вм@к $\quad 1.5 \sigma$ matching window. Beam slope

- 1.5σ matching window
- Beam slope

BM@

1.5σ matching window

- Y spectrum of π^{+}for Data is closer to MC for 1.5σ than for 2.5σ
- The number of identified $\pi+$ for 1.5σ is -30% less than for 2.5σ

Beam slope

- Beam tracks reconstructed from Si hits with overflowing digits
- Positive Tx and Ty
- Ty is wider and not Gaussian

- The hit densities are similar for Data and MC, taking into account the positive Tx and Ty slopes of the beam and the spread of the beam slopes with and wo Eff ${ }_{\text {si/gem }}$

- Applying of Eff sigem $^{\text {distorts hit density significantly }}$
- Less than 30% of entries survive after applying Eff ${ }_{\text {sigem }}$

BM@N

BM@N

Backup

вм@п MC target geometry is improved, from $6^{\text {th }} \mathrm{CM}$

- Result: low part of MC $p_{\text {full }}$ spectrum decrease by $\sim 20 \%$

BM@
 Beam slope in the TOF700 analysis

- Double_t xangle_mean $=0.005$, xangle_sigma $=0.004$;
- Double_t yangle_mean $=0.005$, yangle_sigma $=0.003$;
- Double_t x_mean $=0.4193$, x_sigma $=0.7987$;
- Double_t y_mean $=2.591$, y_sigma $=0.6441$;
- Double_t z_start $=0.6485, d z=0.5165$;
- primGen->SetBeam(x_mean, y_mean, x_sigma, y_sigma);
- primGen->SetBeamAngle(xangle_mean, yangle_mean, xangle_sigma, yangle_sigma);
primGen->SetTarget(z_start, dz);
primGen->SmearVertexZ(kTRUE);
primGen->SmearGausVertexXY(kTRUE);

