

Report of the technical coordinator

Alexander Korzenev, JINR LHEP

SPD Collaboration Meeting Dec 13, 2021

Outline

- Experiment. hall & detector layout slide 2-7
- Magnetic system
 Slide 8-12
 V to D to to (VD)
- Vertex Detector (VD) slide 13-16
- Straw Tracker (ST) slide 17-19
- Time-of-Flight (ToF) slide 20-21
- Summary for PID detectors slide 22
- Electromagnetic calorimeter (ECal) slide 23-24
- Range System (RS) slide 25-26
- Polarimetry and luminosity control slide 27
- Zero Degree Calorimeter (ZDC) slide 28-29
- Agenda for hardware session slide 30
- Conclusions

• All interior work in the SPD hall will be completed this winter • Under-rail plates and rails will be installed next spring • The concrete block wall (biological protection) and the bridge between two balconies will be installed at the end of spring. Thus the accelerator tunnel will be isolated from the hall Π

+15 cm in radius w.r.t. CDR

- 6 coils inside ECal were replaced by a single cryostat outside ECal
- Complete set of detectors

• Position of the detector during data taking

- Position of the detector during data taking
- Accelerator tunnel will be isolated from experimental hall

Two options for the SC magnet technology

E.Pyata et al.

Option based on the <u>PANDA cable</u>

- The team of the Budker Institute of Nuclear Physics / Novosibirsk.
- The PANDA magnet will be moved to GSI in 2024 for final tests
- The Rutherford cable with 8 strands extruded in Al matrix
- Design of cryogenic system (refrigerator, pipelines and so on) in JINR

Option based on the <u>NICA cable</u>

- Coil construction similar to one used for the NICA magnets (produced in JINR)
- Two layers of NbTi/CuNi cable. The same cable as used in Nuclotron magnets: hollow superconductor with the helium flows inside (~4 K)
- Design of cryogenic system (refrigerator, pipelines and so on) in JINR

E.Pyata S.Pivovarov A.Krasnov

Option based on the PANDA cable

- The Rutherford cable with 8 strands extruded in Al matrix
- Cooling provided by liquid helium which circulates in pipes welded to the outside of the coil former

- Preliminary estimates for deformations shows satisfactory results
- The BINP team visited JINR for one week in October
- The PANDA magnet will be moved to GSI in 2024 for final tests. Engineers will be available for the SPD magnet in 2023-2024

H.Khodzhibagiyan et al.

Option based on the NICA cable

- Two layers of NbTi/CuNi cable. The same cable as used in Nuclotron magnets: hollow superconductor with the helium flows inside (~4 K)
- Will require an intensive R&D since coils of large size made of Nuclotron-type cable has never been constructed before
- Main issue is a quench handling

I.Moshkovsky

Magnetic field calculation (cryostat outside ECal)

Infrastructure for the cryogenic system

Silicon Vertex Detector (VD)

- DAC requested to consider MAPS-only option
- There is no sizable impact to the spatial resolution of the vertex position
- Momentum resolution was improved significantly, by the factor of ~1.5
- Silicon VD will not be built by the start of data taking (2028). To be replaced by something else (MicroMegas?)

- Inner tracking system of SPD: barrel + endcaps
- Reconstruction of D meson decay vertices
- 5 layers = 2 DSSD + 3 MAPS (CDR version)
 - Double Side Silicone Strip (DSSD), 300 μm thickness, strip pitch 95 μm - 281 μm
 - Monolithic Active Pixel Sensors (MAPS) designed and produced for ALICE, pixel size 29 μm × 27 μm

MicroMegas proposal for the Vertex Detector

- For the first years of the experiment, it is proposed to replace the silicon vertex detector with a simpler and cheaper to manufacture MicroMegas
- It is assumed that MicroMegas for SPDs will be manufactured using bulk technology. Namely, PCB (~ 300 μ m) with readout strips and a grid represent a single module made by photolithography methods. The cathode is glued to this module on a cylindrical frame. The gap and the shape of the detector are set by the power elements glued along the edges.
- A FE board based on the VMM3 chip is supposed to be used as the readout electronics. A convenient option for us is hybrid128 (2 VMM3 chips, 128 channels), developed by the RD51 collaboration. составит минимум 8%

Cross section and developed views of one detector

MicroMegas proposal for the Vertex Detector

 The number of channels is about 25 thousand (~ 200 boards, ~ 400 chips), power consumption ~ 2 kW. It is necessary to develop a cooling system

Cylindrical Micromegas

Segmentation and preparation

Gluing of the side carbon ribs on circular shape

Electric leak test

Gluing of additional ribs

Setting drift plane

Gluing of the drift plane

CEA/IRFU - Maxence Vandenbroucke - RD51 - 12/2

7

Negotiation with the team of CEA/Saclay is ongoing!

