB' —m=~o0,

where SU(2, 2)-noninvariant so-called infinity twistors (asymptotic twistors)

A8 _ B 0 Lam — 0 0
- 0 0 ) AB — 0 edﬁ 0

are used.



Twistor fields of massive particles

Let us find twistor massive fields by canonical quantization of twistor massive particle.

We impose gauge-fixing conditions for the constraints h ~ 0, h ~ 0. After the introduction of
the Dirac brackets, these constraints are satisfied in the strong sense, that is, conditions

7Tai7'('ai:m, ﬁ'diﬁ'di:m
hold. These conditions state that determinant of the matrix M = m~1/2||7l || is equal to

one, i.e. M1 € SL(2,C).

In w-representations, twistor massive wave function W(x,7) is defined by the equations

(S—J)W:(%a*iai—J)\U:Q

DaV = (Da+Aa)W =0, a=1,23,
) 9 9 ) ) )
— 1|4 g = — 1 g+i Ja:
where Da=3 [ﬂa(aa). 87er o7 (oa)i ﬂ'aj], Aa =5 a " (0a)ily .

The operators a; = V2§ and atl = ﬁé‘ are usual annihilation and creation operators of
two-dimensional oscillator; they are defined by the commutators [a;,atl] = 6{.
The wave function W is taken in filling numbers space of these operators.

Constant J is classical constant S renormalized by ordering constants.



By means direct calculations we obtain that square of Pauli-Lubanski vector takes the form
WWo W = —m?DaDaV .

Since the condition DaW = (Da — Aa)¥ holds and using Aafa = § atiaj(3atla +1), we
obtain
W "Wh¥ = —m2J(J + 1),

i.e. we have massive particle with fixed spin J in the spectrum of this model.

The operators Aa form su(2)-algebra which realized by two oscillators a;, at/, i = 1, 2.

Let integer nonnegative numbers n; and n, are corresponding filling numbers
i.e. ny and n, are the eigenvalues of operators atla; and at2a,.

The constraints (S —J) W = 0 gives us that %(nl +ny) =J.

Then the number %(nl —nz) =M takes (2J 4+ 1) values M = -J,—-J +1,...,J —1,J and
twistor field is (2J + 1)-component field Wy (m, 7).

By definition, this field satisfies

AWy =MWy, AcWy = (AL £id) Wy = VE FM)T EM + D)Wy, .
From (Da + Aa) ¥V = 0 we have

D3Vy = —MWy, DiVy = (D1 D)Wy = —/(@FM)J M+ L)Wy, .



The operators Da are generators of SU(2)-transformations, acting on index i of 7, and last
equations state that the wave function Wy (7, 7) is defined up to the transformations acting
on index M: i o

W (') = Dy (MW (r), 7 =hix,, heSL(20).

Here D}, is the matrix of SU(2)-transformations of weight J.

Thus twistor wave function of massive spinning particle is defined on the homogeneous space
SL(2,C)/SU(2).

In the form of the SU(2)-indices i,j,... = 1,2, the index M is collective index M = (i .. .iz3).
Then the wave function (twistor field of massive spinning particle) is
Wi, iy (0, 7)),
which is completely symmetric with respect to SU(2)-indices:
Vi =V

hoodtx i1..0py) -



Twistor transform for massive fields

The relation of the twistor fields with the usual space-time spin-tensor fields is established by
means of the integral transformation in the following way. One constructs SU(2)-invariant
expressions by contracting the twistor fields Wj ., (7, 7) with twistor spinors ﬂgl . WZ‘]ZJ.

After integration with invariant measure d37 on the coset space SL(2,C)/SU(2) with the
standard Fourier exponent exp(ix™pm) where pm = pPoadt® we obtain space-time fields

_ d3 imem i1 i23 =
¢o¢1...0¢23 (X) = e Ty ~~~7ra2_]wi1.4.i2\] (ﬂ', 71').

These fields are totally symmetric in spinor indices ®a;...ap; = P(ay...a,,) and give us
standard (2J + 1)-component field description of massive spin J. Due to the presence of the
exponent in the integrand, ®a,...qay, satisfies automatically massive Klein-Gordon equation

(6"0n + m?) ®ay..ay (x) = 0.

