On muon/pion separation in RS

Igor Denisenko iden@jinr.ru

SPD Collaboration meeting 15.12.2021

The muon identification plays the **key** role in reconstruction of J/ψ (and higher states decaying to J/ψ), it can be also used for open charm studies (not discussed here).

Questions:

- What performance can we expect from our RS for pion/muon separation?
- What performance would be sufficient for our measurement goals?

$J/\psi \to \mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$

- Example: jpsi-mumu
- Magnetic field: 1T
- Collision energy: 27 GeV
- 1K event generated

Muons in RS

Average muon momenta in the ZR-plane for the initial momentum of 1.5 GeV

Most of pions from J/ψ decays should cross RS.

Pion interactions in RS

• Large fraction of elastic πN scattering below 1GeV

31.03.2021

• Difference for π^+ and π^- interactions

Muon tracks

- Muons in the barrel part of RS
- Hits are shown by circles, color indicates cluster. Crosses are result of the GF track extrapolation to RS with material effects.
- No magnetic field in RS!

Pion signatures

- Pions in the barrel part of RS
- Hits are shown by circles, color indicates cluster. Crosses are result of the GF track extrapolation to RS with material effects.
- No magnetic field in RS!

A simple GF-based algorithm to search for muon tracks

GenFit2:

- track fitting and extrapolation
- accounts for material effects (dE/dx, multiple scattering, and Bremsstrahlung for e⁺ and e⁻)

Idea: starting from the last track state in the tracker, prolong track adding points one by one based on χ^2 value.

Advantages: reconstructs track in 3D, allows extrapolation from barrel to endcaps, accounts for physics.

Disadvantage: speed,...

Algorithm

Recursively

- find a layer where the track can be extrapolated to;
- check hits in the layer: for "good" points update the track state and repeat the procedure;
- if there are no good points, add extrapolated point and repeat

Stops when track can not be extrapolated, there to many missing hits or the last layer is reached.

Hit:

- defined by the ends of MDT wire and distance
- for the moment distance is set to zero with the error of pitch/√12

A simple GF-based algorithm to search for muon tracks

Used parameters

- points with χ²<4 are accepted, if χ²<1.5 extrapolation point is not added
- no more than 3 lost hits in a row
- no more than 5 missing hits in total
- among the track-candidates
 - the ones which cross the maximum amount of layers are selected,
 - the one with the largest probability is selected (layers detection efficiency p=0.97 is used).

Tracks:

- Uniformly distributed muons and pions with p = 1.5 GeV and p = 2.5 GeV, one track per event, samples of 5000 events generated.
- Only well-converged tracks considered.

Track extrapolation length in iron

Muon selection efficiency

- L > 50 cm
- 5000 events generated

Pion survival fraction

- L > 50 cm
- 5000 events generated

Background study

p = 1.5 GeV

- misid.: 2.6% (128 events)
- decays before RS: 47
- decays in RS (p_u>0.1): 18

p = 2.5 GeV

- misid.: **3.1**% (153 events)
- decays before RS: 46
- decays in RS (p_{μ} >0.1): 5

Pion survival ratio can be decreased

- 8 consecutive pion events (p = 2.5 GeV) passing L>50 cm cut
- Further improvement is possible! E.g. number of all tracks in the "cone" divided by number of tracks in the track or branches in a track.

Multiple track reconstruction

- Parameters chosen above may be far from optimal
- Computational performance is very low
- There some issues

Target values for pion suppression

Gen-level events:

- only **pions** considered
- for pions misidentification of 1% is assumed
- only pions with $|\cos\theta| < 0.9$ are selected

The target value for pion survival ratio should be \leq 1%.

Based on study of two samples with p=1.5 GeV and p=2.5 GeV pion decays contribute 30-50% to the misidentification of pions as muons.

On simplified reconstruction

In the absence if magnetic field simple track selection algorithms should work well.

16

Comments, summary and plans

- After the detector geometry update and new field map a publicly available code will offered.
- For the moment a particle type from MC-truth is used, to be changed to muons.
- Assuming that simulation is correct, pion suppression rate ~ 97% can be expected for the muon selection efficiency of 90% (projected to well-fitted tracks). Pion misidentification can be further suppressed.
- The target value for pion suppression should be ~99%.
- Our Geant4 physics list validation to be validated.
- Currently, the track reconstruction in RS takes very significant time. To be improved with other reconstruction methods like DT (ongoing work by Georgiy), CNN, etc...