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These letures are devoted to brief disussion of the main positions of the twistor theory.

Twistor formalism disovered by R.Penrose in 1967 is e�etive in the study of dynamial

systems possessing onformal symmetries. But their use is not limited to suh theories.

Twistors are used

in gravity;

in the onstrution of new supersymmetri models;

in the higher spin (HS) theory;

in the alulation of sattering amplitudes;

and in other areas of theoretial physis.

Twistors give us additional tools to explore existing theories and also provide alternative

desription of these theories in addition to the widely used spae-time formalism.

Here we will onsider the use of twistors to desribe irreduible representations of the

Poinar�e group in the 4D spae-time, that is, in elementary partile physis.
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(see arXiv and inSPIRES).



Plan

Leture 1:

Conformal symmetry and twistors. Twistor spae.

Penrose twistor transform and twistor formulation of massless partiles.

Field twistor transform.

Twistorial desription of higher spin partile.

Leture 2:

Bitwistor formulation of massive partiles and massless in�nite spin

partiles.

Conformal supersymmetry and supertwistors.

Twistor desription of massless superpartiles.

Twistor transform for spinning partiles.



Leture 1

Conformal symmetry and twistors. Twistor spae.

Penrose twistor transform and twistor formulation of massless partiles.

Field twistor transform.

Twistorial desription of higher spin partile.



Conformal symmetry

The appearane of twistors and their wide appliation is assoiated with the study of

systems with onformal symmetry.

Let us �rst onsider massless partile of zero heliity as the simplest illustrative, but, at the

same time, onrete and physially meaningful example.

Massless partile with zero heliity plays an important role in the subjet of our study.

In addition to its relative simpliity, massless partile of zero heliity has all the neessary

formulations (purely spae-time, purely twistor and mixed ones) and interrelations between

them (Penrose twistor transformations), both at the lassial (mehanial) and at the

primary-quantized (�eld) level. This auses a onstant referene to it when onstruting

more omplex systems, suh as spinning (super)partile, higher spin (super)partiles or

(super)strings, where the full twistor piture has not yet been established.

In spae-time desription the ation of massless zero-heliity (spinless) partile looks like

(||ηmk || = diag(+1,−1,−1,−1), m = 0, 1, 2, 3)

Ss.−t.
0 =

∫

dτ
(

pm ẋm − 1

2
ep2
)

⇒
∫

dτ
1

2e
ẋm ẋm

where xm(τ) and pm(τ) are the oordinate and momentum of the partile, {xm, pn}P = δm
n ;

τ is evolution parameter. The variable e(τ) is Lagrange multiplier for the mass onstraint

p2 ≡ pmpm ≈ 0 .
When quantized, this onstraint produes the massless Klein-Gordon equation

�Φ(x) ≡ ∂m∂mΦ(x) = 0 .



The ation is invariant under transformations (am
, ℓmn

, km, c are the onstant parameters)

δxm = am + ℓmnxn + cxm + 2(k · x)xm − x2km ,

δpm = ℓmnpn − cpm + 2(k · p)xm − 2(k · x)pm − 2(x · p)km ,

δe = 2ce + 4(k · x)e ,

whose generators (the Noether harges)

Pm = pm , Mmn = xmpn − xnpm , D = xmpm , Km = 2(x · p)xm − x2pm

form the algebra with respet to Poisson brakets {xm , pn}P = δm
n :

{Mmn,Mlk}P = ηml Mnk − ηmk Mnl − (m ↔ n) , {Mmn ,Pl}P = ηml Pn − (m ↔ n) ,

{Pm,Kn}P = 2Mmn − 2ηmnD , {Mmn ,Kl}P = ηml Kn − (m ↔ n) ,

{Pm,D}P = −Pm , {Km,D}P = Km .

This algebra is alled the onformal algebra.

This onformal algebra has another representation, more onvenient for our subjet.

After olletion 15 generators into antisymmetri tensor JMN = −JNM, M = (1′, 0′;m),

Jmn = Mmn , Jm0′ =
1
2 (Pm + Km) , Jm1′ = 1

2 (Pm − Km) , J0′1′ = D ,

the onformal algebra takes the form

{JMN , JKL}P = ηMKJNL − ηMLJNK − (M ↔ N ) ,

where ηMN = ηNM has the following omponents: ηmn and ηm0′ = ηm1′ = η0′1′ = 0,
η0′0′ = −η1′1′ = +1, and, in fat, is the metri tensor of the 6-dimensional spaes with the

signature (+ +−−−−).



This algebra is nothing but the so(2, 4) algebra. That is, onformal symmetry is desribed

by the group SO(2, 4), whih is the symmetry group of 6-dimensional spae with two times.

Poinar�e transformations, inluding Lorentz transformations (parameters ℓmn
) and

Poinar�e translations (parameters am
) are realized by linear transformations. Aounting

this symmetry is well known: the use of Lorentz-ovariant quantities and the presene of

oordinates xm
outside the �elds only through the derivative ∂m in the �eld equations.

But onformal boosts are realized by nonlinear transformations. So, under onformal boosts

δ� = −4(kx)�+ 4km∂m ,

Therefore, the onformal invariane of even the Klein-Gordon equation implies the following

transformation of the massless salar �eld

δΦ = −2(kx) Φ .

Already onsideration of this simple system suggests to us the desire to have a formulation

in whih onformal SO(2, 4) transformations are realized by linear transformations. This

beomes more relevant when onsidering more omplex physial systems.

One way to the linear realization of onformal SO(2, 4) symmetry is onsideration of the

spaes (oordinate or �eld spaes) with SO(2, 4)-tensors.

But to be able to desribe all representations, inluding spinor representations, it is

natural to onsider the orresponding spinor group, homomorphi to the SO(2, 4) group,
SO(2, 4) ∼= Spin(2, 4) ∼= SU(2, 2) (an analogue of SL(2,C) for SO(1, 3)):

G ∈ SU(2, 2) : det G = 1 , G+gG = g , g = diag(12,−12) .

Then all onformal transformations (linear homogeneous, inhomogeneous and nonlinear) are

realized as linear SU(2, 2)-spinor transformations of the orresponding spae.

The solution of this problem led R. Penrose to the twistor theory.



4D spinor notations used in these letures

The spae-time metri is ηmn = diag(+1,−1,−1,−1).

Totally antisymmetri tensor εmnkl has the omponent ε0123 = −1.

Four-omponent Dira spinor Ψ is represented by two Weyl spinors Ψ =

(

ψα

χ̄α̇

)

.

Two-omponent Weyl spinor indies are raised and lowered by ǫαβ , ǫ
αβ

, ǫα̇β̇ , ǫ
α̇β̇

with

nonvanishing omponents ǫ12 = −ǫ21 = ǫ21 = −ǫ12 = 1: ψα = ǫαβψ
β
, ψα = ǫαβψβ , et.

The Dira matries γm obey the Cli�ord algebra {γm, γn} = 2ηmn .

In the Weyl representation they have the form γm =

(

0 (σm)αβ̇

(σ̃m)α̇β 0

)

.

Relativisti σ-matries are (σm)αβ̇ = (12;σ1, σ2, σ3)αβ̇ , where σ1, σ2, σ3 are the Pauli

matries. The matries (σ̃m)α̇β = ǫα̇δ̇ǫβγ(σm)γδ̇ = (12;−σ1,−σ2,−σ3)
α̇β

satisfy

σm
αγ̇ σ̃

n γ̇β + σm
αγ̇ σ̃

n γ̇β = 2 ηmnδβα , σm
αβ̇
σ̃β̇α

n = 2 δm
n .

The link between Minkowski four-vetors and spinorial quantities is given by

Aαβ̇ = 1√
2

Am(σm)αβ̇ , Aα̇β = 1√
2

Am(σ̃m)α̇β
, Am = 1√

2
Aαβ̇(σ̃m)β̇α

, so that AmBm = Aαβ̇Bβ̇α
.

The σ-matries with two vetor indies are de�ned by (σmn)αβ = − 1
4 (σm σ̃n − σnσ̃m)αβ

,

(σ̃mn)α̇β̇ = − 1
4 (σ̃mσn − σ̃nσm)α̇β̇ and satisfy the identities εmnklσkl = −2i σmn

,

εmnkl σ̃kl = 2i σ̃mn
. We represent the antisymmetri seond rank vetor tensor in the form

X[mn] = (σmn)
αβX(αβ) − (σ̃mn)

α̇β̇ X̄(α̇β̇) .



Twistor spae

In twistor theory, onformally invariant systems are formulated in the spae parameterized

by ommuting SU(2, 2)-spinor ZA, A = 1, ...,4. As we will see below, this spae atually
replaes the usual phase spae formed by 4-vetors xm

and pm.

To obtain results in terms of ordinary 4D spin-tensor �elds, it is onvenient to onsider

the representation, in whih the SU(2, 2)-spinor

ZA = (πα, ω
α̇) , ZA → GA

B ZA , G ∈ SU(2, 2)

is formed from two 4D Weyl spinors of opposite hirality πα, ωα̇
(α = 1, 2, α̇ = 1, 2).

Following R.Penrose, we use spinor ωα̇
, whih has dotted index, but without `bar'.

We point out that spinors are c-number.

Conjugate 4D spinors π̄α̇ = (πα)∗, ω̄α = (ωα̇)∗ form the SU(2, 2)-spinor Z̄Ȧ = (π̄α̇, ω̄
α) ,

whih transforms aording to the omplex onjugate representation.

Using SU(2, 2)-invariant tensors gAḂ
, gAḂ , whih in the hosen representation have the form

gȦB =

(

0 −δα̇β̇

δαβ 0

)

, gAḂ =

(

0 δαβ

−δα̇β̇ 0

)

, gAĊgĊB = δB
A , gȦCgCḂ = δḂ

Ȧ
,

(

(G+)Ȧ
ḂgḂBGB

A = gȦA ,G ∈ SU(2, 2)
)

spinor Z̄Ȧ de�nes the SU(2, 2)-spinor

Z̄ A = Z̄ḂgḂA = (ω̄α,−π̄α̇) ,

whih transforms using the inverse SU(2, 2)-matrix: Z̄ A → Z̄ B (G−1)B
A ,.



