Multi-Wire gas-filled Electron Multiplier (MWEM) Crossing Wire – CWEM Parallel Wire – PWEM

Presented by S.Movchan (JINR)

A.Kashchuk^a, V.Bayev^b, O.Levitskaya^a, S.Movchan^c,

^a Petersburg Nuclear Physics Institute, Russia ^b Institute of Energy of the National Academy of Science of Belarus, ^cJoint Institute for Nuclear Research, Russia Известна конструкция колодезного электронного умножителя, в которой ликвидирован индукционный зазор – the WELL detector.

Появилось множество разновидностей, в частности, µRWELL.

Одни авторы рассматривают этот прибор, как разновидность GEM без индукционного зазора, другие – как разновидность MM со спейсером из каптона, выполненном травлением.

В конструкции μRWELL в качестве анода введено резистивное покрытие из алмазоподобного углерода (DLC) толщиной ~100 нм.

В этом приборе в выходном сигнале доминирует ионный "хвост", который ограничивает быстродействие. Без специальных мер практически до уровня МШРС снижается быстродействие, т.к. в длительности выходного импульса на считывающем электроде может доминировать даже не время транзита положительных ионов через зазор умножения, как в ММ, а время стекания заряда электронов Q- с резистивной поверхности анода на землю.

Конструкция µRWELL длительное время совершенствовалась с целью повышения быстродействия, пока не была достигнута загрузочная способность ~10⁷ с⁻¹см⁻², на два порядка превышающая возможности MWPC. Предложенные технические решения довольно сложные с двумя резистивными слоями.

Ниже – иной подход к повышению загрузочной способности WELL (µWELL) с резистивным анодом из DLC, нанесенном на густую печатную решетку.

The Well* (micro-Well) Electron Multiplier with the DLC anode — a key element of the robust 2D-position sensitive MPGD for high rates

2020 JINST 15 C09018 2020 JINST 15 C09041

Presented by S.Movchan (JINR)

A.Kashchuk^{*a*}, V.Akulich^{*b*}, K.Afanaciev^{*c*}, V.Bayev^{*d*}, A.Churakov^{*e*}, N.Kravchuk^{*e*}, N.Kuchinskiy^{*e*}, O.Levitskaya^{*a*}, A.V.Solin^{*c*}, A.A.Solin^{*c*}, S.Movchan^{*e*}, V.Tchekhovski^{*c*}

^a Petersburg Nuclear Physics Institute, Russia
^b Physical-Technical Institute of the National Academy of Science of Belarus,
^c Institute for Nuclear Problems of Belarusian State University,
^d Institute of energy of the National Academy of Science of Belarus,
^e Joint Institute for Nuclear Research, Russia

*) The WELL detector» R.Bellazzini et al., NIM A 423 (1999) 125

Figure 1. The Well Electron Multiplier in cross-section (a) and top view (b):

1 dielectric substrate with copper on one side (board 1)

2 1st electrode

b)

a)

3 blind well-like hole d = $200 \,\mu\text{m}$, s = $500 \,\mu\text{m}$, r~ $15 \,\mu\text{m}$, board thickness $500 \,\mu\text{m}$

4 resistive DLC layer (anode)

- 5 dielectric substrate with copper on both sides (board 2)
- 6 2nd electrode: copper mesh at various configurations of conductors surrounding either 1 hole (grid 1),
- or $4 = 2 \times 2$ (grid 2), $9 = 3 \times 3$ (grid 3), $16 = 4 \times 4$ (grid 4)
- 7 3rd electrode (strip/pad/pixel readout elements).

