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Plan

1. ECAL simulation and reconstruction workflow
2. Particle reconstruction in ECAL: current status and 

outlook
3. π/γ separation in ECAL using neural networks

2



ECAL simulation workflow

1) Simulation (SPDROOT)

Geant4 simulation for 
particle propagation 
through matter (could be 
changed without 
changing the workflow)

input: geometry 
parameters (cell size, 
ECAL radius etc.)

output: points (energy 
depositions) in ECAL

2) Reconstruction 
(SPDROOT)

Hit making, track/cluster 
finding, particle and 
event reconstruction

input: points in ECAL

output: reconstructed 
particles in ECAL: 
energies, positions, etc.

3) Analysis (ROOT)

Statistical analysis of 
many events for physical 
results, calibration, 
debugging etc.

input: event-per-event 
information on 
reconstructed particles

output: user-defined  
histograms, graphs, etc.
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1) Simulation step

•Geometry hierarchy: 
• barrel part: cells → modules (2✕2 cells) → baskets 

(Z/φ slices) → barrel
• endcaps: cells → modules (2✕2 cells) → endcap

•Modifiable geometry: 
• number of sectors (baskets in φ, Z)
• gaps between sectors/baskets/modules/cells
• cell sizes
• number of layers, material thickness
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Module = 2✕2 cells
(gaps artificially enlargened)

Basket Barrel
(gaps artificially enlargened)



2) Reconstruction step
Consists of two steps:

1) clustering 
2) reconstruction of particles based on clusters

• Different interchangeable options for reconstruction step (linear 
weighting, log.weighting, multi-shower fit, etc.)

• Steps are performed separately for ECAL and barrel
• External parameters: clustering distance, cell energy threshold

Division to clustering and reconstruction is not final:
• plans to apply CNN also at the level of reconstruction
• suboptimal bridging of particles in barrel/endcap 5



3) Analysis step

Using event-by-event output with reconstructed particles 
and their parameters:
•reconstruction position, energy
•“MC truth”: which MC particles contributed to the 

reconstructed particle, how much energy each of them 
contributed

Next release: charged track association
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Particle reconstruction algorithms
Currently implemented algorithm:
• Initial values of position: log.weighting
• Empirical functions as interpolation over grid 

points; 
• Values in the grid points obtained via dedicated 

MC

Drawbacks: 
have to change the empirical parameters 
each time we change the geometry (cell 
size, module thickness)
each cluster corresponds to one particle 
→ bad efficiency for high-energy π0
(prompt photon background)

Advantages: 
angle is implicitly taken into account 
via the empirical corrections → 
rough reconstruction of angled 
showers
easy to understand and debug
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Particle reconstruction algorithms
Alternative algorithm:
• each cluster → multiple particles
• particle parameters (position, energy) taken 

from fit with shower shapes
• shower shapes have to dependent on the 

incidence angle
• latest attempt: predict shower shape for 

different angles based on output of neural 
network, trained on MC samples

Drawbacks: 
• large computation time
• fit may be sensitive to initial variables
 → one needs to test the fit convergence 
and quality
• need analytical shower shape or 

additional NN for higher angles

Advantages: 
• higher π0 reconstruction 

efficiency,
especially for high angles

8

MC inputNN output



Particle reconstruction algorithms
Convolutional neural network (see Dimitrije's talk):
• inputs: cell energies or time slices (ADC counts)
• outputs: particle energies, positions, types              

(e+/e-/γ/hadron/μ)

Drawbacks:
need to control the stability in real data 
conditions

Advantages: 
fast
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Performance of the current algorithm
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For high angles, 
there is contribution not only from transverse fluctuations,
but also from longitudinal → resolution worse than 
cell size/sqrt(12)

*Projective geometry implemented in forked
SPDROOT repository

≈ 5.5%/√E ⨁ 2.5%



π/γ separation in ECAL

11

Select 5✕5 
region of cells 
in ECAL

Form 
characteristic 
input variables

Use variables as 
input to a 
multilayer 
perceptron 
(MLP) One 

output: 
π0/γ flag

*Not yet implemented into SPDROOT

General idea: 

1 bin = 1 cell
...



Inputs
θ/φ moments:

Energy distribution

X,Y ~ θ,φ
S1, M2 - 1st and 2nd largest energies
S9, S25,S6 - energy in 3✕3, 5✕5, 3✕3 region

• Angle θ as an input variable
(improves separation at high energies)
• Total energy
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Correlation: Importance of tails:

Shape variable:

Network parameters:
• 2 hidden layers ✕ 64 neurons, ReLU activation
• output normalized to [0,1] using sigmoid
• dropout (p=0.1), batchnorm
• BCE loss: 

• Optimizer: Adam
(lr = 0.001, β1 = 0.9, β2 = 0.999, ε=1e-8



Performance of π/γ separation algorithm

• test is produced same way as train
(but different data points)
• 5.5%/sqrt(Ecell) smearing for test 

(each cell)
• 10%/sqrt(Ecell) smearing for test
• 10% smearing for test
• 20% smearing for test
• 20% + 20%/sqrt(Ecell) smearing for 

test

13

without angle as input
with angle as input



Performance of π/γ separation algorithm
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Conclusions and outlook

• Presently implemented particle reconstruction algorithm produces reasonable 
results in terms of energy and position resolution, but could be significantly 
improved in terms of speed and efficiency of π/γ separation

• With latest setup, one can expect about 90% π0 rejection efficiency while 
selecting 80% of photons

Algorithms to be developed and implemented:
• multi-shower fit to reconstruct particles (to cross-check fast CNN 

reconstruction)
• CNN applicability to perform fast ECAL reconstruction
• π/γ separation and its integration into workflow, ideally into the CNN fast 

reconstruction
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