Beam cooling and dumping at NICA collider

Anatoly Sidorin on behalf of NICA team

Schottky spectra at 4-th harmonics

- 1. Establishment of the Beam cooling division in AD
- 2. Electron cooling
- 3. Stochastic cooling
- 4. Transverse feed back system

Beam cooling division:

Leader: Andrii Kobets

Researchers:

Ivan Gorelyshev – stochastic cooling simulation Konstantin Osipov – RF structures and electronics for SC and feed-back Sergei Melnikov – Impedance simulations and instability analysis

Engineers:

Anton Sergeev – Assembly, test and operation of EC Sergei Semenov – Assembly, test and operation of EC Vladimir Filimonov: technology of fabrication

Electron cooling system

Mission: beam storage, luminosity preservation in SC dominated regime

Parameter	Value
Energy range, MeV	0.2÷2.5 MeV
High voltage stability (ΔU/U)	≤10 ⁻⁴
Electron current, A	0.1÷1
Diameter of the electron beam in the cooling section, mm	5÷20
Length of the cooling section, m	6
Bending radius of electrons in transport channels, m	1÷1.3
Magnetic field in the cooling section, kGs	0.5÷2
Vacuum pressure in the cooling section, mbar	10-11
Beta-function in cooler (horizontal/vertical), m	(11÷13)/(13÷14)
Transversal temperature of electrons, eV	50
Longitudinal temperature of electrons, meV	5,0

Electron cooling system

Under construction at BINP

Construction of E-Cooler magnetic system

Hall for HV-E Cooler commissioning in BINP

A.Kobets

Electron cooling system

A.Kobets

Cascade transformer

Delivery to Dubna – 2022 Start of operation - 2023

High current (IST) PS

Low current (corrector) PS

E-Cooler power supplies

Mission:

1. Counteract to IBS at collisions

Energy, GeV/u	3.0	3.8	4.5
IBS time, s	520	1130	1900

2. Support of beam storage and bunch formation

Configuration	Cooling method	Channel	Pickup	Kicker	ToF P→K, ns	Min. delay, ns
Start-up	Longitudinal Filter	L	Sum	Sum	635 – 645	405
Full	Horizontal	т	Combined	Combined	635 – 645	405
	Vertical				635 – 645	405
	Longitudinal Filter	L	Sum	Sum	635 – 645	405

I.Gorelyshev

The concept is based on cut pick-up/kicker structures with ceramic chamber inside (proposed for MAC in 2018).

Shift of the band from 2-4 GHz to 1-3 GHz permits to use filter method for the longitudinal cooling.

Division of the total band by the sub-bands permits to optimize PU/Kicker impedance.

The ceramic vacuum chamber permits to achieve the required vacuum conditions and separate systems of two rings.

The development of the concept was presented for MAC in 2019. Main problem of this concept was to provide required band and impedance of pickups and kickers.

The solution of this problem presented for MAC 2020 is the newly proposed band width 1~3 GHz, division of the band by 4 sub-bands, and design of PU/KK providing (in simulations) required parameters.

August 5, 2020 Video meeting among following members: F.Caspers (CERN), T.Katayama (Nihon University), R.Stassen (FZJ), I.Gorelyshev, S.Kostromin, I.Meshkov, K.Osipov, A.Philippov, A.Sidorin, G.Trubnikov (JINR).

Four independent Sub-

Ceramic Vacuum chambers

Tender procedure with four competitive companies Term of delivery: 6 month after signature of contract

- Uses surface wave in corrugated waveguide.
- Can be adopted for all 4 bands with different width of the dielectric inserts.
- Smooth and wide width Impedance response, flat Phase response.
- Impedance level and width can be controlled with the shape of corrugation plate.
- Impedance curve spikes can be damped with RF absorber.
- Simple to fabricate design. Replaceable sensors.