1st board Top view

2nd board Top view

Modifications of the 2nd electrode

DLC is deposited on top of the mesh

Resistivity vs. film thickness

RWELL (d200, s500, h500) at G~30k (n~15)

Uc=-600V_Utop=0V_Ubot=+1500V

Gas Gain parameterization $G=2^{(V-Vmin)/\Delta Vi}=2^n$

2 parametrs: 1) Vmin – Voltage at which multiplication process starts
2) ΔVi=26 eV – average energy per pair electron-ion production
n – number of equipotentials in multiplication gap

For multiplication V>Vmin, otherwise – transport without multiplication

Table 2.1.: Properties of noble and molecular gases at normal temperature and pressure (NTP: 20°C, one atm). E_X , E_I : first excitation, ionization energy; W_I average energy per ion pair; $dE/dx|_{min}$, N_P , N_T : differential energy loss, primary and total number of electron-ion pairs per cm for a unit charge minimum ionizing particle [46].

SIGNALS

Signals on the 1st and 2nd electrodes are symmetric at missing 3rd electrode (закон Кирхгофа)

Figure 14. The ion tail suppression in the resistive Well MPGD (grid 2, figure 1) at scale 5 mV/div and 200 ns/div by changing capacitance C^* (figure 4): no capacitor (a), 100 pF (b), 1 nF (c), 2 nF (d).

Raman spectra before (left) and after (right) 1 million discharges with 5 MeV alpha-particles at op. gas gain 6000

No visible DLC damage, see parameters sp3/sp2=(0.35+-0.02) before sp3/sp2=(0.37+-0.02) after

Conclusion

- Fast electron evacuation with mesh 0.5-2 mm
- Ion tail suppression to 1% on the amp. input, the residuals will be suppressed by the Base Line Restorer
- High counting rates ~50 MHz, pulse width ~20 ns
- Robust detector: no visible DLC damage at one million discharges at operational gain 6000, as shown with Raman spectra
- Similar method can be used in conjunction with other MPGD, e.g. MM

Multi-Wire gas-filled Electron Multiplier (MWEM) Crossing Wire – CWEM Parallel Wire – PWEM

Presented by S.Movchan (JINR)

A.Kashchuk^a, V.Bayev^b, O.Levitskaya^a, S.Movchan^c,

^a Petersburg Nuclear Physics Institute, Russia
^b Institute of Energy of the National Academy of Science of Belarus,
^c Joint Institute for Nuclear Research, Russia

NTNPD-2021

PWEM_d30s100h100g1000_-300/0/+350/+850V

E(z)_PWEM_d30s100h100g1000

Electric field norm (kV/cm)

Crossing Wire gas-filled Electron Multiplier (CWEM)

gives both X и Y coordinates with X/X0~0.02% using AlMg(5%) wires Typical wire diameter d=20-50 μm, pitch s≈πd, h>d

- 1 Gas-filled volume
- 2 Drift electrode
- $3-1^{st}$ wire electrode
- $4 2^{nd}$ wire electrode (with parallel or crossing wires)
- 5 Readout (3rd electrode/option)

Inefficiency of grid shielding

$$\sigma = \frac{s}{2\pi h} \cdot log\left(\frac{s}{\pi d}\right)$$

Buneman O., Granshjaw T.E., Harvey J.A. // Canad. J. Res. A. 1949. V.27. P.191

σ =0 at s= π d for any h, h>d

Similar to GEM one can use h~2 mm to transport electrons to the readout board, minimizing the ion tail contribution to the output pulse width.

Similar to MM one can use h~100 μ m (or even less) to minimize ion tail contribution to the output pulse width

Both PWEM and CWEM use h~2 mm similar to GEM and h~100 μm (or even less) similar to MM

To keep accurate planarity one can use technique developed for MM (pillars, etc.)

CWEM_d30s100h1000 with induction gap 1 mm

E(z)_CWEM_d30s100h100g1000

Electric field norm (kV/cm)

Gas Gain parameterization $G=2^{(V-Vmin)/\Delta Vi}=2^n$

2 parametrs: 1) Vmin – Voltage at which multiplication process starts
2) ΔVi=26 eV – average energy per pair electron-ion production
n – number of equipotentials in multiplication gap
For multiplication V>Vmin, otherwise – transport without multiplication

Table 2.1.: Properties of noble and molecular gases at normal temperature and pressure (NTP: 20°C, one atm). E_X , E_I : first excitation, ionization energy; W_I average energy per ion pair; $dE/dx|_{min}$, N_P , N_T : differential energy loss, primary and total number of electron-ion pairs per cm for a unit charge minimum ionizing particle [46].