Similarly, but with using the spinor 7%/, twistor field produces the field with dotted indices:
®--62 (x) = / d3relX"Pmzda  zéwiiy L (r 7).
It is easy to show that the fields ®q;...a,, (X) and [OLEREEPA (x) are related by
the (2J + 1)-order Weinberg equations
(90,072 5 ) (i, 072 YOPLB21 (X) = Doy gy (X) -

B1 20823

Coordinate twistor transformation and corresponding space-time description of massive spin
particle will be presented after consideration of twistor description of the superparticle.



Superparticle

Twistor constructions for a massless superparticle of zero superspin largely repeat the
structural elements of an ordinary massless particle. New details that will arise are related
to the twistor realization of supertranslations and superconformal boosts, which is reflected
by the presence of additional Grassmann superspace coordinates.

Let us first describe superparticle model in which the target space is described by the
superspace coordinates and whose quantization produces the superfield in the spectrum.

Note: We will consider only non-extended A= 1 supersymmetry.

Superspace formulation of massless superparticle

The action of the superparticle in the first-order formalism is similar to the action of bosonic
massless particle:

super 3 >
SO Pel = /dT (padwaa - epa@P““) s

where instead of X4 is supertranslation-invariant vector
WY = XYY G0N 1 ih*0 .

The Weyl spinor 0%, % = (0%)* is Grassmannian variable ((6%)? = 0 Vo),
which, together with the usual coordinate X*%, parameterizes the trajectory of the
superparticle in the superspace.



This supersymmetric system is invariant under the following global transformations:

@ Poincaré transformations dx%® = a%o + Xdﬁlgo‘ +I_"15XB“ ,

80% = 0°15%,  Spas = —la’pPpa — IOQL:;'B& ;
o dilatations x4 = x4, §0% = 2¢O, OPag = —CPaa, O€ = 2C€;
@ conformal boosts x4 = xPk 5 xPe — 49205 09k, 10, 5% = 0°K 55 (xP* +1076°);
3Pac = —(Popksa +KagPpa)X®? —2i(p, skpa — K, 5Ppa)070% , e = 2(x"Pk,z)e,
@ chiral transformations of spinors  §0% = —%iqb@o‘ ;
@ supertranslations  0x%® = —(f%e* — €40%), 5O = €2,
@ superconformal boosts X% = 2i(9_d7_]BXB& - x‘mngﬂa) — 40_"190‘(95775 + 'ﬁBG_B),
0% = —4i0% 0P ng+74 (X" +10°0%), 6pas = 4i(na0°Psa—p,30°7a), se= —4ie0nz+c.c.
In supertranslation and superconformal boost transformations, the transformation

parameters € and 7, are Grassmann Weyl spinors.

The generators of these transformations (actually, Noether charges) form the SU(2,2|1)
superconformal algebra. In addition to the usual inhomogeneous translations and nonlinear
conformal boosts, superconformal transformations include inhomogeneous supertranslations
and non-linear superconformal boosts.

Below, by introducing supertwistors, the superconformal algebra SU(2,2|1) will be realized
by homogeneous linear transformations
(new (anti-)commutators of this superalgebra will be presented there).



Let us briefly describe the quantization of this superparticle model and the form of the
obtained superfield.

Phase space X™, Pm, 0%, Pa, 0%, P with Poisson brackets {Xd“,pBB}P = 6;3"6;3:",
{60%,ps}s = 6%, {09, E)B}P = ég is limited by the constraints

pwdpad ~0; Do = Pa + iprydé(.\~ ~ 07 5(5/ = F_)a + ieap(wif ~0.

Since the nonzero Poisson brackets of the constraints are {Dq, Dd}p = 2ip,s and matrix
Paq is singular for massless particle, the constraint p? ~ 0 is first class constraint, whereas
odd constraints D, &~ 0, D; &~ 0 are the mixture of 2 first class constraints and 2 second
class ones.

Not independent first class constraints are the constraints
F(i :p(iaDwNO IEa:D_p(ia ~0
- =\ = Ya ==\

which generate x-symmetry 60% = Rgp®®, 60% = p“r, with local odd parameter rq (7).