Contration of the spinor ZA and its onjugate Z̄ A
de�nes the Hermitian form

Λ ≡ i
2 Z̄ AZA = i

2 Z̄ḂgḂAZA = i
2 (ω̄απα − π̄α̇ω

α̇)

whih is SU(2, 2)-invariant and is the norm of the SU(2, 2)-spinor ZA.

By de�nition,

the twistor spae T is the spinor spae (spae C4
) of the onformal group SU(2, 2) with

Hermitian form Λ.

The SU(2, 2)-spinors ZA, de�ned on this spae, are alled twistors.

Depending on the value of the Hermitian form, the following subsets of the twistor spae are

distinguished:

the spae of positive twistors T+, when Λ > 0;

the spae of negative twistors T−, when Λ < 0;

the spae of isotropi twistors T0, when Λ = 0.

Physial meaning of the twistor norm Λ will be given below.

Comment: In some papers, the imaginary unit i is used as additional fator in the de�nition

of the SU(2, 2)-metri gȦB
, and then this fator is absent in the de�nition of the twistor

norm Λ. We use onventions where suh a fator will be used less in further expressions.



In�nitesimal onformal transformations are realized in twistor spae by linear

transformations:

δZA = LA
BZB , gȦBLB

A = (L+)Ȧ
ḂgḂA ,

or in spinor omponents

δπα = −ℓαβπβ − 1
2 c πα − 2kαβ̇ω

β̇ , δωα̇ = ℓ̄α̇β̇ω
β̇ + 1

2 c ωα̇ + aα̇βπβ .

The generators of these transformations are found after giving sympleti struture in the

twistor spae. De�ning Poisson brakets in twistor spae

{Z̄ A, ZB}P = δA
B ⇒ {ω̄α, πβ}P = δαβ , {ωα̇, π̄β̇}P = δα̇

β̇
,

we get that onformal transformations are generated by the following bilinear ombinations

of twistor omponents

Pαα̇ = παπ̄α̇ , K α̇α = ωα̇ω̄α , Mαβ = π(αω̄β) , M̄α̇β̇ = π̄(α̇ωβ̇) , D = 1
2 (ω̄απα+ π̄α̇ω

α̇) .

The generators form onformal algebra with respet to the Poisson twistor brakets and

preserve the twistor norm. In terms of 4-omponent twistors, onformal generators are

represented as traeless produt of the twistor and its onjugate one:

Z̄ AZB − 1
4 δ

A
B Z̄ CZC .

Having linear realization of onformal symmetry in terms of twistor variables, we an

�nd twistor formulation of massless partile and its link with spae-time desription.

��������������

We use the notations Pαα̇ = 1√
2

Pmσm
αα̇, Pm = 1√

2
Pαα̇σ̃

α̇α
m , that is Pm ∼ Pαα̇

and M[mn] = (σmn)αβM(αβ) − (σ̃mn)α̇β̇M̄(α̇β̇).



Penrose twistor transform and twistor formulation of massless partiles

Comparison of generators of onformal symmetry in spae-time and twistor formulations

leads to the following observations:

- four-momentum pm is represented in the form of the produt of the spinor πα and its

onjugate,

- seond twistor spinor ωα̇
is proportional to the produt of four-oordinate xm

and the

spinor πα.

In fat, exat expressions for the link spae-time and twistor variables is determined by the

relations of the Penrose transform:

pαα̇ = παπ̄α̇ , (a)

ωα̇ = xα̇βπβ , ω̄α = π̄β̇x β̇α . (b)

Charateristi features of Penrose transform:

Important point is the Hermitianity of the matrix xα̇β = 1√
2

xmσ̃α̇β
m onstruted by

using the real vetor xm
: (xα̇β)∗ = x β̇α

.

When performing the Penrose transformation, the twistor representation of the

onformal generators goes over into the spae-time representation.

From the onformal transformations of twistors we obtain orresponding

transformations of spae-time variables.

Relations are onsistent with sympleti strutures in twistor and spae-time phase

spaes. Namely, Poisson brakets for pαα̇ and ωα̇
are is the same if they are omputed

with twistor brakets {ω̄α, πβ}P = δαβ or Poisson brakets {xα̇α, pββ̇}P = δαβ δ
α̇
β̇
.



Twistor transform equations have transparent physial and geometri meaning:

The equation (a) implies automatially that the partile four-momentum pαα̇ = παπ̄α̇
is light-like

p2 = pαα̇pαα̇ = 0

due to the automati ful�llment of the identity

παπα = ǫαβπβπα = ǫ[αβ]π(βπα) ≡ 0 ,

whih is valid for ommuting 4D Weyl spinors.

For �xed twistor ZA = (πα, ωα̇), the solution of the equations (b) (inident onditions)
with respet to spae-time oordinate xm

xα̇α = xα̇α
0 + aπαπ̄α̇ , xα̇α

0 = 2ωα̇ω̄α/(πβ ω̄
β + π̄β̇ω

α̇)

ontains an arbitrary real onstant a, whih parameterizes the light-like line (lightray)

in the Minkowski spae with the diretion vetor παπ̄α̇
.



Inident onditions (b) have additional important onsequene: the twistor appearing in

them is isotropi:

Λ = i
2 Z̄ AZA = i

2 (ω̄απα − π̄α̇ω
α̇) = 0 .

This result is ahieved due to the Hermitiity of the matrix xα̇α
in (b). This onstraint

generates loal phase transformations

ZA = (πα, ω
α̇) → eiϕZA = (eiϕπα, eiϕωα̇)

and leaves the twistor transformations invariant.

What is the physial meaning of the twistor norm Λ?

The answer to this question is found after alulating the Pauli-Lubanski vetor

Wm = 1
2 εmnklP

nMkl , Wαα̇ = i
(

Pα
β̇M̄β̇α̇ − Pβ

α̇Mβα

)

.

In the twistor realization of Poinar�e generators, we have

Wαα̇ = ΛPαα̇ .

But as is known from the representation theory of the Poinar�e group, �the proportionality

operator� between the Pauli-Lubanski operator and the energy-momentum operator is

exatly equal to the heliity in ase of massless representations of �xed heliity.

Thus, the norm Λ of the twistor oinides with the heliity of the massless partile whih is

desribed by this twistor.



Thus, twistor transformations link the spae-time and twistor formulations of massless

partile of zero heliity.

In spae-time formulation there is mass onstraint p2 ≈ 0, and the ondition of

equality to zero of heliity Λ = 0 is ful�lled automatially;

In twistor formulation there is the spin (heliity) onstraint Λ ≈ 0 under resolved

massless ondition p2 = 0.

In twistor formulation the ation of massless partile of zero heliity has the form

Stwistor
0 = 1

2

∫

dτ
[

Z̄ AŻA − ˙̄Z AZA − i
2 l Z̄ AZA

]

,

where l(τ) is Lagrange multiplier for twistor onstraint Λ ≈ 0. Up to the total derivative,

this ation in terms of 4D spinors takes the form

Stwistor
0 =

∫

dτ
[

˙̄ωαπα + π̄α̇ω̇
α̇ − i

2 l(ω̄απα − π̄α̇ω
α̇)
]

.

We an hek that the number of physial degrees of freedom is equal to six both in the

spae-time system and in twistor one

(the �rst lass onstraint eliminates two degrees of freedom in the phase spae systems).



Twistor wave funtion

Let us �nd the twistor wave funtion and link it with the salar �eld resulting from

quantization of this model in spae-time formulation.

In the transition to quantum theory, the Poisson brakets go over to the ommutator

[ ˆ̄Z A, ẐB ] = iδA
B : [ˆ̄ωα, π̂β ] = iδαβ , [ω̂α̇, ˆ̄πβ̇ ] = iδα̇

β̇
.

It is onvenient to quantize twistor partile in holomorphi representation (Penrose

representation), when the operators ẐA are diagonal, and

ˆ̄Z A
are realized by di�erentiation

operators

ˆ̄Z A = i
∂

∂ZA
or in spinor omponents

ˆ̄πα̇ = −i
∂

∂ωα̇
, ˆ̄ωα = i

∂

∂πα
.

In this holomorphi representation twistor wave funtion

Ψ(Z ) = Ψ(π, ω)

satis�es the equation

Λ̂Ψ(Z ) = 0 ,

whih is quantum ounterpart of the lassial twistor onstraint Λ ≈ 0.



Carrying out the Weyl ordering in the heliity operator

Λ = i
2 Z̄ AZA → Λ̂ = i

4 (ˆ̄Z AẐA + ẐA
ˆ̄Z A) = i

2 ẐA
ˆ̄Z A − 1 = − 1

2 ZA
∂

∂ZA
− 1 ,

we obtain that the equation for the twistor wave funtion has the form

1
2 ZA

∂

∂ZA
Ψ = −Ψ (∗)

or, in writing through the spinor omponents of the twistor,

1
2 (πα

∂

∂πα
+ ωα̇ ∂

∂ωα̇
)Ψ = −Ψ .

Thus, the twistor wave funtion of the system under onsideration is the holomorphi

homogeneous funtion of the homogeneity degree (−2):

Ψ(−2)(αZ ) = α−2Ψ(−2)(Z ) , (∗∗)
where α is an arbitrary omplex number.

Remark.

Equation (∗) is equivalent to the equation (∗∗):
Ating the operator α ∂

∂α
on the left and right sides of the equation (∗∗) and after that

putting the value α = 1, we obtain the equation (∗).



Field twistor transform

In Penrose twistor approah, the usual spae-time �eld is obtained from the twistor �eld by

means of the Penrose twistor transform for the �elds. It is onstruted as follows.

