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1. ECAL simulation and reconstruction workflow

2. Particle reconstruction in ECAL: current status and
outlook

3. 1/y separation in ECAL using neural networks



ECAL simulation workflow

1) Simulation (SPDROOT)

Geant4 simulation for
particle propagation
through matter (could be
changed without
changing the workflow)

input: geometry
parameters (cell size,
ECAL radius etc.)

output: points (energy
depositions) in ECAL

2) Reconstruction
(SPDROOT)

Hit making, track/cluster
finding, particle and
event reconstruction

input: points in ECAL
output: reconstructed

particles in ECAL:
energies, positions, etc.

3) Analysis (ROOT)

Statistical analysis of
many events for physical
results, calibration,
debugging etc.

input: event-per-event
information on
reconstructed particles

output: user-defined
histograms, graphs, etc.




1) Simulation step

e Geometry hierarchy:

* barrel part: cells = modules (2X2 cells) - baskets
(Z/g slices) — barrel

* endcaps: cells - modules (2X2 cells) -» endcap Module = 2x2 cells

(gaps artificially enlargened)
 Modifiable geometry:
 number of sectors (baskets in @, Z)
* gaps between sectors/baskets/modules/cells
e cell sizes
 number of layers, material thickness

Barrel
(gaps artificially enlargened)




2) Reconstruction step

Consists of two steps:
1) clustering
2) reconstruction of particles based on clusters

» Different interchangeable options for reconstruction step (linear
weighting, log.weighting, multi-shower fit, etc.)

e Steps are performed separately for ECAL and barrel
e External parameters: clustering distance, cell energy threshold

Division to clustering and reconstruction is not final:
e plans to apply CNN also at the level of reconstruction
e suboptimal bridging of particles in barrel/endcap



3) Analysis step

Using event-by-event output with reconstructed particles
and their parameters:

e reconstruction position, energy

e “MC truth”: which MC particles contributed to the
reconstructed particle, how much energy each of them
contributed

Next release: charged track association



Particle reconstruction algorithms

Currently implemented algorithm:

 Initial values of position: log.weighting

 Empirical functions as interpolation over grid
points;

e Values in the grid points obtained via dedicated
MC

Advantages:

angle is implicitly taken into account
via the empirical corrections —»
rough reconstruction of angled
showers

easy to understand and debug
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Drawbacks:

have to change the empirical parameters
each time we change the geometry (cell
size, module thickness)

each cluster corresponds to one particle
— bad efficiency for high-energy n0
(prompt photon background)



Particle reconstruction algorithms

Alternative algorithm:

e each cluster » multiple particles

e particle parameters (position, energy) taken
from fit with shower shapes

 shower shapes have to dependent on the
incidence angle

e latest attempt: predict shower shape for
different angles based on output of neural
network, trained on MC samples

Advantages:

e higher n0 reconstruction
efficiency,

especially for high angles
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Drawbacks:

e |large computation time

e fit may be sensitive to initial variables

— one needs to test the fit convergence

and quality

 need analytical shower shape or
additional NN for higher angles ¢
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Particle reconstruction algorithms

Convolutional neural network (see Dimitrije's talk):

* inputs: cell energies or time slices (ADC counts)
e outputs: particle energies, positions, types

(e+/e-/y/hadron/u)
Advantages: Drawbacks:
fast need to control the stability in real data
conditions
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Performance of the current algorithm
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For high angles,

there is contribution not only from transverse fluctuations,

MC true Z [cm]

but also from longitudinal = resolution worse than

cell size/sqrt(12)

*Projective geometry implemented in forked

SPDROOT repository




/Yy separation in ECAL

General idea:

Select 5%5
region of cells
in ECAL

Energy deposition in cells, barrel
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*Not yet implemented into SPDROOT

Use variables as
input to a
multilayer
perceptron
(MLP)
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Inputs

8/¢ moments: Correlation: Importance of tails:
N 2 2
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Energy distribution
S1 S9=51  Mx+S S  My+ S5 Network parameters:
So 525 — 51 Sy So Sy 2 hidden layers X 64 neurons, RelLU activation

 Angle 6 as an input variable

(improves separation at high energies)

e Total energy

X,Y ~ 0,0
S;, M, - 1st and 2nd largest energies
So, S,5,56 - energy in 3X3, 5X5, 3%X3

region

e output normalized to [0,1] using sigmoid
e dropout (p=0.1), batchnorm

* BCE loss: Hyta) = =37 3,3 -1ospn))+ (1= ) Iog = i)
 Optimizer: Adam

(Ir = 0.001, B; = 0.9, B, = 0.999, e=1e-8
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Rejection

Performance of 11/y separation algorithm

Efficiency/Rejection

Efficiency/Rejection
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Conclusions and outlook

* Presently implemented particle reconstruction algorithm produces reasonable
results in terms of energy and position resolution, but could be significantly
improved in terms of speed and efficiency of n/y separation

e With latest setup, one can expect about 90% 1° rejection efficiency while
selecting 80% of photons

Algorithms to be developed and implemented:

 multi-shower fit to reconstruct particles (to cross-check fast CNN
reconstruction)

« CNN applicability to perform fast ECAL reconstruction

e /Y separation and its integration into workflow, ideally into the CNN fast
reconstruction