With Gupta-Bleuler quantization, when all first class constraints and half, commuting in
weak sense, second class ones are putted on the wave function, independent covariant
equations for the wave function ®(x,6,0) have the form

Ob=0, Dsg®=0, 09°Da®=0,
where Do = i(a —10040%), Dg =i(dg —10%04a) are covariant derivatives.

When determining the complete system of equations for the wave function, it is necessary to
require the preservation of symmetries in passing to quantum theory, in addition to standard
procedure for the quantum realization of classical constraints. Under superconformal boosts,
the transformation of the operator in one of the equations has the form

5 (0%%Dy) = 4i(70) 09Dy + in*DaD® — i79D%Dy — 210 8% .
That is, we obtain the necessary transformation of the wave function §® = —2i(fn) ®, as
well as the requirement to impose additional condition

DDa® =0.

The solution of the equation Dg ® = 0 is the chiral superfield
& = d(x.,0) = A(x.) + 0%Pa(x,) + 02B(x.) .
living on the chiral superspace with the supercoordinates
XFE =Xx** 40070, 0 .
The remaining equations vanish the highest component in the B = 0 expansion and lead to
the Klein-Gordon and Dirac equations for complex scalar and spinor fields. That is, the

spectrum of this superparticle model is described by massless supermultiplet with zero
superhelicity, which includes massless particles of 0 and 1/2 helicities.



Supertwistor formulation solves the main problem: superconformal transformations in it are
realized by linear transformations. Moreover, reformulation of superparticle dynamics in
terms of supertwistors leads to its description in physical variables, with resolution of local

symmetries, including x-invariance.

Supertwistor formulation of superparticle
By analogy with the purely bosonic case, supertwistors are defined as spinors of the
superconformal group SU(2,2|1). Among the five components of the supertwistor
ZA:(ZA;X):(WQ,LU&;X), A:1775
four c-numerical components are formed by ordinary twistor — SU(2, 2)-spinor Zx.
The fifth Grassmann component of the supertwistor is complex Lorentz-scalar

X, x=0)", (x)?>=xx=0.

Conjugate supertwistor has the form Z4 = (Z#;2i%) = (7%, —@4 - 2iX) -
It can be written using the complex conjugate twistor

ZA= 2,684, Zp=(750% X)
AB gAB 0 -
after using SU(2, 2|1)-invariant tensor G~ = ( 0 2 ) , where g”B is SU(2, 2)-inv. tensor.

SU(2, 2|1)-invariant twistor norm is defined by

A= %Z_AZ_A = %EBGBAZA = %(w”ﬂ'a - 77‘(-\12)‘5’) — XX -



SU(2, 2) conformal transformations act only on the bosonic components of the supertwistor
and were defined above.

Supertranslations and superconformal boosts are realized linearly in the supertwistor space
and mix the bosonic and fermionic components of the supertwistor

O = 2inax, Sw® = 2iety, OX = €“ o — Gaw® .
Chiral transformations of the supertwistor components are
oo = 3 P Ta, dw = 5 pw®, Ix =lidx.

Introducing (graded) symplectic structure into supertwistor space by the previously used
canonical Poisson brackets for bosonic components and {x, X}, = '§ for Grassmann
components, we find the following expressions for generators of

@ supertranslation Qo = 2i X7a s Qa = —2i XTa ,
@ superconformal boosts S® =2i @, S¢ = _2iyw?,
@ chiral transformations A= iz(i:)aﬂ'a — Taw®) — 4xx.

Previously defined generators Pad,Kda,Laﬁ,[dﬁ, together with generators
Q0,Q4,5%,5% A form superconformal algebra SU(2,2|1). In addition to SU(2,2) subalgebra

considered above, it has nonzero Poisson brackets between the generators Q and S:
{Qa,Qalp = 2IPns, {S%,5%}, =2iK® | {Qa,S?}, = —2iLa” —i(D —iA)d.” and c.c.

That is, the closure of fermionic symmetries generates full superalgebra SU(2,2|1).
Other non-zero brackets of fermion generators are

{QayKﬁB}p:ZI ég 567 {Sa7pﬁﬁ}P:2l 5% 657 {QCUA}P:ZI Q&7 {Sa7A}P:2| She



Supertwistor coordinate transform

The relationship between supertwistor variables and superspace variables is determined by
supersymmetric generalization of the Penrose transform

Pas = TaTa
w :Xa”ﬂ'a+i0(yx, o :,f—rdxaa 7i>29(1;
_ po S _ =.p%
X=0Ta, R =7ab%.