As �rst step, the spinor ω in twistor �eld is resolved by using the inidene ondition

Ψ(−2)(Z )
∣

∣

∣

ωα̇=xα̇απα

= Ψ(−2)(πα, xα̇απα) .

Due to the homogeneity of twistor �eld, this funtion is atually de�ned on the omplex

projetive spae CP1
and depends e�etively on one omplex variable if we take into aount

homogeneity. For example, from the ratio z ≡ π1/π2 at π2 6= 0.

Integrating the twistor �eld over this variable, we obtain the usual spae-time �eld.

In ovariant notation, independent of the hoie of oordinate on CP1
, the �eld is integrated

with the measure πdπ ≡ παdπα

Φ(x) =
∮

πdπΨ(−2)(πα, xα̇απα) ,

so the integrand is the invariant of the transformation π → απ for the twistor �eld.

In this integral transformation, the integration is arried out along the losed ontour in the

spae of independent omplex variable, enlosing the poles of the twistor �eld Ψ(−2)
.

This integral transformation is the Penrose twistor transform for salar �eld. It is important

that the �eld Φ(x) obtained in this way automatially satis�es the Klein-Gordon equation

∂αα̇∂αα̇Φ(x) = 0 .
This is the result of the dependene of the twistor �eld on xα̇α

only in ombination xα̇απα
with ommuting spinor πα, for whih the identity παπα ≡ 0 holds.



Twistor formulation of massless partile of arbitrary �xed heliity

In the twistor formulation, the partile heliity is determined by the twistor norm.

Consequently, the phase spae of massless partile of heliity s must ontain the onstraint

Λ− s = i
2 Z̄ AZA − s = i

2 (ω̄
απα − π̄α̇ω

α̇)− s ≈ 0 ,

generalizing twistor onstraint for zero-heliity partile.

The ation

Stwistor
s =

∫

dτ
[

1
2 (Z̄ AŻA − ˙̄Z AZA)− l ( i

2 Z̄ AZA − s)
]

,

in whih the onstraint Λ− s ≈ 0 is introdued through the term with the Lagrangian

multiplier l , determines the twistor formulation of massless partile of heliity s.

After quantization, the twistor onstraint Λ− s ≈ 0 generates the equation for the twistor

wave funtion

1
2 ZA

∂

∂ZA
Ψ = −(1 + s)Ψ .

Thus, the twistor �eld of massless heliity partile s is holomorphi homogeneous funtion

of the homogeneity degree (−2 − 2s):

Ψ(−2−2s)(Z ) , Ψ(−2−2s)(αZ ) = α−2−2sΨ(−2−2s)(Z ) .



Field twistor transform for arbitrary heliity

In the ase of non-zero heliity, the spae-time �elds an be obtained from the twistor ones

in the previously disussed way, by using the inidene onditions and the Penrose �eld

transforms:

Φα1...α2s (x) =
∮

(πdπ) πα1 . . . πα2sΨ
(−2−2s)(πα, xα̇απα) .

In ontrast to heliity-zero ase, this integrand ontains 2s omponents of the spinor π for

ompensation of the U(1)-harge of the twistor �eld Ψ(−2−2s)
.

The resulting spae-time �eld is automatially symmetri with respet to the spinor indies

due to the ommutativity of the twistor omponents, Φα1...α2s = Φ(α1...α2s)
, and satis�es

automatially the Dira-Weyl equation

∂β̇α1Φα1...α2s (x) = 0 .

That is, the omplex �eld Φα1...α2s (x) is the �eld strength of massless partile of heliity s.

heliity 1/2: the Dira equation

∂mγ
mΨ(x) = 0 , Ψ =

(

ψα

χ̄β̇

)

⇒ ∂β̇αψα(x) = 0 ;

heliity 1: the Maxwell equation

∂nFmn(x) = 0 , Fmn = −(σmn)α
βFα

β + (σ̃mn)
α̇
β̇Fα̇

β̇ ⇒ ∂γ̇αFαβ(x) = 0 .



Coordinate twistor transform for arbitrary heliity (di�ulties)

The inidene onditions onstruted earlier assume zero heliity of the partile. That is,

although in the twistor desription everything is �ne in desription of nonzero heliity, but

in the spae-time piture it is not: something is missing to desribe the heliity.

Desription of the spinning partile requires onsideration of extended spaes that inlude

additional oordinates. From a physial point of view, these additional oordinates are

intended to desribe the spinning degrees of freedom.

One of the ways to introdue additional oordinates is to onsider instead of the real

Minkowski spae with oordinates (xα̇β)∗ = x β̇α
(xm = (xm)∗) its omplexi�ation with

oordinates zα̇β 6= (zβ̇α)∗ (zm 6= (zm)∗, i.e. zm = xm + iym
). Modi�ed inident onditions

ωα̇ = zα̇βπβ , ω̄α = π̄β̇ z̄β̇α , where z̄β̇α 6= (zα̇β)∗

do not imply the zero norm of the twistor, whih is de�ned by the imaginary part ym
of the

omplexi�ed oordinate zm
. This way of desribing the nonzero heliity is presented in the

Penrose twistor theory, whih is atually used at the level of the �eld approah.

But when using the omplexi�ed Minkowski spae, some important element of the twistor

program assoiated with the standard spae-time desription is ompletely lost.

There are other formulations of the massless spinning partile, in whih the spae-time

formulation uses other additional variables of di�erent type, for example, additional spinor

oordinates. This formulation will be desribed later after the presentation of the twistor

superpartile, sine their desriptions are quite similar.



Shirafuji model

But there is possibility of obtaining nonzero heliity of partile after quantization if we

use twistor variables in addition to the usual spae-time oordinates in the spae-time

formulation. Then the twistors present here will arry the desription of spinning degrees of

freedom of the partile.

The well-known Shirafuji model is just suh a model. This type of model will be useful

in the presentation of twistorial formulation of the higher spin partiles.

In the Shirafuji formulation, the Lagrangian of massless partile is, in fat, the term pmẋm
in

whih the momentum pm is resolved through twistor spinors by using the Cartan-Penrose

relation:

Smix
0 =

∫

dτπαπ̄α̇ẋα̇α .

In this system the Cartan-Penrose relation is reprodued as the onstraint

pαα̇ − παπ̄α̇ ≈ 0 .
Additional onstraints in the system are the following ones

ζα ≈ 0 , ζ̄α̇ ≈ 0 ,
where ζα, ζ̄α̇ are anonially onjugate variables to πα, π̄α̇:

{ζα, πβ}P = δαβ , {ζ̄α̇, π̄β̇}P = δα̇
β̇
.

From the eight onstraints, six onstraints are the seond lass, and two onstraints are the

�rst lass. That is, the system has six physial degrees of freedom, like all massless systems

onsidered earlier (the seond lass onstraint eliminates one degree of freedom of the phase

spae, in ontrast to the �rst lass onstraint, whih eliminates two degrees).



The diret quantization of this system is rather ompliated.

But we an move on to the equivalent system only with the �rst lass onstraints.

We introdue additional phase variables να, κα, {κα, νβ}P = δαβ , and ..

Equivalent system only with �rst lass onstraints:

pαα̇ − (πα − να)(π̄α̇ − ν̄α̇) ≈ 0 , i
(

παζ
α + νακ

α − π̄α̇ζ̄
α̇ − ν̄α̇κ̄

α̇
)

≈ 0 ,

ζα + κα ≈ 0 , ζ̄α̇ + κ̄α̇ ≈ 0 .

Initial system is reprodued in the gauge να ≈ 0, ν̄α̇ ≈ 0, κα ≈ 0, κ̄α̇ ≈ 0.

But, in extended system we an make the exhange of the variables πα → πα − να,
ζα → (ζα − κα)/2, να → πα + να, κα → (ζα + κα)/2. Than, the onstraints take the form

pαα̇ − παπ̄α̇ ≈ 0 , i
(

παζ
α − π̄α̇ζ̄

α̇
)

≈ 0 , κα ≈ 0 , κ̄α̇ ≈ 0 .

Variables να, κα and .. are split o� and fully gauged.

For the remaining variables, onsider the representation in whih ζα, ζ̄α̇ are diagonal and

πα = i∂/∂ζα, π̄α̇ = i∂/∂ζ̄α̇.

The wave funtion is Ψ = Ψ(xm , ζα, ζ̄α̇).



The wave funtion Ψ(xm, ζα, ζ̄α̇) is de�ned by the equations of the onstraints

a)
(

i∂αα̇ − ∂

∂ζα
∂

∂ζ̄α̇

)

Ψ = 0 , b)
(

ζα
∂

∂ζα
− ζ̄α̇

∂

∂ζ̄α̇

)

Ψ = 2s Ψ ,

where 2s is some ordering onstant. The uniqueness of the wave funtion Ψ requires that 2s
be integer number: 2s ∈ Z.

Requiring the polynomial dependene of the �eld Ψ on the spinor variables ζα, ζ̄α̇, we �nd
that the equation b) has the following solution in the form of an in�nite series:

Ψ(x, ζ, ζ̄) = ζα1 . . . ζα2s

∞
∑

k=0

ζβ1 ζ̄β̇1 . . . ζβk ζ̄β̇k ψα1...α2sβ1...βk β̇1...β̇k
(x) .

Equation a) leads to the following onlusions:

Higher terms of expansion ψα1...α2sβ1...βk β̇1...β̇k
(x) at k 6= 0 are not independent:

ψα1...α2sβ1...βk β̇1...β̇k
= ik∂β1β̇1

. . . ∂βk β̇k
ψα1...α2s ,

Independent �eld ψα1...α2s (x) satis�es Dira-Weyl equation

∂β̇α1ψα1...α2s (x) = 0

and desribes massless partile of heliity s.



