

Status and plans of the BM@N experiment

M.Kapishin

Baryonic Matter at Nuclotron (BM@N) Collaboration:

10 Countries, 20 Institutions, 240 participants

- University of Plovdiv, Bulgaria → MoU signed;
- St.Petersburg University → MoU signed;
- Shanghai Institute of Nuclear and Applied
 Physics, CFS, China;
- Nuclear Physics Institute CAS, Czech Republic→ MoU signed;
- CEA, Saclay, France;
- TU Darmstadt, Germany;
- GSI & FAIR, Germany;
- Tubingen University, Germany → MoU signed;
- Tel Aviv University, Israel;
- Joint Institute for Nuclear Research;
- Warsaw University of Technology, Poland→ MoU signed;
- University of Wroclaw, Poland → MoU signed;
- Institute of Nuclear Research RAS, Moscow, Russia → MoU signed; BM@N Experiment

- NRC Kurchatov Institute, Moscow;
- Institute of Theoretical & Experimental
- Physics, NRC KI, Moscow \rightarrow MoU signed;
 - Moscow Engineer and Physics Institute, Russia \rightarrow MoU signed;
- Skobeltsin Institute of Nuclear Physics, MSU, Russia → MoU signed;
- Moscow Institute of Physics and Technics, Moscow, Russia → MoU signed;
- Massachusetts Institute of Technology, Cambridge, USA.

Heavy Ion Collision Experiments

Future CBM experiment: Au+Au at $\sqrt{s_{NN}}$ ~ 2.7 – 4.9 GeV

EOS of symmetric and asymmetric nuclear matter

BM@N experiment

Ch. Fuchs and H.H. Wolter, EPJA 30 (2006) 5

EOS: relation between density, pressure, temperature, energy and isospin asymmetry

$$\mathsf{E}_{\mathsf{A}}(\rho,\delta) = \mathsf{E}_{\mathsf{A}}(\rho,0) + \mathsf{E}_{\mathsf{sym}}(\rho) \cdot \delta^2$$

with $\delta = (\rho_n - \rho_p)/\rho$ E/A(ρ_o) = -16 MeV

Curvature defined by nuclear incompressibility: $K = 9\rho^2 \ \delta^2(E/A)/\delta\rho^2$

Study symmetric matter EOS at ρ =3-5 ρ_0 \rightarrow elliptic flow of protons, mesons and hyperons

 \rightarrow sub-threshold production of strange mesons and hyperons

 \rightarrow extract K from data to model predictions

► Constrain symmetry energy E_{sym}

 \rightarrow elliptic flow of neutrons vs protons

 \rightarrow sub-threshold production of particles with opposite isospin

M.Kapishin

NICA main competitor \rightarrow STAR experiment: BES Fixed Target program Collected 2.10⁹ interactions of Au+Au at \sqrt{s} = 3 GeV in 2021

Plan for BM@N Experimental physics run for 800 hours (33 days) in spring 2022

BM@N: Estimated hyperon yields in Xe + Cs collisions

4 A GeV Xe+Cs collisions, multiplicities from PHSD model, Beam intensity 2.5·10⁵/s, DAQ rate 2.5·10³/s, accelerator duty factor 0.25 1.8·10⁹ interactions

1.8.10¹¹ beam ions

E _{thr} NN	М	3	Yield/s	Yield / 800		
GeV	b<10 fm	%	b<10fm	hours		
1.6	1.5	3	220		0.8·10 ⁸	
3.7	2.3·10 ⁻²	1	1.1		4·10 ⁵	
6.9	2.6·10 ⁻⁵	1	1.3·10 ⁻³		470	
7.1	1.5·10 ⁻⁵	3	2.2·10 ⁻³		800	
	E _{thr} NN GeV 1.6 3.7 6.9 7.1	$E_{thr}NN$ MGeVb<10 fm	$E_{thr}NN$ MεGeVb<10 fm	$E_{thr}NN$ M ϵ Yield/sGeVb<10 fm	$E_{thr}NN$ MεYield/sYield/sGeVb<10 fm	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Plan for BM@N experimental physics run with Au (Bi) beam for 800 hours (33 days) in spring 2023

