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Measurements with prompt photons
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Attempt at using a more complex NN

Inspired by the work of Dimitrije Maletic (thanks!) and https://cds.cern.ch/record/2042173
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f: ReLl/f(z)= {

Dropout (p=0.1),

batchnorm for each layer (before activation)

Binary cross entropy loss (BCE):
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 Optimizer: Adam
(stochastic gradient descent +
adaptive moment estimation)

(Ir = 0.001, B; = 0.9, B, = 0.999, e=1e-8

2 hidden layers, 64 neurons each
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Inputs
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PiO rejection efficiency

Previous results

Rejection @ 80% efficiency
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Test set and train set were parts of the common dataset (2/3: train, 1/3: test)
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Effect of energy uncertainty on NN
performance

Train dataset: “correct” MC energy, the following taken into account:
e sampling fluctuations (energy deposition in lead/scintillator)
* longitudinal leakage

Test dataset: additional smearing (pseudo-real-data):
* miscalibration

e light attenuation

e and other effects not accounted for in MC simulation

How will the performance change?



Efficiency/Rejection

Results o I,

 test is produced same way as train
(but different data points)
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@ E =3gev_izo, barrel, 1[64, 64], cr: BCEWhLogitsLoss, ep = 50, batsize = 64, Irate = 0.001, opt: Adam:test = train
® E =3gev_izp, bamrel, L[64, 64], cr: BCEWhLogitsLoss, ep = 50, batsize = 64, Irate = 0.001, opt: Adam:test: 3 5% =gri{E] smeanng
® E =3gev_ise, barrel, L[64, 64], cr: BCEWshLogitsLoss, ep = 50, batsize = &4, Irate = 0.001, opt: Adam:test: 10%/sqrt(E} smearing
® | E =8gev_iso, bamrel, 1:[64, 64], cr: BCEWRhLogitsLoss, ep = 50, batsize = 64, Irate = 0.001, opt: Adam:test: 10% constant smearing
[ @ E=d8gev_iso, barrel, 1[64, &4], cr: BCEWhLogitsLoss, ep = 50, baksize = &4, Irate = 0.001, opt: Adarm:test: 20% consktant smearing
@ | E =8gev_iso, barrel, [64, 64], cr: BCEWhLogitsLoss, ep = 50, baksize = 64, Irate = 0.001, opt: Adam:test: 20% constant + 20% stochastic
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Conclusions

e Additional energy uncertainty of ~10% does not significantly
Impact the performance of n/y separation

e Significant impact on 1/y separation performance expected for
uncertainty > 15-20%

e After smearing, there is less dependence on incident angle and
distance between photons

* Preliminary result: for 5% additional stochastic uncertanity: 92-
95% 19 rejection for 80% Yy selection efficiency

Next steps:

e study endcaps, dependence on particle energy and the set of
Inputs