Twistorial desription of higher spin partile

In a ertain terminology, higher spin partile (HS partile) means the model whih desribes

the states of all spins, from zero to in�nity.

Most often, suh system desribes massless states with all possible heliities.

The simplest, but at the same time, very illustrative model is the HS generalization of the

Shirafuji model. In this model, there is no onstraint whih �xes the heliity.

This is obtained by adding additional �kineti terms� of spinor variables to the Shirafuji

ation, that is, by onsidering the ation

Smix
hs =

∫

dτ
(

παπ̄α̇ẋα̇α + παζ̇
α + π̄α̇

˙̄ζα̇
)

.

The last terms in this ation tell us that the ommuting spinors (ζα, πα), (ζ̄α̇, π̄α̇) form
pairs of anonially onjugate variables.

The model is desribed by only vetor onstraint of the �rst lass:

pαα̇ − παπ̄α̇ ≈ 0 .

There are no additional onstraints in this system.



As before, let us onsider the representation in whih ζα, ζ̄α̇ are diagonal

and πα = i∂/∂ζα, π̄α̇ = i∂/∂ζ̄α̇ are realized by di�erentiation operators.

Requiring a polynomial dependene of the wave funtion, we have the following expression

for it as the in�nite series:

Φhs(x
m , ζα, ζ̄α̇) =

∞
∑

k=0

∞
∑

n=0

ζα1 . . . ζαk ζ̄α̇1 . . . ζ̄α̇kϕα1...αk α̇1...α̇k (x) .

Twistorial onstraint yields the Vasiliev unfolded equation

(

i∂αα̇ − ∂

∂ζα
∂

∂ζ̄α̇

)

Φhs = 0 .

Independent spae-time �elds in the expansion of the �eld Φ are self-dual ϕα1...αk (x),
k = 0, 1, . . . k and anti-self-dual ϕα̇1...α̇k (x), n = 0, 1, . . . k �eld strengths of all heliities.

Basi unfolded equation leads to Klein-Gordon and Dira equations for them.

All other omponent �elds are expressed as x-derivatives of the basi �elds.

Reality ondition for the HS �eld Φ = (Φ)∗ leads to the reality onditions

ϕα̇1...α̇k = (ϕα1...αk )
∗
for physial �elds. Thus, the massless HS multiplet desribed by the

real HS �eld Φ(xm, ζα, ζ̄α̇) ontains all heliities and eah heliity appearing only one.



Twistor formulation of HS partile is obtained after passing to the variables

ωα̇ = ζ̄α̇ + xα̇βπβ̇ , ω̄α = ζα + π̄β̇x β̇α ,

whih are preisely the omponents of the twistors.

Up to total derivative in the Lagrangian, the ation of HS partile takes the following form

in twistor formulation

Shs =

∫

dτ
(

˙̄ωαπα + π̄α̇ω̇
α̇
)

= 1
2

∫

dτ
(

Z̄ AŻA − ˙̄Z AZA

)

.

Twistor wave funtion of this model is holomorphi twistor funtion

Ψhs(Z ) = Ψhs(πα, ω
α̇)

without any additional equations of onstraints.

This twistor �eld desribes in�nite tower of massless states of all heliities, whih are

desribed by homogeneous omponents in the expansion in spinor variables. Ordinary

spae-time �elds with heliity s an be extrated by means of the integral transformation

ϕα1...α2s (x) =
∮

(πdπ) πα1 . . . πα2sΨhs(πα, x
α̇απα) .

In this integral, only the term with the orret degree of homogeneity ontributes;

other terms with di�erent homogeneities do not ontribute to this integral.

Therefore, this model desribes the tower of massless states whose heliities start from zero

and ontinue to in�nity.



HS system ontains in�nite number of massless �elds of arbitrary spins (heliities).

Therefore, we an expet that suh a system has in�nite-dimensional symmetry, mixing all

the spins with eah other. The main and, in pratie, the only requirement for suh a

symmetry is that it must be an extension of onformal symmetry. For this reason, twistors

realizing onformal symmetry linearly play important role in desribing the symmetry of

higher spins. In other variables, for example, spae-time variables, the full symmetry group

of higher spins is hidden.

Symmetry in HS theory is usually haraterized by its algebra, alled HS algebra.

We have seen that twistor �eld is the funtion Ψhs(ZA) = Ψhs(πα, ω
α̇) in a twistor spae.

This �eld spae is preserved by 15 onformal algebra generators Z̄ AZB − 1
4 δ

A
B Z̄ CZC , formed

by all bilinear ombinations of the twistor and its adjoint omponents:

Pαα̇ = παπ̄α̇ , K α̇α = ωα̇ω̄α , Mαβ = π(αω̄β) , M̄α̇β̇ = π̄(α̇ωβ̇) , D = 1
2 (ω̄απα+π̄α̇ω

α̇) ,

and the operator

i
2 Z̄ AZA = i

2 (ω̄απα − π̄α̇ω
α̇) .

Other 20 seond degree generators

Rαβ = παπβ , R̄α̇β̇ = π̄α̇π̄β̇ , R̃αβ = ω̄αω̄β , ¯̃Rα̇β̇ = ωα̇ωβ̇ , Fα
β̇ = παω

β̇ , F̄α̇
β = π̄α̇ω̄

β

are formed by the produts of the twistor omponents between themselves and its onjugate

in analogous way:

ZAZB = (Rαβ ,
¯̃Rα̇β̇ , Fα

β̇) , Z̄ AZ̄ B = (R̄α̇β̇ , R̃
αβ , F̄α̇

β) .

With respet to twistor Poisson brakets, all these 36 generators form the Sp(8) algebra,
whih is one of the �nite-dimensional extensions of the onformal algebra.

In fat, the twistors de�ne osillatory representation of the SU(2, 2) and Sp(8) algebras.



A natural way to obtain in�nite-dimensional HS symmetry is to relax the twistor bilinearity

requirement for generators. Introduing the notation for twistor monomials of n-th degree

ZA(k) ≡ ZA1
. . . ZAk

, Z̄ B(l) ≡ Z̄ B1 . . . Z̄ Bl ,

and also for their spinor omponents πα(k) ≡ πα1 . . . παk , π̄α̇(l) ≡ π̄α̇1 . . . π̄α̇l , et.

Generators of in�nite-dimensional symmetry that preserve HS �eld have the form

GB(r )
A(p) = ZA(p) Z̄ B(r ) ≡ Gβ(m),α̇(n)

α(k),β̇(l)
= πα(k) π̄β̇(l) ω̄

β(m) ωα̇(n) , k + n = p,m + l = r .

These generators form in�nite-dimensional Lie algebra:

{G(N1),G(N2)}P = G(N1+N2−2)

in terms of the quantities G(N) ≡ GB(r )
A(p) , N = p + r .

Generators in G(2)
form Sp(8) subalgebra: {G(2),G(2)}P = G(2)

.

Even a minimal extension of the algebra by generators G(3)
generates an in�nite set of

generators:

{G(3),G(3)}P = G(4) , {G(3),G(4)}P = G(5) , · · ·



The presented algebra is reduible and ontains other (in�nite-dimensional) subalgebras.

For example, generators G(N)
of even degree form a subalgebra. A further restrition arises

when SU(2, 2)-irreduible representations in generators are singled out.

Obtaining the SU(2, 2) irreduible representations ours by seleting the trae parts,

formed here by the twistor norm ( i
2 Z̄ AZA), and non-trae parts.

Irreduible parts of generators are generators

T (n)B(r )
A(p) = ( i

2 Z̄ AZA)
n 〈ZA(p) Z̄ B(r )〉 ,

where the tensors in brakets 〈 〉 are traeless by de�nition, 〈MAB...
AC...

〉 ≡ 0. The generators

T (n)B(r )
A(p) at r = p produe Fradkin-Linetsky-Vasiliev hsc(2, 2) algebra.

Note that the higher spin algebra, whih is an extension of the onformal algebra, is not

unique. Depending on the hoie of the symmetry algebra, we obtain a di�erent set of spin

states, on whih the transformations realizing this algebra are losed. For example, one way

to extend onformal su(2, 2) algebra is to onsider the su(2, 3) algebra rather than that

sp(8) algebra. In this way, it is obtained another HS algebra, based on the so-alled bosoni

supersymmetry (some disussion of it will be in the next leture).



Leture 2

Bitwistor formulation of massive partiles and massless in�nite spin

partiles.

Conformal supersymmetry and supertwistors.

Twistor desription of massless superpartiles.

Twistor transform for spinning partiles.



The twistor approah is based on onformal symmetry, whih leads to a natural desription

of onformally-invariant systems. But one of the tasks of the twistor approah is to present

an alternative to the spae-time desription of the physial world, whih inludes

onformally-non-invariant systems, for example, massive partiles that possess, in general,

non-zero spin.

Let us brie�y reall the irreduible relativisti representations.

Irreduible unitary representations of the Poinar�e group ISO↑(1, 3) are de�ned by values

of the Casimir operators

C2 := PmPm , C4 := W mWm ,

where Wm = 1
2 εmnklPnMkl

is the Pauli-Lubanski vetor.

Physially interesting unitary irreduible representations:

P2 = PnPn W 2 = W nWn

Massless �nite spin irreps. 0 0

Massless in�nite spin irreps. 0 −µ2
, where µ ∈ R, µ 6= 0

Massive irreps. m2 6= 0 −m2 j(j + 1), where j ∈ Z≥0/2

So far, we have onsidered massless �nite spin irreduible representations (heliity states).

These are the standard massless representations that desribe all urrently known massless

partiles suh as photon, gluons, graviton, massless heliity-1/2 fermion (until some time, it

was believed that it is neutrino).



The neessity of bitwistor formalism

So far, we have onsidered the one-twistor ase.

As it was said, the basi relation in the twistor desription is the resolution of the

4-momentum through ommutating Weyl spinor πα: Pαα̇ = παπ̄α̇.

