Solenoid for Polarized Particle Detector SPD NICA from the Nuclotron-type Superconducting Cable

H. Khodzhibagiyan, A. Kotova, G. Kuznetsov, D. Nikiforov, V. Novikov and E. Sergeeva

JINR, Dubna, December 14, 2021, SPD collaboration meeting

Introduction

• The SPD magnet is designed to create a uniform magnetic field with a nominal induction of 1.0 T in its aperture. The superconducting solenoid will be surrounded by an iron yoke designed to close the magnetic flux and form a magnetic field with the required uniformity.

Magnet requirements:

- Maximum field on the solenoid axis B z \leq 1 T
- Uniformity of the magnetic field on the axis dB z / B z \leq 0.05
- The diameter of the "warm" aperture 3.2 m
- Solenoid length 3.8 m

Solenoid Design

The technology with the use of a hollow composite superconducting cable, proposed at the VBLHEP and well-proven in the magnets of the Nuclotron, was chosen as the basis for the manufacture of the solenoid. VBLHEP has a base for the production of such a cable, which requires only the modernization of the existing equipment.

Hollow SC cable of the SPD solenoid: 1 - a tube with a channel for cooling; 2 - superconducting wire; 3 - polyimide tape; 4 - glass fiber tape, impregnated with epoxy compound for hot hardening.

Solenoid Winding

A solenoid with an average winding radius of 1.742 m and a length of 3.8 m must have a high uniformity of the magnetic field in the aperture. The two-layer winding is planned to be made of 10 coils, 2 sections each. The 0.38 m coil contains 30 turns of hollow superconducting cable.

Manufacturing of coils

Winding of 10 coils is carried out on a mandrel made of stainless steel. Profiled copper inserts are laid below and above each layer of the coil, filling the voids between the turns. At the bottom of each layer of the coil, shunts are laid - winding heaters, which are necessary to protect against overheating at quench. A bandage of stainless steel wire is wound over the coil. After winding of both sections of the coil, the coil is heat treated in order to polymerize the epoxy compound. The assembly of the coils among themselves is carried out on the special device. In this case, the mandrels of the individual coils are mechanically interconnected. Then the helium cooling lines of the solenoid are connected and the electrical connections between the coils are made.

Solenoid coil details

Winding cable characteristics

Cable			
Helium cooling channel diameter	m	4·10 ⁻³	
Cooling tube outer diameter	m	5·10 ⁻³	
Cooling tube material		Cu	
Number of strands		19	
Lay pitch of strands	m	0.1	
Diameter with insulation	m	7.44.10-3	
Copper sectional area	m ²	15,77.10-6	
Superconductor sectional area	m^2	3,38.10-6	
Cu/SC ratio		4,66/1	
Length in section	m	328,3	
Total length in the winding	m	6 566	
Strand			
Diameter	m	9.0.10-4	
Superconductor		Nb-Ti/Cu	
(Nb-Ti) / Cu – volumetric ratio		1 / 2,57	
NbTi filament diameter	μm	7	
Operational current, I _{max}	Α	270	
Critical current @ 2T and 4.2K	Α	≥ 670	

Main characteristics of winding

Support cylinder			
Inner diameter	m	3.455	
Outer diameter	m	3.465	
Material	Steel 12X18H10T		
Winding			
Nominal (maximal) magnetic field,	Т	1.0	
B_0			
Inner diameter	m	3.465	
Outer diameter	m	3,498	
Length	m	3.8	
Number of layers		2	
Number of winding sections		2 * 10	
Number of turns		30 x 2 x 10	
Operational current, I _{max}	А	5067	
Inductance	Η	1.144	
Stored energy @ I _{max} , E	MJ	14.7	

Cooling system

The solenoid winding is cooled by a supercritical pressure helium flow which is forced through the cooling channel of the cable. There are a total of 20 parallel cooling channels. Each section of the solenoid is connected in parallel to the supply and return helium headers. The operating temperature of the winding is 4.8 K, the nominal flow rate of liquid helium through the solenoid is about 16 g/s. The cold mass of the solenoid is about 7.9 tons. Cooling of the solenoid is planned from a helium refrigerator with a nominal cooling capacity of 100 W, which will be installed close to the SPD.

Cooling system

Calculated heat load

Heat inflow		
Residual gases	W	7.6
Thermal radiation	W	6.2
By suspensions	W	14.4
By current leads	W	11.0
Total	W	39.2

Cooling system

Cold	mass	at 4.	8 K
------	------	-------	-----

Cu in conductor, M_1	kg	560	
Cooling tube, M ₂	kg	413	
Cu inserts in winding voids, M_3	kg	2 402	
Brass electrical shunts, M ₄	kg	162	
SS bandageM ₅	kg	1670	
SS mandrel, M ₆	kg	2 500	
<i>Nb-Ti</i> alloy in strands, M ₇	kg	158	
Total	kg	7 865	
Cooling			
Method	Forced circ	ulation of	
	supercritical l	nelium flow	
Operating temperature	K	4.8	
Operating pressure	MPa	0.3	
Heat load at operational condition	Вт	≤ 40	
Heat load at energy input	W	≤74	
Nominal He mass flow rate	kg/s	16 ·10 ⁻³	
Number of parallel cooling channels		20	
Nominal pressure drops in channel	kPa	≤ 50	
Pressure in cooling channel	MPa	<u>≤</u> 3	
Cool down time from 300 K to 4.8 K	hour	\geq 50	

Quench protection system

Protection of the magnet against overheating at its transition from the superconducting condition to the normal state is achieved by solenoid sectioning and uniform dissipation of energy over the whole winding. For this purpose the winding is divided into 20 electrical sections.

The energy stored in the magnet is dissipated both on the external resistance and on 20 shunts - heaters located on the inner radius of each layer of the winding. External resistance R0 = 0.04 Ohm limits the maximum voltage relative to "ground" to ± 100 V. The shunts divide the winding into 20 sections, in each of which a shunt made of brass tape is connected parallel to the winding section. The shunt is electrically connected in parallel to the SC cable of its section and has good thermal contact with the SC cable along its entire length, which provides a very high velocity of the normal zone propagation in the winding.

Quench protection system

The part of energy released in the winding will be about 54% of the energy stored in the solenoid or 7,900 kJ, and the time constant of the energy dissipation process will be about 13 s. The estimation of the maximum heating temperature of the winding as a result of its transition to the normal state (quenching) is made under the following assumptions:

- the energy released in the solenoid dissipates in superconducting wires, copper tube and copper inserts;
- normal zone propagation velocity $v = \infty$.

 $\Delta T \approx 0.54 \text{ E} / (\text{M} \cdot \text{C}), \text{ K}$

where: E - stored energy at maximum current Imax; M = M1 + M2 + M3, where M1 = 560 kg is the mass of copper in the SC wire, M2 = 413.2 kg is the mass of the copper tube, M3 = 2402 kg is the mass of copper inserts; C = 39.31 J/(kg · K) - the value of the heat capacity of copper at an average temperature of 34.1 K.

∆T ≈ 59.8 K, **T max ≤ 65 K**

The basic characteristics of the cryostat

Length	m	4.0
Diameter of heat shield at 80 K:		
Inner shield	m	3.305
Outer shield	m	3.617
SS vacuum shell diameter:		
Inner shell	m	3,175
Outer shell	m	3,767
Number of solenoid supports		24
Mass of vacuum shells	kg	15330
Mass of thermal shields	kg	1340
Total mass of the cryostat	kg	16700

Thank you for your attention