BM@N: Estimated hyperon yields in Au+Au collisions

4 A GeV min. bias Au+Au collisions, multiplicities from statistical model, Beam intensity $2.5 \cdot 10^{5}$ /s , DAQ rate $2.5 \cdot 10^{3}$ /s, accelerator duty factor 0.25

Experimental run for 800 hours (33 days)

1.8 \cdot 10⁹ interactions 1.8 \cdot 10¹¹ beam ions

Particle	E _{thr} NN	M	M	3	Yield/s	Yield / 800	
	GeV	central	m.bias	%	m. Bias	hours	
						m. Bias	
[1]	3.7	1.10 ⁻¹	2.5·10 ⁻²	1	2.5	4.5·10⁵	
Ω	6.9	2·10 ⁻³	5·10 ⁻⁴	1	5·10 ⁻²	0.9·10 ⁴	
Anti- Λ	7.1	2.10-4	5·10 ⁻⁵	3	1.5·10 ⁻²	2700	
Ξ +	9.0	6·10 ⁻⁵	1.5·10 ⁻⁵	1	1.5·10 ⁻³	270	
Ω^+	12.7	1.10 ⁻⁵	2.5·10 ⁻⁶	1	2.5·10 ⁻⁴	45	
To perform main BM@N physics program need					^3H	0.9·10 ⁵	

10 times more statistics $\rightarrow 2.10^{10}$ interactions

Comparison HADES, STAR FxT, BM@N

	year	A+A	E _{kin} A GeV	# Events	Rare Observables		vables
					e+e-	Ξ ⁻ , Ω ⁻	hypernuclei
HADES	2012	Au+Au	1.23	7·10 ⁹	\checkmark		
HADES	2019	Ag+Ag	1.58	1.4·10 ¹⁰	\checkmark		800 ³ _A H
STAR FxT	2018	Au+Au	2.9	3·10 ⁸		10 ⁴ Ξ ⁻	10 ⁴ ³ _Λ H, 6·10 ³ ⁴ _Λ H,
STAR FxT	2021 planned	Au+Au	2.9	2·10 ⁹		7·10⁴Ξ⁻, Ω⁻?	7·10 ⁴ ³ _A H, 4·10 ⁴ ⁴ _A H, ⁵ _A He, ⁷ _A Li, ⁷ _A He, ?
BM@N	simulated	Au+Au	3.8	2·10 ¹⁰		$5 \cdot 10^{6} \equiv^{-1}$ Expected: $10^{5} \Omega^{-1}$ $3 \cdot 10^{4}$ anti-Λ $5 \cdot 10^{2} \Omega^{+1}$	10 ⁶ ${}^{3}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ H, ${}^{5}_{\Lambda}$ He, ${}^{7}_{\Lambda}$ Li, ${}^{7}_{\Lambda}$ He, Expected: 10 ² ${}^{5}_{\Lambda\Lambda}$ H

Reaction rates: HADES \approx 20 kHz, BM@N \approx 20 kHz, STAR FxT \approx 2 kHz

Energy Au beams: HADES: 0.2 - 1.25 A GeV, BM@N: 1.5 – 3.8 A GeV, STAR FxT: > 2.9 A GeV Conclusion:

HADES and BM@N are complementary , no cascade hyperons (Ξ^-, Ω^-) at HADES Statistics at BM@N \approx 70 times higher (Ξ^-) than at STAR FxT