Temur Enik

Straw Tracker (ST)

- Main tracker system of SPD
- Barrel is made of 8 modules with up to 30 doublelayers, with the *ZUV* orientation
- Endcaps are made of 12 double-layers with the *XYUV* orientation
- Maximum drift time of 120 ns for \emptyset =10mm straw
- Spatial resolution of 150 μm
- Expected DAQ rate up to MHz. Electronics is a limiting factor. VMM3 as ASIC for readout
- Number of readout channels ~50k

The straw tracker are using of in the different experiments.

Straw winding

- ATLAS
- LHCb ٠
- PANDA(overpressure)
- CBM
- COMPASS
- Mu2e(vacuum)
- NA64
- SVD-2
- GLUEX
- COZY-TOF

Straw welding

- NA62(vacuum)
- COMET(vacuum)
- SHiP(vacuum)
- DUNE(overpressure)
- ••

Two design of the straw-tube production

Straw winding. Two films revolve and stick together among themselves.

straw diameter from 2 mm to 18 mm

Ultrasonic welding of straws

straw diameter from 5 mm to 20 mm

both of these technologies are well developed at JINR

MiniSPD testing facility

DAQ BM&N and MPD Straw+Vertex+Colorimeter

Spatial resolution 180mkm (should be ~150 um for a single tube)

TOF system: Tsinghua and Protvino

geometry	Barrel	End-cap
A.Semak Protvino		
Yi Wang Tsinghua		

Hybrid TOF system

R=105 cm

R=85 → **105 cm**

Barrel-module (Protvino)

Length= $40 \rightarrow 44$ cm Width=33 cm Height=2.5 cm

Geometry Barrel as from Protvino

End-cap-module (Tsinghua)

Width1=14.0 cm Width2=34.0 \rightarrow 42 cm Length=70 \rightarrow 85.0 cm Height=3.0 cm

Geometry End-Cap as from Tsinghua ¹⁸

Presented by A.Ivanov at S&C meeting on 26.10.2021

PID analysis in SPD (π , K, p)

π/K separation

- Short tracks (R<1m) to be identified by straw up to 0.7 GeV/c
- Long tracks (R>1m) to be identified by straw+TOF up to 1.5 GeV/c
- tracks with p>1.5 GeV/c to be identified by aerogel

Electromagnetic Calorimeter (ECal)

- Purpose: detection of prompt photons and photons from π⁰, η and χ_c decays, discrimination h ↔ l
- Number of radiation lengths 18.6X₀

O.Gavrischuk

- 200 layers of lead (0.5 mm) and scintillator (1.5mm)
 - Size of one sandwich: $4 \times 4 \times 40$ cm³
- Energy resolution is $\sim 5\%$ at 1 GeV
- Total weight is 40t (barrel)+2×14t (endcap) = 68t
- Total number of channels is ~30k

Electromagnetic Calorimeter (ECal)

Range System (RS)

barrel = 8 modules

Results of beam tests of RS prototype (10 ton, 4k ch) at CERN

- 20 layers of Fe (3-6 cm) interleaved with gaps for Mini Drift Tube (MDT) detectors
- Total mass ~850 t, at least $4\lambda_I$
- The design will follow closely the one of PANDA
- MDT provide 2 coordinate readout (~100 kch)
 - Al extruded comb-like 8-cell profile with anode wires + external electrodes (strips) perpendicular to the wires

Detectors for local polarimetry and luminosity control

BBC: V.Ladygin, A.Baldin

ZDC: I. Alekseev

Zero Degree Calorimeter (ZDC)

ZDC will be locates in 'cold' zone between two beampipes

- Discussion with accelerator people (Syresin, Meshkov, Butenko) on 27.10.2021.
- Agreed on: 4 identical zones in the region of beampipe merging to be allocated for ZDC
- Funds to be shared in equal proportion between SPD, MPD and Accelerator teams.
- Two ZDC prototypes to be ready in 2023

I.Alekseev

Zero Degree Calorimeter (ZDC)

- Weight is ~100 kg
- Located inside the cryostat (vacuum, about -200 °C)
- To be loaded section-by-section
- About 1000 DAQ channels
- Two few-section ZDC prototypes to be ready by the beginning of 2023