@ With such link of the supercoordinates of the two formulations, superconformal
symmetries of supertwistor formulation go over into the corresponding symmetries of
superspace approach. In addition, simple expressions for superconformal generators in
supertwistor approach can easily be used to find expressions for them in space-time
approach.

@ As in the case of non-supersymmetric particle, the supertwistor transform includes the
Cartan resolution of the lightlike momentum vector.

@ Supersymmetric generalization of incidence conditions is “twistor shift” of spinor w® by
the term depending on Grassmann variables x. Note that in these incidence conditions,
in fact, there is complex vector coordinate of the chiral superspace X, :

W = Xf‘aﬂa .

@ Grassmann supertwistor variable x, which is defined as A-projection of 6-spinor, is
invariant under k-transformation: §x = §0%\o = RaP*® Ao = 0. That is, supertwistor
description uses only one (complex) Grassmann degree of freedom, which is physical
degree of freedom covariantly extracted from the space-time system. Therefore, there is
no k-invariance now in twistor twistor formulation. This, in a certain slang, can be
defined as the resolution of k-symmetries in the transition to supertwistors.



Supertwistor superparticle

Supertwistor transformations make it possible to reformulate the superparticle system in
terms of supertwistor variables. As a result, we obtain the supertwistor action of the
massless superparticle
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That is, in the supertwistor formulation, the superparticle action is formally obtained from
the non-supersymmetric particle action, in which the change Zy — Z 4 is made.

In the supertwistor components, the action has the form
Stsvtljper = /‘dT (‘ba“a + Faw® + i(;(X = 5% = M\> )
where £(7) is Lagrange multiplier for the constraint
A= %ZAZA = iE(wo‘ﬂa - ﬁdﬁd) —xx~0.
This constraint is direct consequence of the expressions for twistor transform.
The supertwistor norm A coincides with the superhelicity of massless superparticle

described by this supertwistor. Thus, the fundamental twistor transformations actually
correspond to superparticle whose superhelicity is equal to zero.



Twistor superfield

Twistor superfield is found by quantizing twistor superparticle, by analogy with obtaining
twistor field.

The Poisson brackets yield the (anti)commutators of basic operators
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We consider the representation, in which the operators 2A are diagonal and ZA are realized
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Supertwistor wave function W(Z) = W(Z, x) = V(7,w, x) is defined by the quantum

counterpart of the classical supertwistor constraint:

by differentiation operators g = —i
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Thus, similarly to non-supersymmetric case, the twistor superfield of the system under
consideration is the holomorphic homogeneous function of the homogeneity degree (—2):

v=d(az)=a2w(-3(2), acC.
In its expansion in respect to the Grassmann variable x
V22, x) = wE2(2) + w3 (2)

the fields W(~2)(Z) and W(=3)(Z) describe massless particles with helicities 0 and 1/2
respectively.



Supertwistor superfield transform

Obtained twistor superfield produces the usual superspace-defined superfield through
integral transformation, which is a supersymmetric generalization of Penrose field transform.

Similar to purely bosonic case, some of the variables in the twistor superfield
U(2)=W(Z,x) = (7r w, x) are resolved by using the incidence conditions:
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The subsequent contour integral over A produces the superfield
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The superfield obtained in this way is automatically chiral Dy ® = 0 and automatically
satisfies the mass shell equations O® =0, 94“Dy ® = 0, D*Dy ® = 0. That is, the
supertwistor formalism give us the off-shell description of chiral supermultiplets.

After describing the twistor formulation of the superparticle, let us return to systems that
describe massless/massive particles with nonzero helicity/spin.

We have so far left unanswered the question of the space-time formulation of such systems.



Modified twistor formulation of massless particle with nonzero helicity

In the twistor program of zero-helicity massless particle, its space-time description and its
link through twistor Penrose transformations with twistor formulation are well defined. For
particles with nonzero helicity, twistor formulation is also well defined. But two important
questions arise regarding the other two elements of the twistor program: what kind of
twistor transformations for non-zero helicity and what space-time system corresponds to the
twistor one in this case?