To find Vmin we compare to MM-ATLAS Gas Gain parameterization $G=2^{(V-Vmin)/\Delta Vi}=2^n$

Vmin – Voltage at which multiplication process starts Δ Vi=26 eV – average energy/electron-ion pair production n – number of equipotentials in multiplication gap at V>Vmin

d40s63h128_Uc=+300V_Uw=0V_Ua=+1500V G~30000, n=15

Contour: Electric field norm (kV/cm) Streamline: Electric field Contour: Electric potential (V)

Field along red line between wires

d40s63h128_Uc=+300V_Uw=0V_Ua=+1500V G~30000

Electric field norm (kV/cm)

Field along red line across wire

d40s63h128_Uc=+300V_Uw=0V_Ua=+1500V G~30000

Electric field norm (kV/cm)

Single multiplication gap and induction gap

1Layer_PWEM_d30s100h100g100; -100/0/+350/+400 V

Double multiplication (cascade)

by changing voltage on induction gap at same geometry

2Layer_PWEM_d30s100h100g100; -100/0/+300/+600 V

Less diffusion without transport gap between cascades, if compare to Double/Triple-GEM

NTNPD-2021

Double multiplication (cascade)

by changing voltage on induction gap at same geometry

Less diffusion without transport gap between cascades, if compare to Double/Triple-GEM

NTNPD-2021

CWEM: material budget

CW_GEM d20(30)s60(100)						
		Density			\mathbf{Y}/\mathbf{Y} (0%)	
Material	X	(g/cm3)	X0 (g/cm2)	X0 (cm)	$\Lambda/\Lambda O(10)$	
	0,0004				0,0045	
AlMg(5%)	(0,0009)	2,7	24	8,9	(0,0101)	
	0,0004				0,0045	
AlMg(5%)	(0,0009)	2,7	24	8,9	(0,101)	
					<u>0,01 (0,02</u>)	With 2D readout
MWPC						
BeCu						
d50s1000	0,00025	8,96	12,7	1,43	0,0174	
Tungsten						
d30s2000	0,000045	19,2	6,76	0,35	0,0128	
BeCu						
d50s1000	0,00025	8,96	12,7	1,43	0,0174	
					<u>0,05</u>	With 2D readout
MicroMegas (MM)						
	0,0009					Without readout
Fe 18(30)/40 (70)µm	0,0025	7,873	13,8	1,76	<u>0,05 (0,15)</u>	board
GEM						
Cu 5 µm	0,00025	8,96	12,7	1,43	0,0174	
DI 50	0.0007	1.40	10.50	20.50	0.0007	
PI 50 μm	0,0025	1,42	40,58	28,58	0,0087	
Cu 5 µm	0,00025	8,96	12,7	1,43	0,0174	
						Without readout
					<u>0,05</u>	board

The Multi-Wire gas-filled Electron Multiplier (MWEM)

-1 -0.5 0 0.5 1 mm

Conclusion

PWEM/CWEM design configurations

- Single avalanche gap with parallel wires PWEM
- Single avalanche gap with crossing wires CWEM
- Double (cascade) gap with parallel wires 2L-PWEM (without transport gap)
- Triple gap, if necessary 3L-PWEM (without transport gaps)
- Double (cascade) gap with crossing wires 2L-CWEM (without transport gap)
- Triple gap, if necessary 3L-CWEM (without transport gaps)
- Similar to MicroGroove single raw of parallel wires located above the resistive readout electrode (μ R-MWEM)
- To keep accurate planarity one can use the technique developed for MM (bulk, thermal bonding, etc.)

Thanks