M.Kapishin

For heavy ion beam intensities of few 10^6 Hz \rightarrow keep 4 STS + 7 GEM

 \rightarrow fast FEE and readout electronics

BM@N main detector activities towards heavy ion run BM@N

Central tracking system

GEM detectors

Forward Silicon Tracker

Carbon fiber vacuum beam pipe

Forward Hadron Calorimeter and Hodoscope

Outer tracker: Cathode Strip Chambers

Silicon Tracking System

Beam parameters and setup at different BM@N stages of the BM@N experiment

Year	2016	2017 spring	2018 spring	2022 spring	2023	After 2023
Beam	d(↑)	С	Ar,Kr, C(SRC)	Xe	Au (Bi)	Au (Bi)
Max.inten sity, Hz	0.5M	0.5M	0.5M	0.5M	0.5M	2M
Trigger rate, Hz	5k	5k	10k	10k	10k	up to 50k
Central tracker status	6 GEM half planes	6 GEM half planes	6 GEM half planes + 3 forward Si planes	7 GEM full planes + 3 forward Si planes	7 GEM full planes + 4 forward Si + 2 large STS planes	7 GEM full planes + 4 large STS planes
Experimen tal status	technical run	technical run	technical run+physics	stage 1 physics	stage1 physics	High rate stage 2 physics

SRC physics run with C12 beam (4 weeks of data taking)

• Only Nuclotron with laser source is sufficient

Limitations / requirements for BM@N physics run with Xe beam in spring 2022 (800 hours of physics data taking to collect 2.10⁹ Xe + Csl interactions)

- Need Booster Nuclotron accelerator system
- Need 2 months for transition from SRC set-up to heavy ion setup + 0.5 month for magnetic field map measurement
- Full vacuum transport channel from Nuclotron to BM@N
- Xe beam of maximal possible energy (up to 3.9 AGeV)
- Need few days for technical run before physics run to prove beam quality and detector response, in case of problems → postpose physics run
- If SRC run extends to January 2022:
 → only chance to shift BM@N physics run to April May 2022

Requirements for BM@N physics run with Bi beam in spring 2023 (800 hours of physics data taking to collect 2.10⁹ Bi + Bi interactions)

- Full vacuum transport channel from Nuclotron to BM@N
- Bi beam energy of maximal possible energy (up to 3.8 AGeV)

► To perform main BM@N physics program need 10 times more statistics \rightarrow 2·10¹⁰ Bi+Bi interactions with beam energies from 1.5 AGeV up to 3.8 AGeV

Need also C + C and Xe + Csl interactions at these energies for reference

Thank you for attention!

M.Kapishin

Beam tracing through BMN beam pipe and profile monitoring

First task of the next run \rightarrow trace beam and monitor its profile in the end of the setup (try to find optimal trajectory to reduce background)

Nuclotron and BM@N beam line

26 elements of magnetic optics:

- \rightarrow 8 dipole magnets
- \rightarrow 18 quadruple lenses

Requirements for Au beam:

Minimum dead material

 \rightarrow need to replace air intervals / foils with

Feasibility studies for first physics run: Ξ^{-} and $_{\Lambda}H^{3}$ reconstruction in Xe +A interactions: 3 Forward Si + GEM

200 Entries / 1 MeV/c² $\Xi^{-} \rightarrow \Lambda + \pi^{-}$ **5M** interactions **AGeV** 150 Mass = 1.3213Sigma = 0.0010100 S/B = 3.0 $S/\sqrt{S+B} = 15.8$ Eff. = 0.6%50 1.28 1.32 1.3 1.34 1.36 1.38 M_{inv} , GeV/c² Entries / 1 MeV/c² $_{\Lambda}H^{3} \rightarrow He^{3} + \pi^{-}$ Mass = 2.9916300 for 140M Sigma = 0.0010Generated E GeV/c S/B = 1.1interactions 3.5 $S/\sqrt{S+B} = 16.4$ 200 ۰, Eff. = 0.3%2.5 100 1.5 2.942.96 2.98 3.02 3.04 0.5 3 M_{inv} , GeV/c² 0<u>-</u>1 -0.50 0.5 1.5 2 1

DCM-SMM model: Xe + Sn , T₀= 3.9 AGeV

BM@N

M.Kapishin