		< Mon 13	3/12 Tue 14/12	Wed 15/12	All days			>
					🛛 🖴 Print	PDF Full scree	en Detailed view	Filter
							Session legend	
		• На	rdware Session: accel	erator,				×
		11:00	Spin transparency	mode at the NIC	A collider			Yury Filatov 11:00 - 11:20
• Hardware session tomorrow			SPD experimental	hall status				Alexey Livanov 11:20 - 11:35
• FEE and DAO today after lunch			SPD magnet based	l on PANDA cable	e			Evgeniy Pyata 11:35 - 11:55
• TEE and DAQ today after functi	1	12:00	SPD magnet based	i on NICA cable			Hamlet	Khodzhibagiyan 11:55 - 12:15
			MM proposal for V	D				Dmitry Dedovich 12:15 - 12:35
			Straw Tracker (ST)					<i>Temur Enik</i> 12:35 - 12:55
		13:00						
Updated approach for DAQ and Front-End Electronics Interface.	Leonid Afanasyev	14:00	MRPC for PID syst	em (Tsinghua)				<i>Yi Wang</i> 14:00 - 14:20
Proposed approaches for the time synchronization in the streaming DAQ at SPD.	Andrei Antonov 14:25 - 14:50		MRPC for PID syst	em (Protvino)				Artem Semak 14:20 - 14:40
Status of the offline computing system	Artem Petrosyan et al. 14:50 - 15:10		Electromagmetic C	Calorimeter (ECal))		c	lleg Gavrishchuk 14:40 - 15:00
Experience with the simulation and reconstruction software for the Super c-tau factory	Dr Andrey Sukharev 15:10 - 15:30	15:00	Range System (RS)			G	uennadi Alexeev 15:00 - 15:20
Status of the online filter	15:30 - 15:55		Beam-Beam Count	ters (BBC)			Ale	eksey Tishevskiy 15:20 - 15:40
Status of ECAL fast reconstruction	Dimitrije Maletic		Zero Degree Calori	imeter (ZDC)				<i>lgor Alekseev</i> 15:40 - 16:00

	-		-	_
11	ឝ		n	n
- 11	u	٠	u	u

14:00

15:00

Experience with the simulation and reconstruction software for the Super c-tau factory	Dr Andrey Sukharev		
	15:10 - 15:30		
Status of the online filter			
	15:30 - 15:55		
Status of ECAL fast reconstruction	Dimitrije Maletic		
	15:55 - 16:15		
Status of offline software	Artur Tkachenko		
	16:15 - 16:40		
DIRAC for user's simulation and analysis	lgor Pelevanyuk		
	16:40 - 17:00		

17:00

16:00

Detector Control System (DCS)

MCP and the SPD test zone at extracted beams of Nuclotron

Alexander Chepurnov

16:00 - 16:20

Anton Baldin

16:20 - 16:40

Conclusions

- Major update in the detector layout: magnet coils are outside ECal
- Good development progress in the SC magnet design. Several meetings with the local magnet team and the Novosibirsk team recently
- Discussion ongoing about layout and dimensions of ST, TOF, ECal
- Agreement on ZDC location has been concluded
- MM detector in place of silicon VD for the 1-st stage of SPD
- TDR preparation is in active phase

Backup slides

• Example: solenoid of KEDR is 22.5 cm thick

SC magnet location with respect to ECal

Option under development A single cryostat with several coils

RS

Aerogel counters for PID

- Identification based on Cherenkov light radiation
- Range of π/K separation is a function of refractive index n
- The design follow closely the one of KEDR (Novosibirsk)
- Low light yield ~6 p.e.
- Can be used only in endcaps since there is more space and it is a region of higher momentum particles

Zero Degree Calorimeter (ZDC)

- Located inside the cryostat (vacuum, about -200 °C)
- Loaded section-by-section

Location of ZDC in the SPD hall

Subsystems in view of the construction stages of SPD

Systems employed before start of physics programme	First stage of experiment	Following stages of experiment
ZDC, MCP, BBC	Magnet, RS, ST, MM (a.k.a. VD)	VD, TOF, ECal, Aerogel
 Detectors for local polarimetry and luminosity control Elastic scattering 	 Charmonia SSA for π and K Light vector mesons p̄ production Physics with light ions 	Open charmPrompt photon

Table 4.1: Required setup configuration for each point of the SPD physics program. (+++) - absolutely needed, (++) - extremely useful, (+) - useful, (-) - not needed.

Program	Vertex	Straw	PID	Electromagnetic	Beam-beam	Range
	detector	tracker	system	calorimeter	counter	system
Gluon content with:						
charmonia	+	++	+	++	+	+++
open charm	+++	++	++	+	+	++
prompt photons	+	+	-	+++	+	-
SSA for π and K	+	++	+++	++	+	-
Light vector meson production	+	++	-	+	+	-
Elastic scattering	+	++	-	-	+++	-
\bar{p} production	+	++	+++	++	+	-
Physics with light ions	++	+++	+	++	++	+