

Spin transparency mode at the NICA collider

Y. Filatov, A. Kondratenko, M. Kondratenko MIPT, Dolgoprudniy, NTL Zaryad, Novosibirsk

14 December 2021, JINR, Dubna

Outline

- 1. Spin Transparency mode in the NICA collider with solenoid snakes
- 2. Spin Transparency mode in the NICA collider at integer spin resonances
- 3. 3D spin navigators based on correcting dipoles
- 4. Conclusion

1-st stage of operating with polarized beams in the ST mode

First configuration: ST mode with the MPD and 6T-solenoid

p up to 1.60 GeV/c
d up to 0.49 GeV/c
He³ up to 3.66 GeV/c

Second configuration: ST mode with four 6T-solenoid

p up to 3.20 GeV/c
d up to 0.98 GeV/c
He³ up to 7.32 GeV/c

Y. Filatov. *Spin transparency mode at the NICA collider*, JINR, Dubna, 14 December, 2021

ST mode at integer spin resonances for protons

- > Synchrotron oscillations lead to a series of satellite resonances
- The number and strengths of satellite resonances increases with energy
- The problem of delivering of a polarized beam to the ST-resonance region
- It is required to develop spin navigators taking into account synchrotron oscillations

Spin navigator based on two weak solenoids

APOL: polarization control in the collider plane (radial and longitudinal polarization)

Y. Filatov. *Spin transparency mode at the NICA collider*, JINR, Dubna, 14 December, 2021

3D spin navigator based on correcting dipoles

$$\nu_{nav}n_i = \frac{1}{2\pi} \int_0^L \left[\frac{b_x}{B\rho} F_{xi} + \frac{b_y}{B\rho} F_{yi} \right] dz$$

 b_x, b_y are navigator's dipoles (existing correcting dipole) F_{xi}, F_{yi} are radial and vertical spin response functions

Spin navigators based on solenoids and dipoles

Navigator fields	additional solenoids	existing correcting dipoles
Polarization control	2D-navigator	3D-navigator
Distortion of the closed orbit	No	Yes
Momentum dependence	(<i>BL</i>) _{nav} is proportional to the beam momentum	$(BL)_{nav}$ is weakly dependent on the beam momentum
$v_{nav} = 0.01$ at 13.5 GeV/c	$(BL)_{nav} \sim 0.5 \text{ T} \cdot \text{m}$	$(BL)_{nav} \sim 0.01 \mathrm{T} \cdot \mathrm{m}$
Compensation of the ST-resonance strength	partial compensation	complete compensation

It is required:

- to analyze the influence of synchrotron oscillations on polarization in the region of integer spin resonances
- to develop 3D spin navigators based on correcting dipoles
- to provide simultaneous measurement of the radial and vertical polarization components