Expected fabrication – End of this year

Powerful amplifiers

Main parameters	Requirements	
	(long./trans.)	
model	-	R&S BBA150-D200
		(R&S)
Frequency band	1-3 GHz	0.69-3.2 GHz
Pout	200Watt (30Watt)	200Watt
Gain	>40 dB (>40dB)	55dB
Pin	<15 dBm	-3.4 dBm
Connector	N-type	N-type

Under contract with GSI - first part this month (test in the run at the Nuclotron SC)

Comb filters

Negotiations with GSI

Room for temporary storage and test of the equipment

Test of pick-up at Booster – nearest run (it depends on achievable ion energy)

Kicker of the Nuclotron SC will be replaced by ceramic chamber:

Tests of PU Cooling with kicker using existing PU

Start in the next year

September run: Vacuum chamber, two rings, preamplifiers, combiner were installed (design β = 0.9)

Stages of realization:

- Assembly of the vacuum chambers at the rings June 2022
- Start of operation of the first sub-band end 2022
- Sub-band by sub-band commissioning first half 2023

Mission:

- Dumping of coherent oscillations due to injection errors,
- Dumping of the transverse coherent instability,
- Q-meter, excitation of the transverse oscillations for transverse dynamics investigations.

Parameter			Value
Revolution frequency	f _{rev}	kHz	522,1/587,1
Beam r.m.s dimensions			
horizontal (β _{av} = 8.48 м)	σ _x	mm	2,83/1,59
vertical (β _{av} = 8.49 м)	σ _γ	mm	2,44/1,38
For estimations at injection($\beta_{inj} = 17 \text{ M}$)	σ_{inj}	mm	3,5
Betatron tune	Q_x/Q_y		9,44/9,43
Injection errors (β _{inj} = 17 м)			$\pm 2\sigma_{inj}$
static (orbit displacement)	e _{inj}		±0,8σ _{inj}
dynamic (injection kicker)			$\pm 1,2\sigma_{inj}$
Decoherence time	τ_{dec}/T_{rev}		800
Time of instability development (P.Zenkevich)	τ _{inst} /T _{rev}		400
Characteristic dumping time	τ_d/T_{rev}		100
Decrement	τ/T _{rev}		114
Minimum frequency	f _{min}	kHz	50
Maximum frequency	f _{max}	MHz	7
Frequecy (-3. dB)		MHz	2,8

Example of the impedance (longitudinal) optimization

-

S.Melnikov

The total longitudinal impedance of the NICA collider ring is represented by figures below for 2 operating modes – the beam collimation mode (collimators are put in working position) and the mode when collimators are in retracted position. For both modes, the results are presented for energy 3 GeV/u for the initial and shielded design of BPM, all other elements of the ring presented in the modified design. (Collimator unit - absorber and scraper, Kicker of the feedback system, Strip-line monitor, MPD Detector beam tube, Electronic cooling section beam tube)

Total magnitude impedance with initial (left) and modified BPM for the mode with retracted collimator (red curve) and beam collimation mode (blue curve).

As can be seen from the figures, the main contribution to the total impedance is given by BPM and there is practically no difference between the collimation mode and the mode with retracted collimators

Stability area for 3 GeV/u (orange curve) and ring impedance divided by harmonic number Blue curve – unshielded cavities Red curve – shielded ones.

Kicker			value
Angular deviation per turn	Δx′ _k	urad	9,1
Plates ($\beta_k = 20 \text{ m}$):	D_k/L_k	mm	100/1000
aperture/length			
Maximum Voltage	V _k	mV	3,4

Correction of phase-frecuency dependence

At the exit – analog signal.

Power amplifier: 0.1 – 7 (2.8) МГц

Nearest prototype: the Nuclotron Q-meter

RF Amplifier AR 800A3A

E.Gorbachev

Test bench for the BPM

E.Gorbachev

Libera Hadron system:

The COM Express module with GbE network, USB, video and JTAG interfaces.

4-channel BPM module. One Libera Hadron chassis

may host up to 4 such modules

Gigabit data exchange (GDX) module (optional): It is connected to the BPM modules with low-latency LVDS links. It is a common node for fast data streams from the BPM modules. Its resources are open for user-written applications or for one of the optional applications provided by Instrumentation Technologies.