But from this we get important onsequenes:

We get that the square of the 4-momentum is zero: PnPn = 0. Therefore, the
desription of massive partile is impossible in frame of the one-twistor formalism.

Moreover, in the one-twistor ase, we have seen that there is the expression

Wn = Λ · Pn

for the Pauli-Lubanski vetor, where Λ is heliity operator. Therefore, W nWn = 0 and

we an only desribe massless �nite spin representations (heliity representations).

Thus, to desribe massive states or massless in�nite spin states, it is neessary to use more

than one twistor.

For our purposes, it is enough to use two twistors: ZA and YA, and we will onsider this

bitwistor desription below.

Let us �rst onsider the ase of massless in�nite spin partile.



Massless in�nite spin partile: spae-time formulation

In�nite (ontinuous) spin representations are in�nite-dimensional ones.

In ontrast to other irreps, in�nite spin representation expands into in�nite set of massless

states with all possible heliities. Heliity in ontinuous spin representations takes standard

disrete values: integer 0,±1,±2, . . . ,±∞ or half-integer ±1/2,±3/2, . . . ,±∞.

In Wigner-Bargmann spae-time formulation in�nite spin �elds are desribed by the

funtion Φ(x, y) de�ned on the spae whih is parametrized by

ommuting 4-vetor xm
(the position oordinates on Minkowski spae);

additional ommuting 4-vetor ym
(desribes the spin degrees of freedom).

Equations of motion of these �elds (Wigner-Bargmann equations) have the form

∂

∂xm

∂

∂xm
Φ = 0 ,

∂

∂xm

∂

∂ym
Φ = 0 ,

∂

∂ym

∂

∂ym
Φ = µ2 Φ , − i ym ∂

∂xm
Φ = Φ ,

where µ ∈ R, µ 6= 0 is a dimensionful parameter.

One an verify that for suh �elds the square of the Pauli-Lubanski vetor is equal to

W nWn = −µ2 .



The Wigner-Bargmann spae-time �eld formulation of in�nite spin partile is reprodued by

means of one-dimensional dynamial model with the following Lagrangian

Lsp.−time
∞ = pmẋm + wmẏm + e pmpm + e1 pmqm + e2

(

qmqm + µ2
)

+ e3
(

pmym − 1
)

.

Here, pm(τ), qm(τ) are the momenta for xm(τ), ym(τ):
{

xm, pn
}

= δm
n ,

{

ym, qn
}

= δm
n .

In the Lagrangian the variables e(τ), e1(τ), e2(τ), e3(τ) are the Lagrange multipliers for the

�rst lass onstraints

pmpm ≈ 0 , pmqm ≈ 0 , qmqm + µ2 ≈ 0 , pmym − 1 ≈ 0 .

After anonial quantization these onstraints yield the Wigner-Bargmann equations.

Let us now onstrut physially equivalent system in the twistor formulation.

It is important to emphasize that the lassial physial equivalene of systems does not

imply their quantum equivalene. For example, the presene of spinor variables in the

system will make it possible to obtain spinor representations after quantization.



Twistorial formulation of in�nite spin partile

Following standard presriptions of twistor approah in onsidered ase we need to use

• twistor spinor πα, π̄α̇ = (πα)∗ for resolving the onstraint pmpm ≈ 0
by the Cartan-Penrose relation pαα̇ = παπ̄α̇ ;

• spinor of 2-nd twistor ρα, ρ̄α̇ = (ρα)∗ for resolving the onstraint pmqm ≈ 0
in the form qαα̇ = παρ̄α̇ + ραπ̄α̇ .

Thus, in twistorial formulation in�nite spin partile is desribed by 8 omplex variables

(ω̄α, πα), (η̄α, ρα) and .. ones, whih obey the Poisson brakets

{

ω̄α, πβ
}

=
{

η̄α, ρβ
}

= δαβ
and are subjeted to four �rst lass (abelian) onstraints

M := παρα ρ̄α̇π̄
α̇ − µ2/2 ≈ 0 ,

F := η̄απα − 1 ≈ 0 , F̄ := π̄α̇η
α̇ − 1 ≈ 0 ,

U := ω̄απα − π̄α̇ω
α̇ + η̄αρα − ρ̄α̇η

α̇ ≈ 0 .

The Hamiltonian in the �rst order twistorial Lagrangian is linear ombination of these

onstraints with Lagrange multipliers:

Ltw
∞ = πα ˙̄ωα + π̄α̇ω̇

α̇ + ρα ˙̄ηα + ρ̄α̇η̇
α̇ + l M + k U + ℓF + ℓ̄ F̄ .



Link with the Wigner-Bargmann spae-time formulation is arried out by using the

generalized Cartan-Penrose relations

pαα̇ = παπ̄α̇ , qαα̇ = παρ̄α̇ + ραπ̄α̇

and the inidene relations

ωα̇ = xα̇απα + y α̇αρα , ω̄α = π̄α̇xα̇α + ρ̄α̇y α̇α ,

ηα̇ = y α̇απα , η̄α = π̄α̇y α̇α .

We note that, in ontrast to the �xed heliity partile, in the inidene onditions for the

in�nite heliity partile the y-dependent terms mix the spinors of di�erent twistors.

Notie the following points:

• Twistor spinors in this formulation form two Penrose twistors

ZA :=
(

πα, ω
α̇
)

, YA :=
(

ρα, η
α̇
)

; Z̄ A :=

(

ω̄α

−π̄α̇

)

, Ȳ A :=

(

η̄α

−ρ̄α̇

)

.

So the desription of in�nite spin partiles uses with neessity two twistors.

• The U(1) twistor onstraint has the form U = i (Z̄ AZA + Ȳ AYA) ≈ 0 .
But the heliity operator is Λ = i

2 Z̄ AZA . So in the onsidered model of in�nite

(ontinuous) spin partile, heliity is not �xed sine it is proportional to −Ȳ AYA.



Performing operator quantization of the model we obtain the twistor wave funtion

Ψ(c)(π, π̄; ρ, ρ̄) = δ
(

(πρ)(ρ̄π̄)− µ2/2
)

e−iq0/p0 Ψ̂(c)(π, π̄; ρ, ρ̄) ,

where (πρ) := πβρβ , (ρ̄π̄) := ρ̄β̇ π̄
β̇
, q0/p0 =

∑

α=α̇
(παρ̄α̇ + ραπ̄α̇) /

∑

β=β̇

πβ π̄β̇ ,

Ψ̂(c)(π, π̄; ρ, ρ̄) = ψ(c)(π, π̄) +
∞
∑

k=1

(ρ̄π̄)k ψ(c+k)(π, π̄) +
∞
∑

k=1

(πρ)k ψ(c−k)(π, π̄) ,

Constant c plays the role of the U(1) harge and takes (half-)integer values: 2c ∈ Z .

Fields ψ(c+k)(π, π̄) are eigenvetors of the operator Λ = −1

2

(

πβ
∂

∂πβ
− π̄β̇

∂

∂π̄β̇

)

:

Λψ(c+k)(π, π̄) = λψ(c+k)(π, π̄) , λ = −
(

c + k
)

.

Heliity operator � = ~
J

~
P/P0 where

~
J is total angular momentum, ats in the following way:

�Ψ(c) = δ
(

(πρ)(ρ̄π̄)− µ2/2
)

e−iq0/p0

(

Λψ(c) +
∞
∑

k=1

(ρ̄π̄)kΛψ(c+k) +
∞
∑

k=1

(πρ)k Λψ(c−k)

)

,

Thus, twistorial wave funtion of in�nite spin partile Ψ(c)
desribes in�nite number of

massless states ψ(c+k)
whose heliities λ = −

(

c + k
)

, −∞ < k <∞ are equal to integer (for

integer c) or half-integer (for half-integer c) values and run from −∞ to +∞.



Heliity ontent of the �eld Ψ(c)
is the same for all integer or all half-integer values c. We

an onsider the twistorial �eld Ψ(0)(π, π̄; ρ, ρ̄) to desribe in�nite integer spin representation

and Ψ(−1/2)(π, π̄; ρ, ρ̄) to desribe in�nite half-integer spin representation.

Twistor �elds produe spae-time �elds by using the Penrose integral transform

The Wigner-Bargmann �elds on the spae with auxiliary 4-vetor oordinate yαα̇
are

obtained by the integral transformation

Φ(x; y) =

∫

d4πd4ρ e iπαπ̄α̇xα̇α
e i(παρ̄α̇ + ξαρ̄α̇)y α̇α

Ψ(0)(π, ρ̄; ξ, ρ̄) ,

where we perform integration over the twistor spae with the integration measures

d4π = 1
4 dπα ∧ dπα ∧ dπ̄α̇ ∧ dπ̄α̇, d4ρ = 1

4 dρβ ∧ dρβ ∧ d ρ̄β̇ ∧ d ρ̄β̇ . Due to the twistor

equations of motion for twistor �eld Ψ(0)(π, π̄; ρ, ρ̄), the �elds Φ(x; y) satis�es automatially

the Wigner-Bargmann equations.

Other spae-time systems, but with additional spinor variables, an be derived in this way.



Twistor formulation of massive partile

To resolve the time-like 4-momentum, it is neessary to hange the twistor relation

pαα̇ = πα π̄α̇, used earlier for the light-like momenta.

The only way to solve this problem is to replae the one-twistor formalism with two-twistor

formalism. That is, to desribe massive states, we use two spinors

πi
α , π̄α̇ i = (πi

α)
∗ , i = 1, 2 ,

that de�ne halves of two twistors

Z i
A :=

(

πi
α, ω

α̇ i
)

, Z̄ A
i :=

(

ω̄α
i

−π̄α̇ i

)

.

Note: it is onvenient to ombine two twistors into one SU(2) spinor with SU(2)-spinor
index i = 1, 2, sine in the standard momentum frame (in the rest frame) of massive partile

the small group is SU(2) ∼= SO(3).

