Performance of Machine Learning Techniques for $\pi 0/\gamma$ Separation in SPD ECAL under Conditions Approximating Real Data

<u>Andrei Maltsev</u>

JINR, Dubna

SPD Physics & MC meeting 08.09.2021

Measurements with prompt photons

k: ratio of undetected $\pi^0/\eta/...$ decays (from MC) giving "fake" propmpt photons

Beam polarization via π^0 production assymetry: better statistics

Attempt at using a more complex NN

Inspired by the work of Dimitrije Maletic (thanks!) and https://cds.cern.ch/record/2042173

- o $O_i = f(W_{i0} + \sum_{j=1}^N W_{ij}O_j) \rightarrow \text{weighted sum} + \text{bias for each node}$ • f: **ReLU** $f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$ sigmoid for output: $f(x) = \frac{1}{1 + e^{-x}}$
 - **Dropout** (p=0.1),
 - **batchnorm** for each layer (before activation)
 - Binary cross entropy loss (BCE):

$$H_p(q) = -\frac{1}{N} \sum_{i=1}^{N} y_i \cdot log(p(y_i)) + (1 - y_i) \cdot log(1 - p(y_i))$$

• Optimizer: Adam (stochastic gradient descent + adaptive moment estimation) (Ir = 0.001, $\beta_1 = 0.9$, $\beta_2 = 0.999$, $\epsilon=1e-8$

2 hidden layers, 64 neurons each

Inputs

θ/φ moments:	Correlation:	Importance of tails:
$ x_{cog} _{25} = \left \frac{\sum_{i=1}^{25} E_i X_i^{rel}}{S_{25}}\right $	$r2 = \langle r^2 \rangle = S_{XX} + S_{YY} = \frac{\sum_{i=1}^N e_i((x_i - x_c)^2 + (y_i - y_c)^2)}{\sum_{i=1}^N e_i}$	$r2r4 = 1 - \frac{< r^2 >^2}{< r^4 >}$
$\sum_{i=1}^{25} E_i Y_i^{rel}$	$S_{XX} = \frac{\sum_{i=1}^{N} e_i (x_i - x_c)^2}{\sum_{i=1}^{N} e_i}, S_{YY} = \frac{\sum_{i=1}^{N} e_i (y_i - y_c)^2}{\sum_{i=1}^{N} e_i},$	Shape variable:
$ y_{cog} _{25} = \left \frac{2n - 1}{S_{25}}\right $	$S_{XY} = S_{YX} = \frac{\sum_{i=1}^{N} e_i (x_i - x_c) (y_i - y_c)}{\sum_{i=1}^{N} e_i},$	$\kappa = \sqrt{1 - 4\frac{S_{XX}S_{YY} - S_{XY}^2}{(S_{XX} + S_{YY})^2}} = \sqrt{1 - 4\frac{\det S}{\mathrm{Tr}^2 S}}$

Energy distribution						
$\frac{S_1}{S_9}$	$\frac{S_9 - S_1}{S_{25} - S_1}$	$\frac{M_2 + S_1}{S_4}$	$rac{S_6}{S_9}$	$\frac{M_2+S_1}{S_9}$		

Angle θ as an input variable (improves separation at high energies)
Total energy

 $X,Y \sim \theta, \phi$

 $S_1,\,M_2$ - 1st and 2nd largest energies

 S_9 , S_{25} - energy in 3x3, 5x5 region

 S_6 - maximum energy in 3x2 region containing S_1 and M_2

14 inputs

Previous results

Test set and train set were parts of the common dataset (2/3: train, 1/3: test) 5

Effect of energy uncertainty on NN performance

Train dataset: "correct" MC energy, the following taken into account:

- sampling fluctuations (energy deposition in lead/scintillator)
- Iongitudinal leakage

Test dataset: additional smearing (pseudo-real-data):

- miscalibration
- light attenuation
- and other effects not accounted for in MC simulation

How will the performance change?

Results

- test is produced same way as train (but different data points)
- 5.5%/sqrt(E_{cell}) smearing for test (each cell)
- 10%/sqrt(E_{cell}) smearing for test
- 10% smearing for test
- 20% smearing for test
- 20% + 20%/sqrt(E_{cell}) smearing for test

Results

Conclusions

- Additional energy uncertainty of ~10% does not significantly impact the performance of π/γ separation
- Significant impact on π/γ separation performance expected for uncertainty > 15-20%
- After smearing, there is less dependence on incident angle and distance between photons
- Preliminary result: for 5% additional stochastic uncertanity: 92-95% π^{0} rejection for 80% γ selection efficiency

Next steps:

 study endcaps, dependence on particle energy and the set of inputs