Event receiver module: Used for synchronization and triggering purposes (Trigger, Postmortem,

Specifications:

- o 16 input channels (4 per module)
- 16 bit ADC
- o 250MS/s
- 6.5Gbps Rocket I/O
- o 4GB memory per module

Data paths:

- Broadband data (ADC@250MHz) -270MS (>1s of data), 4 channels
- Bunch-by-bunch data 200MS (>66s of data @1MHz bunch rep rate)
- Slow data stream (10 S/s)
- Fast data stream (10kS/s)

RF Clock, Reference clock); supports MRF and WR event decoding and distribution Output data:

- Raw(A,B,C,D)
- o calculated beam position (X,Y)
- Charge(SUM)
- $\circ~$ FFT, FFT peak

E.Gorbachev

Libera Hadron system:

Power amplifier + Impedance transformer

Negotiations with

China companies Triada (Novosibirsk) **Belorusian companies**

K.Osipov

800 watts CW. 10 kHz-3 MHz.

$\kappa_{1}(1SIDOV)$			
	Rated Output Power	800 watts	
	Input For Rated Output	1.0 milliwatt max	
	Power Output @ 3dB comp	ression	
	Nominal 800 watts	Min. 700 watts, 10 kHz - 2 MHz Min. 600 watts, 2 - 3 MHz	
	Power Output @ 1dB comp Nominal 500 watts / Min	ression 400 watts	
	Flatness	± 1.0 dB max	
	Frequency Response	10 kHz - 3 MHz instantaneously	
	Gain (at max. setting)	60 dB min	
	Gain Adjustment (continuou	us range) 23 dB min	
Noarost prototypo	Input Impedance	50 ohms, nominal	
Amplifier of the Nuclotron Q-meter	Output Impedance (switch s 12.5, 25, 50, 100, 150, 20 (10 kHz - 3 MHz) on from	elect; manual) 10, 400 ohms nominal nt panel	
800A3A	Mismatch Tolerance* Will operate without damage or oscillation with any magnitude and phase of source and load impedance. 100% of rated power without foldback up to 6.0:1 mismatch above which may limit to 400 upput suffaced paper. May limit at med output		
	Modulation Capability Will faithfully reproduce a appearing on the input sig limited to specified power Harmonic Distortion	AM, FM, or pulse modulation gnal. AM peak envelope power t	
	Minus 20 dBc max. at 40	0 watts power output	
	RF Input RF Output Remote Control IEEE-488/RS-232, US an external impedance	Type N female on front pane Type N female on front pane B ability to remote control and power e transformer.	
· 3. 5 ···· ··· ··· ··· ··· ··· ··· ···· ·	RF Power Display 0 - 1000 watts full scale. I separate display of forward	Directional power monitor allows d and reflected power.	
	Power Monitor BNC: 0 - 10V forward an	nd reverse power	
	Cooling	Forced air (self contained fans)	
	Primary Power	Universal, 85 - 137/180 - 300 VAC 47 - 63 Hz, 2500 watts max	
	Weight (max.)	36.4 kg (80 lb)	
	Size (WxHxD) 50.3 x 34 x 55.1 cm / 19.8	8 x 13.4 x 21.7 in	
	For external impedance trans sheet for IT2000 Series impe	sformer options, see specification dance transformers.	

Kickers

Feed back system includes 4 kickers: (Horizontal and vertical for both rings).

The kickers are located at room temperature straight section One upon other.

Each kicker – cylindrical vacuum chamber with two plates insulated from the ground.

Maximum design Voltage at the plates 4 kV.

Length of the plates 1000 mm.

Vacuum chamber diameter

150 mm.

Residual gas pressure

Kickers

Under fabrication by BEVATECH GmBH

Delivery to Dubna: March 2022

Stages of realization:

- Test of the kickers at test bench summer 2022
- Assembly of the kickers at the ring end 2022
- Start of the Q-meter operation end 2022
- Transverse feed-back full configuration

Thank you for your attention

Lasterner in the Ter