Then the momentum of massive partile is represented in the twistor-like form

pαα̇ = πi
α π̄α̇ i .

But then we get the following orollary:

when desribing massive partile with mass m determined by the mass ondition p2 = m2
,

used two spinors πi
α must be limited by the onstraint

|παiπαi |2 = m2
or stronger onstraints παiπαi = m , π̄α̇i π̄

α̇i = m .

These onditions violate the onformal invariane.

Consider �rst the twistor formulation of the massive partile with spin.

The orresponding spae-time formulation will be onsidered later.



In ontrast to the massless ase where the twistor desription of the arbitrary heliity

partile an be ahieved by using only one twistor, in the massive ase it is neessary to use

some spinning variables in addition to the twistor ones.

Additional spin variables should give the desription of the nonrelativisti integer or

half-integer spin in in the rest frame. Therefore, we will use ommuting spinors ξi
as spin

variables.

As a result, massive spinning partile in the twistor formulation is desribed by the variables

πi
α , π̄α̇ i = (πi

α)
∗ ; ωα̇i , ω̄α

i = (ωα̇i )∗ ; ξi , ξ̄i = (ξi)∗ ; i = 1, 2 ,

whih satisfy the Poisson brakets {ω̄α
i , π

j
β}P = δαβ δ

j
i , {ωα̇ i , π̄β̇ j}P = δα̇

β̇
δi

j , {ξi , ξ̄j}P = − i
2 δ

i
j ,

and is subjeted to the set of the �rst lass onstraints

h := παiπαi − m ≈ 0 , h̄ := π̄α̇i π̄
α̇i − m ≈ 0 ,

Da := (σa)j
i
[

i
2

(

ω̄α
i π

i
α − π̄α̇iω

α̇i
)

+ ξ̄iξ
j
]

≈ 0 ,

S := ξ̄iξ
i − s ≈ 0 .

The onstraints Da ≈ 0 form SU(2) algebra with respet to the Poisson brakets.

The onstraints S ≈ 0 ontained the onstant s de�nes the partile spin.

The mass onstraints are also presented in the form

h = Z i
AIABZBi − m ≈ 0 , h̄ = Z̄ A

i IABZ Bi − m ≈ 0 ,

where SU(2, 2)-noninvariant so-alled in�nity twistors (asymptoti twistors)

IAB =

(

ǫαβ 0
0 0

)

, IAB =

(

0 0
0 ǫα̇β̇

)

.

are used.



Twistor �elds of massive partiles

Let us �nd twistor massive �elds by anonial quantization of twistor massive partile.

We impose gauge-�xing onditions for the onstraints h ≈ 0, h̄ ≈ 0. After the introdution of

the Dira brakets, these onstraints are satis�ed in the strong sense, that is, onditions

παiπαi = m , π̄α̇i π̄
α̇i = m

hold. These onditions state that determinant of the matrix Π ≡ m−1/2||πi
α|| is equal to

one, i.e. Π ∈ SL(2,C).

In π-representations, twistor massive wave funtion Ψ(π, π̄) is de�ned by the equations

(S − J) Ψ =
(

1
2 a+ iai − J

)

Ψ = 0 ,

DaΨ = (Da +∆a)Ψ = 0 , a = 1, 2, 3 ,

where Da = 1
2

[

πi
α(σa)i

j ∂

∂πj
α

− ∂

∂π̄α̇i
(σa)i

j π̄α̇j

]

, ∆a = 1
2 a+ i (σa)i

j aj .

The operators ai ≡
√

2 ˆ̄ξi and a+ i ≡
√

2ξ̂i
are usual annihilation and reation operators of

two-dimensional osillator; they are de�ned by the ommutators [ai , a+ j ] = δj
i .

The wave funtion Ψ is taken in �lling numbers spae of these operators.

Constant J is lassial onstant s renormalized by ordering onstants.



By means diret alulations we obtain that square of Pauli-Lubanski vetor takes the form

W nWnΨ = −m2DaDaΨ .

Sine the ondition DaΨ = (Da −∆a)Ψ holds and using ∆a∆a = 1
2 a+ i ai(

1
2 a+ j aj + 1), we

obtain

W nWnΨ = −m2J(J + 1) ,

i.e. we have massive partile with �xed spin J in the spetrum of this model.

The operators ∆a form su(2)-algebra whih realized by two osillators ai , a+ i
, i = 1, 2.

Let integer nonnegative numbers n1 and n2 are orresponding �lling numbers

i.e. n1 and n2 are the eigenvalues of operators a+1a1 and a+2a2.

The onstraints (S − J)Ψ = 0 gives us that

1
2 (n1 + n2) = J.

Then the number

1
2 (n1 − n2) = M takes (2J + 1) values M = −J,−J + 1, ..., J − 1, J and

twistor �eld is (2J + 1)-omponent �eld ΨM (π, π̄).

By de�nition, this �eld satis�es

∆3ΨM = MΨM , ∆±ΨM = (∆1 ± i∆2)ΨM =
√

(J ∓ M)(J ± M + 1)ΨM .

From (Da +∆a)Ψ = 0 we have

D3ΨM = −MΨM , D±ΨM = (D1 ± iD2)ΨM = −
√

(J ∓ M)(J ± M + 1)ΨM .



The operators Da are generators of SU(2)-transformations, ating on index i of πi
α and last

equations state that the wave funtion ΨM(π, π̄) is de�ned up to the transformations ating

on index M:

Ψ′
M (π′) = DJ

MN (h)Ψ′
N(π) , π′i

α = hi
jπ

j
α , h ∈ SL(2,C) .

Here DJ
MN is the matrix of SU(2)-transformations of weight J.

Thus twistor wave funtion of massive spinning partile is de�ned on the homogeneous spae

SL(2,C)/SU(2).

In the form of the SU(2)-indies i , j , ... = 1, 2, the index M is olletive index M = (i1 . . . i2J).
Then the wave funtion (twistor �eld of massive spinning partile) is

Ψi1...i2J
(π, π̄) ,

whih is ompletely symmetri with respet to SU(2)-indies:

Ψi1...i2J
= Ψ(i1...i2J )

.



Twistor transform for massive �elds

The relation of the twistor �elds with the usual spae-time spin-tensor �elds is established by

means of the integral transformation in the following way. One onstruts SU(2)-invariant

expressions by ontrating the twistor �elds Ψi1...i2J
(π, π̄) with twistor spinors π

i1
α1 . . . π

i2J
α2J .

After integration with invariant measure d3π on the oset spae SL(2,C)/SU(2) with the

standard Fourier exponent exp(ixmpm) where pm = pαα̇σ̃
α̇α
m we obtain spae-time �elds

Φα1...α2J (x) =
∫

d3π eixmpmπ
i1
α1 . . . π

i2J
α2J Ψi1...i2J

(π, π̄) .

These �elds are totally symmetri in spinor indies Φα1...α2J = Φ(α1...α2J )
and give us

standard (2J + 1)-omponent �eld desription of massive spin J. Due to the presene of the

exponent in the integrand, Φα1...α2J satis�es automatially massive Klein-Gordon equation

(

∂n∂n + m2
)

Φα1...α2J (x) = 0 .

Similarly, but with using the spinor π̄α̇i
, twistor �eld produes the �eld with dotted indies:

Φα̇1...α̇2J (x) =
∫

d3π eixmpm π̄α̇1 i1 . . . π̄α̇2J i2J Ψi1...i2J
(π, π̄) .

It is easy to show that the �elds Φα1...α2J (x) and Φα̇1...α̇2J (x) are related by

the (2J + 1)-order Weinberg equations

(i∂n1σ
n1
α1β̇1

) . . . (i∂n2Jσ
n2J
α2J β̇2J

)Φβ̇1...β̇2J (x) = Φα1...α2J (x) .

Coordinate twistor transformation and orresponding spae-time desription of massive spin

partile will be presented after onsideration of twistor desription of the superpartile.



Superpartile

Twistor onstrutions for a massless superpartile of zero superspin largely repeat the

strutural elements of an ordinary massless partile. New details that will arise are related

to the twistor realization of supertranslations and superonformal boosts, whih is re�eted

by the presene of additional Grassmann superspae oordinates.

Let us �rst desribe superpartile model in whih the target spae is desribed by the

superspae oordinates and whose quantization produes the super�eld in the spetrum.

Note: We will onsider only non-extended N= 1 supersymmetry.

Superspae formulation of massless superpartile

The ation of the superpartile in the �rst-order formalism is similar to the ation of bosoni

massless partile:

Ssuper
0 =

∫

dτ
(

pαα̇ω
α̇α − epαα̇pα̇α

)

,

where instead of ẋα̇α
is supertranslation-invariant vetor

ωα̇α ≡ ẋα̇α − i θ̄α̇θ̇α + i ˙̄θα̇θα .

The Weyl spinor θα, θ̄α̇ = (θα)∗ is Grassmannian variable ((θα)2 ≡ 0 ∀α),
whih, together with the usual oordinate xα̇α

, parameterizes the trajetory of the

superpartile in the superspae.