To answer these two questions, we modify the twistor formulation and use the
construction that has analogies with the case of the considered superparticle.

Let us construct dynamical system that is equivalent to the twistor formulation of
spinning particle and is similar to the twistor model of superparticle.

As such a system, we consider the system described by the action
st = [dr [§ @2 - 222 + i - 8) -1 (42°20 - €6) —v (€€ -9)] -

In addition to the Penrose twistor ZA, among the dynamical variables of this system there is

complex c-number scalar £, = (£),
whose components are canonically self conjugate: due to the kinetic term for £ in action,
their canonical brackets are 168 =50

The action contains additional constraint

E€—s~0.
This constraint is the first class and gauges away exactly the two degrees of freedom present
in €. After eliminating the variable £, we obtain the twistor system of the massless spin
particle considered earlier.



Twistor transform in case of nonzero helicities

Starting from the modified formulation of the twistor particle of non-zero helicity, we can
restore both the twistor transformations and the space-time formulation, if we use analogies
with the superparticle formulation.

By analogy with supertwistor transformations for superparticles, twistor transformations for
massless particle of non-zero helicity, connecting the twistor formulation with the
corresponding space-time one, are defined as follows:
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In these expressions, the Weyl spinor ¢, (& = (¢®)* arises in a natural way, which belongs

to the space-time description. But now, unlike to the supercase, spinor (¢ is commuting
c-numeric. It is intended to describe the spinning degrees of freedom of relativistic particle.

Modified twistor transformations solve the main problem, which is to describe the twistor of
non-zero norm. Namely, these relations resolve the constraint

SZRZp — €€~ 0,

present in the action, which is equivalent at £€ ~ s to the definition of the (nonzero for
s # 0) twistor norm.



Space-time formulation of massless spinning particle

Applying twistor transformations to the twistor system of massless spinning particle
transforms it into equivalent system described by the space-time coordinate X“® and
commuting Weyl spinor (. The resulting action looks like

S5t = [ A7 [Paciv® - epaap®d — v(¢Pasl® —9)] .
where the kinetic term is determined by the quantity
Wae — xdo _jFada 4 izdca
and e(7) and v(7) are the Lagrange multipliers.

This system is like the superparticle. But instead of the Grassmann spinor 6%, the
commuting spinor (% is used here. Also, there is additional term in action fixing the helicity.

In the Hamiltonian formalism, this system is described by 3 first class constraints and 2
second class constraints.

After quantization the system is described by the wave function

¢(X7 C) = 4041 UC o Ca25¢a1...a25(x) )

which links to twistor field by the field twistor transform presented above.



Twistor transform in massive case

The resulting space-time formulation of massless spinning particle has a natural
generalization to massive case. When generalizing, it is necessary to make a natural
replacement of the mass constraint p? — (p? — m?). Therefore, the action of massive spin-s
particle, in which spin degrees of freedom are described by the Weyl spinor (%, has the form

Sﬁr{;t' = /‘dT {pa(iwdw —e (padpad - m2> -V (C”’padc_d — S)} s

where W& = x&a _j¢&fe 4 jcéca In the Hamiltonian formalism, this system is described
by 1 first class constraint and 4 second class ones. and after quantization the system is
described by the wave function ®(x,{) = (*1...(*5 Py, . .a,(X), where (2J + 1)-component
field ®a;...aps(X) = P(qy...am) (X) satisfies (P, ...ap (X) = 0 and describes massive spin J.

This space-time formulation is interconnected with the previously considered twistor
formulation of massive spinning particle through twistor transform:
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Here there are used 2 twistors Z) = (7! ,w™'), as was the case earlier in the massive case.
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The SU(2)-spinor &', used as the spin degrees of freedom of massive spinning particle, has
now arisen in a very natural way.

Thus, we have described all the twistor designs planned in these lectures.
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Some issues not discussed (due to lack of time)

Twistor formulation of strings, membranes,...
Supertwistors in superstring theories.

Twistors in diverse space-time dimensions.

Twistors and helicity spinors.

Twistors in calculating S-matrix and MHV formalizm.

Momentum twistors.



Thank you very much for your attention !
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