This supersymmetri system is invariant under the following global transformations:

Poinar�e transformations δxα̇α = aα̇α + xα̇β lβα + l̄ α̇β̇x β̇α ,

δθα = θβ lβ
α , δpαα̇ = −lαβpβα̇ − pαβ̇ l̄ β̇ α̇ ;

dilatations δxα̇α = cxα̇α
, δθα = 1

2 cθα, δpαα̇ = −cpαα̇, δe = 2ce;

onformal boosts δxα̇α = xα̇βkββ̇x β̇α − 4θαθ̄α̇ θβkββ̇ θ̄
β̇
, δθα = θβkββ̇(x

β̇α + i θ̄β̇θα);

δpαα̇ = −(pαβ̇kβα̇ + kαβ̇pβα̇)x
β̇β − 2i(pαβ̇kβα̇ − kαβ̇pβα̇)θ̄

β̇θβ , δe = 2(x β̇βkββ̇)e ,

hiral transformations of spinors δθα = − 1
2 iφθα ;

supertranslations δxα̇α = −(θ̄α̇ǫα − ǭα̇θα), δθα = ǫα;

superonformal boosts δxα̇α = 2i(θ̄α̇η̄β̇x β̇α − xα̇βηβθ
α)− 4θ̄α̇θα(θβηβ + η̄β̇ θ̄

β̇),

δθα=−4iθα θβηβ+η̄β̇(x
β̇α+i θ̄β̇θα), δpαα̇= 4i(ηαθβpβα̇−pαβ̇ θ̄

β̇ η̄α̇), δe= −4ieθβηβ+c.c.

In supertranslation and superonformal boost transformations, the transformation

parameters ǫα and ηα are Grassmann Weyl spinors.

The generators of these transformations (atually, Noether harges) form the SU(2, 2|1)
superonformal algebra. In addition to the usual inhomogeneous translations and nonlinear

onformal boosts, superonformal transformations inlude inhomogeneous supertranslations

and non-linear superonformal boosts.

Below, by introduing supertwistors, the superonformal algebra SU(2, 2|1) will be realized
by homogeneous linear transformations

(new (anti-)ommutators of this superalgebra will be presented there).



Let us brie�y desribe the quantization of this superpartile model and the form of the

obtained super�eld.

Phase spae xm
, pm, θα, pα, θ̄α̇, p̄α̇ with Poisson brakets {xα̇α, pββ̇}P = δαβ δ

α̇
β̇
,

{θα, pβ}P = δαβ , {θ̄α̇, p̄β̇}P = δα̇
β̇
is limited by the onstraints

pαα̇pαα̇ ≈ 0 ; Dα ≡ pα + ipαα̇θ̄
α̇ ≈ 0 , D̄α̇ ≡ p̄α̇ + iθαpαα̇ ≈ 0 .

Sine the nonzero Poisson brakets of the onstraints are {Dα, D̄α̇}P = 2ipαα̇ and matrix

pαα̇ is singular for massless partile, the onstraint p2 ≈ 0 is �rst lass onstraint, whereas

odd onstraints Dα ≈ 0, D̄α̇ ≈ 0 are the mixture of 2 �rst lass onstraints and 2 seond

lass ones.

Not independent �rst lass onstraints are the onstraints

F α̇ ≡ pα̇αDα ≈ 0 , F̄α ≡ D̄α̇pα̇α ≈ 0 ,

whih generate κ-symmetry δθα = κ̄α̇pα̇α
, δθ̄α̇ = pα̇ακα with loal odd parameter κα(τ).



With Gupta-Bleuler quantization, when all �rst lass onstraints and half, ommuting in

weak sense, seond lass ones are putted on the wave funtion, independent ovariant

equations for the wave funtion Φ(x, θ, θ̄) have the form
�Φ = 0 , D̄α̇ Φ = 0 , ∂α̇αDα Φ = 0 ,

where Dα = i(∂α − i∂αα̇θ̄
α̇), D̄α̇ = i(∂̄α̇ − iθα∂αα̇) are ovariant derivatives.

When determining the omplete system of equations for the wave funtion, it is neessary to

require the preservation of symmetries in passing to quantum theory, in addition to standard

proedure for the quantum realization of lassial onstraints. Under superonformal boosts,

the transformation of the operator in one of the equations has the form

δ (∂α̇αDα) = 4i(η̄θ̄) ∂α̇αDα + iηαDαD̄α̇ − i η̄α̇DαDα − 2ηα∂α̇α .

That is, we obtain the neessary transformation of the wave funtion δΦ = −2i(θη)Φ , as
well as the requirement to impose additional ondition

DαDα Φ = 0 .

The solution of the equation D̄α̇ Φ = 0 is the hiral super�eld

Φ = Φ(xL , θ) = A(xL ) + θαψα(xL ) + θ2B(xL ) .

living on the hiral superspae with the superoordinates

xα̇α
L

= xα̇α + i θ̄α̇θα , θα .

The remaining equations vanish the highest omponent in the B = 0 expansion and lead to

the Klein-Gordon and Dira equations for omplex salar and spinor �elds. That is, the

spetrum of this superpartile model is desribed by massless supermultiplet with zero

superheliity, whih inludes massless partiles of 0 and 1/2 heliities.



Supertwistor formulation solves the main problem: superonformal transformations in it are

realized by linear transformations. Moreover, reformulation of superpartile dynamis in

terms of supertwistors leads to its desription in physial variables, with resolution of loal

symmetries, inluding κ-invariane.

Supertwistor formulation of superpartile

By analogy with the purely bosoni ase, supertwistors are de�ned as spinors of the

superonformal group SU(2, 2|1). Among the �ve omponents of the supertwistor

ZA = (ZA; χ) = (πα, ω
α̇; χ) , A = 1, . . . , 5

four c-numerial omponents are formed by ordinary twistor � SU(2, 2)-spinor ZA.

The �fth Grassmann omponent of the supertwistor is omplex Lorentz-salar

χ , χ̄ = (χ)∗ , (χ)2 ≡ χχ ≡ 0 .

Conjugate supertwistor has the form Z̄A = (Z̄ A; 2iχ̄) = (π̄α,−ω̄α̇ . 2iχ̄) .
It an be written using the omplex onjugate twistor

Z̄A = Z̄ḂGḂA , Z̄Ḃ = (π̄α̇, ω̄
α; χ̄)

after using SU(2, 2|1)-invariant tensor GȦB =

(

gȦB 0
0 2i

)

, where gȦB
is SU(2, 2)-inv. tensor.

SU(2, 2|1)-invariant twistor norm is de�ned by

� ≡ i
2 Z̄AZA = i

2 Z̄ḂGḂAZA = i
2 (ω

απα − π̄α̇ω̄
α̇)− χ̄χ .



SU(2, 2) onformal transformations at only on the bosoni omponents of the supertwistor

and were de�ned above.

Supertranslations and superonformal boosts are realized linearly in the supertwistor spae

and mix the bosoni and fermioni omponents of the supertwistor

δπα = 2iηαχ , δωα̇ = 2i ǭα̇χ , δχ = ǫαπα − η̄α̇ω
α̇ .

Chiral transformations of the supertwistor omponents are

δπα = i
2 φπα , δωα̇ = i

2 φω
α̇ , δχ = iφχ .

Introduing (graded) sympleti struture into supertwistor spae by the previously used

anonial Poisson brakets for bosoni omponents and {χ, χ̄}P = i
2 for Grassmann

omponents, we �nd the following expressions for generators of

supertranslation Qα = 2i χ̄πα , Q̄α̇ = −2i χπ̄α̇ ,

superonformal boosts Sα = 2i χ ω̄α , S̄α̇ = −2i χ̄ ωα̇ ,

hiral transformations A = i
2 (ω̄

απα − π̄α̇ω
α̇) − 4χ̄χ .

Previously de�ned generators Pαα̇,K α̇α
,Lα

β
,L̄α̇

β̇ , together with generators

Qα,Q̄α̇,Sα
,S̄α̇

,A form superonformal algebra SU(2, 2|1). In addition to SU(2, 2) subalgebra
onsidered above, it has nonzero Poisson brakets between the generators Q and S:

{Qα, Q̄α̇}P = 2iPαα̇ , {Sα, S̄α̇}P = 2iK α̇α , {Qα,Sβ}P = −2iLα
β − i(D − iA)δαβ

and ..

That is, the losure of fermioni symmetries generates full superalgebra SU(2, 2| 1).
Other non-zero brakets of fermion generators are

{Qα,K β̇β}P = 2i δβα S̄β̇ , {Sα,Pββ̇}P = 2i δαβ Q̄β̇ , {Qα,A}P = 2i Qα , {Sα,A}P = 2i Sα



Supertwistor oordinate transform

The relationship between supertwistor variables and superspae variables is determined by

supersymmetri generalization of the Penrose transform

pαα̇ = παπ̄α̇ ;

ωα̇ = xα̇απα + i θ̄α̇χ , ω̄α = π̄α̇xα̇α − iχ̄ θα ;

χ = θαπα , χ̄ = π̄α̇θ̄
α̇ .

With suh link of the superoordinates of the two formulations, superonformal

symmetries of supertwistor formulation go over into the orresponding symmetries of

superspae approah. In addition, simple expressions for superonformal generators in

supertwistor approah an easily be used to �nd expressions for them in spae-time

approah.

As in the ase of non-supersymmetri partile, the supertwistor transform inludes the

Cartan resolution of the lightlike momentum vetor.

Supersymmetri generalization of inidene onditions is �twistor shift� of spinor ωα̇
by

the term depending on Grassmann variables χ. Note that in these inidene onditions,

in fat, there is omplex vetor oordinate of the hiral superspae xL :

ωα̇ = xα̇α
L
πα .

Grassmann supertwistor variable χ, whih is de�ned as λ-projetion of θ-spinor, is
invariant under κ-transformation: δχ = δθαλα = κ̄α̇pα̇αλα = 0. That is, supertwistor
desription uses only one (omplex) Grassmann degree of freedom, whih is physial

degree of freedom ovariantly extrated from the spae-time system. Therefore, there is

no κ-invariane now in twistor twistor formulation. This, in a ertain slang, an be

de�ned as the resolution of κ-symmetries in the transition to supertwistors.



Supertwistor superpartile

Supertwistor transformations make it possible to reformulate the superpartile system in

terms of supertwistor variables. As a result, we obtain the supertwistor ation of the

massless superpartile

Ssuper
tw = 1

2

∫

dτ
[

Z̄AŻA − ˙̄ZAZA − iℓ Z̄AZA
]

,

That is, in the supertwistor formulation, the superpartile ation is formally obtained from

the non-supersymmetri partile ation, in whih the hange ZA → ZA is made.

In the supertwistor omponents, the ation has the form

Ssuper
tw =

∫

dτ
(

˙̄ωαπα + π̄α̇ω̇
α̇ + i( ˙̄χχ− χ̄χ̇)− ℓ�

)

,

where ℓ(τ) is Lagrange multiplier for the onstraint

� ≡ i
2 Z̄

AZA = i
2 (ω

απα − π̄α̇ω̄
α̇)− χ̄χ ≈ 0 .

This onstraint is diret onsequene of the expressions for twistor transform.

The supertwistor norm � oinides with the superheliity of massless superpartile

desribed by this supertwistor. Thus, the fundamental twistor transformations atually

orrespond to superpartile whose superheliity is equal to zero.



Twistor super�eld

Twistor super�eld is found by quantizing twistor superpartile, by analogy with obtaining

twistor �eld.

The Poisson brakets yield the (anti)ommutators of basi operators

[ˆ̄ωα, π̂β ] = iδαβ , [ω̂α̇, ˆ̄πβ̇ ] = iδα̇
β̇
, {χ̂, ˆ̄χ} = − 1

2 .

We onsider the representation, in whih the operators ẐA are diagonal and

ˆ̄ZA
are realized

by di�erentiation operators

ˆ̄πα̇ = −i
∂

∂ωα̇
,

ˆ̄ωα = i
∂

∂πα
,

ˆ̄χ = − 1
2

∂

∂χ
.

Supertwistor wave funtion Ψ̃(Z) = Ψ̃(Z , χ) = Ψ̃(π, ω, χ) is de�ned by the quantum

ounterpart of the lassial supertwistor onstraint:

�̂Ψ̃(Z ) = 0 : 1
2

(

πα
∂

∂πα
+ ωα̇ ∂

∂ωα̇
+ χ

∂

∂χ

)

Ψ̃ = −Ψ̃ .

Thus, similarly to non-supersymmetri ase, the twistor super�eld of the system under

onsideration is the holomorphi homogeneous funtion of the homogeneity degree (−2):

Ψ(−2)(αZ) = α−2Ψ(−2)(Z) , α ∈ C .

In its expansion in respet to the Grassmann variable χ

Ψ̃(−2)(Z , χ) = Ψ(−2)(Z ) + χΨ(−3)(Z )

the �elds Ψ(−2)(Z ) and Ψ(−3)(Z ) desribe massless partiles with heliities 0 and 1/2
respetively.



Supertwistor super�eld transform

Obtained twistor super�eld produes the usual superspae-de�ned super�eld through

integral transformation, whih is a supersymmetri generalization of Penrose �eld transform.

Similar to purely bosoni ase, some of the variables in the twistor super�eld

Ψ̃(Z) = Ψ̃(Z , χ) = Ψ̃(π, ω, χ) are resolved by using the inidene onditions:

Ψ̃(−2)(Z)
∣

∣

∣





ωα̇ = xα̇α
L
πα

χ = θαπα





= Ψ̃(−2)(πα, xα̇α
L
πα; θ

απα) .

The subsequent ontour integral over λ produes the super�eld

Φ(xL , θ) =

∮

λdλ Ψ̃(−2)(πα, xα̇α
L
πα; θ

απα) .

The super�eld obtained in this way is automatially hiral D̄α̇ Φ = 0 and automatially

satis�es the mass shell equations �Φ = 0, ∂α̇αDα Φ = 0, DαDα Φ = 0. That is, the
supertwistor formalism give us the o�-shell desription of hiral supermultiplets.

���������

After desribing the twistor formulation of the superpartile, let us return to systems that

desribe massless/massive partiles with nonzero heliity/spin.

We have so far left unanswered the question of the spae-time formulation of suh systems.



Modi�ed twistor formulation of massless partile with nonzero heliity

In the twistor program of zero-heliity massless partile, its spae-time desription and its

link through twistor Penrose transformations with twistor formulation are well de�ned. For

partiles with nonzero heliity, twistor formulation is also well de�ned. But two important

questions arise regarding the other two elements of the twistor program: what kind of

twistor transformations for non-zero heliity and what spae-time system orresponds to the

twistor one in this ase?

To answer these two questions, we modify the twistor formulation and use the

onstrution that has analogies with the ase of the onsidered superpartile.

Let us onstrut dynamial system that is equivalent to the twistor formulation of

spinning partile and is similar to the twistor model of superpartile.

As suh a system, we onsider the system desribed by the ation

Stw
s =

∫

dτ
[

1
2 (Z̄ AŻA − ˙̄Z AZA) + i( ˙̄ξξ − ξ̄ξ̇)− l

(

i
2 Z̄ AZA − ξξ̄

)

− v
(

ξξ̄ − s
)

]

.

In addition to the Penrose twistor ZA, among the dynamial variables of this system there is

omplex c-number salar ξ , ξ̄ = (ξ) ,
whose omponents are anonially self-onjugate: due to the kineti term for ξ in ation,

their anonial brakets are { ξ, ξ̄ }P = i
2 .

The ation ontains additional onstraint

ξξ̄ − s ≈ 0 .
This onstraint is the �rst lass and gauges away exatly the two degrees of freedom present

in ξ. After eliminating the variable ξ, we obtain the twistor system of the massless spin

partile onsidered earlier.



Twistor transform in ase of nonzero heliities

Starting from the modi�ed formulation of the twistor partile of non-zero heliity, we an

restore both the twistor transformations and the spae-time formulation, if we use analogies

with the superpartile formulation.

By analogy with supertwistor transformations for superpartiles, twistor transformations for

massless partile of non-zero heliity, onneting the twistor formulation with the

orresponding spae-time one, are de�ned as follows:

pαα̇ = παπ̄α̇ ;

ωα̇ = xα̇απα + i ζ̄α̇ξ , ω̄α = π̄α̇xα̇α − i ξ̄ ζα ;

ξ = ζαπα , ξ̄ = π̄α̇ζ̄
α̇ .

In these expressions, the Weyl spinor ζα, ζ̄α̇ = (ζα)∗ arises in a natural way, whih belongs

to the spae-time desription. But now, unlike to the superase, spinor ζα is ommuting

c-numeri. It is intended to desribe the spinning degrees of freedom of relativisti partile.

Modi�ed twistor transformations solve the main problem, whih is to desribe the twistor of

non-zero norm. Namely, these relations resolve the onstraint

i
2 Z̄ AZA − ξξ̄ ≈ 0 ,

present in the ation, whih is equivalent at ξξ̄ ≈ s to the de�nition of the (nonzero for

s 6= 0) twistor norm.



Spae-time formulation of massless spinning partile

Applying twistor transformations to the twistor system of massless spinning partile

transforms it into equivalent system desribed by the spae-time oordinate xα̇α
and

ommuting Weyl spinor ζα. The resulting ation looks like

Ss.−t.
0,s =

∫

dτ
[

pαα̇w̃ α̇α − epαα̇pαα̇ − v(ζαpαα̇ζ̄
α̇ − s)

]

,

where the kineti term is determined by the quantity

w̃ α̇α = ẋα̇α − i ζ̄α̇ζ̇α + i ˙̄ζα̇ζα

and e(τ) and v(τ) are the Lagrange multipliers.

This system is like the superpartile. But instead of the Grassmann spinor θα, the
ommuting spinor ζα is used here. Also, there is additional term in ation �xing the heliity.

In the Hamiltonian formalism, this system is desribed by 3 �rst lass onstraints and 2

seond lass onstraints.

After quantization the system is desribed by the wave funtion

Φ(x, ζ) = ζα1 . . . ζα2sΦα1...α2s (x) ,

whih links to twistor �eld by the �eld twistor transform presented above.



Twistor transform in massive ase

The resulting spae-time formulation of massless spinning partile has a natural

generalization to massive ase. When generalizing, it is neessary to make a natural

replaement of the mass onstraint p2 → (p2 − m2). Therefore, the ation of massive spin-s
partile, in whih spin degrees of freedom are desribed by the Weyl spinor ζα, has the form

Ss.−t.
m,s =

∫

dτ
[

pαα̇w̃ α̇α − e
(

pαα̇pαα̇ − m2
)

− v
(

ζαpαα̇ζ̄
α̇ − s

)]

,

where w̃ α̇α = ẋα̇α − i ζ̄α̇ζ̇α + i ˙̄ζα̇ζα . In the Hamiltonian formalism, this system is desribed

by 1 �rst lass onstraint and 4 seond lass ones. and after quantization the system is

desribed by the wave funtion Φ(x, ζ) = ζα1 . . . ζα2sΦα1...α2s (x) , where (2J + 1)-omponent

�eld Φα1...α2s (x) = Φ(α1...α2s )
(x) satis�es �Φα1...α2s (x) = 0 and desribes massive spin J.

This spae-time formulation is interonneted with the previously onsidered twistor

formulation of massive spinning partile through twistor transform:

pαα̇ = πi
απ̄α̇i ;

ωα̇i = xα̇απi
α + i ζ̄α̇ξi , ω̄α

i = π̄α̇ix
α̇α − i ξ̄i ζ

α ;

ξi = ζαπi
α , ξ̄i = π̄α̇i ζ̄

α̇ .

Here there are used 2 twistors Z i
A = (πi

α, ω
α̇i ) , as was the ase earlier in the massive ase.

The SU(2)-spinor ξi
, used as the spin degrees of freedom of massive spinning partile, has

now arisen in a very natural way.

����������������-

Thus, we have desribed all the twistor designs planned in these letures.



Some issues not disussed (due to lak of time)

Twistor formulation of strings, membranes,...

Supertwistors in superstring theories.

Twistors in diverse spae-time dimensions.

Twistors and heliity spinors.

Twistors in alulating S-matrix and MHV formalizm.

Momentum twistors.



Thank you very muh for your attention !
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