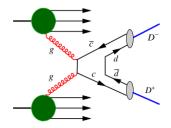
A Study of Open Charm Production at SPD

Amaresh Datta


DLNP JINR, Dubna, Russia

Dec 15, 2021

Open Charm Productions

- When cc̄ form partonic scattering produce two charmed mesons i.e. D⁰D̄⁰, D⁺D⁻
- Measurements of open charm meson asymmetries can access gluon spin distributions

Open Charm Productions

- ▶ We are interested in channels : $D^0 \longrightarrow \pi^+ + K^-$ and $D^+ \longrightarrow \pi^+ + K^- + \pi^+$ and their anti-particle counterparts
- Charmed mesons are selected within certain window of reconstructed invariant mass from daughter particle info
- Good PID and momentum reconstructions are requisites for the reconstructions
- Background from random combinations of pions and kaons other hard scattering processes are very high
- Secondary vertex reconstructions with good resolution can be crucial for background suppression

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

Open Charm Asymmetries

- As has been measured for other particles at different experiments and different energies, significant SSA are expected in forward x_F region
- Predictions from theoretical calculations from our Samara Univ. colleagues also show that
- However, the asymmetry predictions are heavily model dependent
- Order of magnitude difference between D'Alesio and SIDIS parametrizations
- Measurements will be very helpful in understanding

A_N Predictions (for all Open Charm)

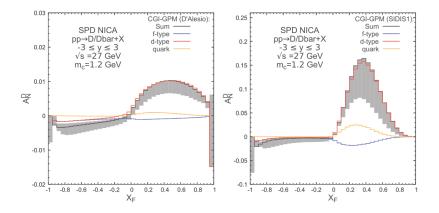
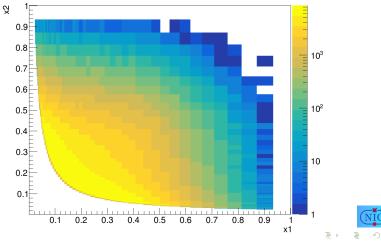


Figure: Transverse spin asymmetry predictions : V. Saleev et al.

< ロ > < 回 > < 回 > < 回 > < 回 >

Pythia Simulations

- Using PYTHIA 8.3, 1 Billion p + p events generated at $\sqrt{s} = 27$ GeV
- Only HardQCD processes switched on (3.46 mb total cross-section in Pythia)
- ▶ PDF set : default Pythia (NNPDF2.3 QCD+QED LO, $\alpha_s(M_Z) = 0.130$)
- ▶ We consider only $D^+ \longrightarrow K^- \pi^+ \pi^+$ and $D^- \longrightarrow K^+ \pi^- \pi^-$ for detection
- We consider only $D^0 \longrightarrow K^- \pi^+$ and $\bar{D^0} \longrightarrow K^+ \pi^-$ for detection
- For context : p + p MinBias cross-section at this energy is 39.8 mb and projected integrated luminosity for 1 year is 1 fb^{-1}


・ロト ・日 ト ・日 ト ・ 日 ト

6/22

Bjorken-x of Interacting Partons

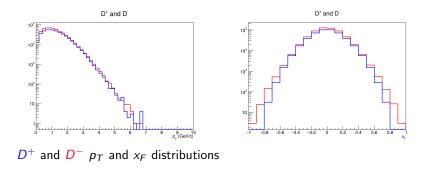
For D^+D^- events :

Bjorken-x of two partons

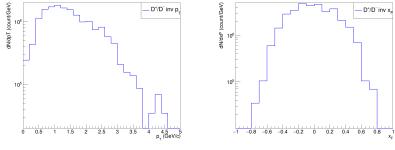
7 / 22

Particle Detection Details

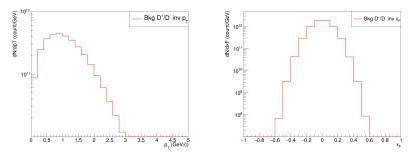
- Momentum smearing $\frac{\delta p}{p} = 0.02 + 0.002|p|$
- ▶ Both p_T and p_z smeared, x and y components obtained using azimuthal angle and p_T
- ► Each daughter particle (charged pions and kaons) p_T ≥ 0.2 GeV in tracker for decent track reconstruction requirement and -3 ≤ y ≤ 3 for acceptance within SPD
- Particle ID (mass) was assumed to study total production



Invariant Mass of Charged D Mesons


Charged D mesons accepted within $\pm 3~\sigma$ window around mean value of invariant mass

Distribution of Individual Charged D Mesons


Distribution of D^+D^- Invariant Systems

Counts scaled to 1 year of data

Distribution of Background D^+D^-

< ロ > < 回 > < 回 > < 回 > < 回 >

12 / 22

Counts scaled to 1 year of data. Background distributions seem somewhat narrower but orders of magnitude higher.

Cross-Section Predictions (for D^+D^- Pairs)

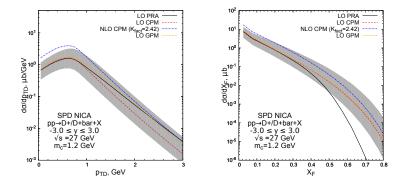
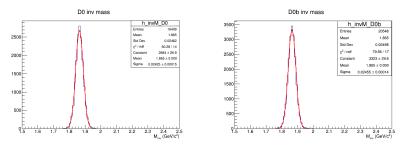
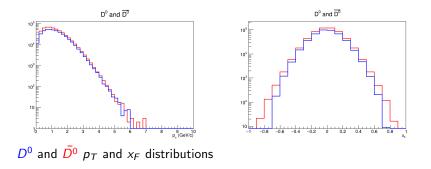
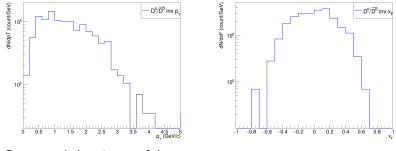



Figure: D^+D^- vs p_T : A. Karpishkov Figure: D^+D^- vs x_F : A. Karpishkov

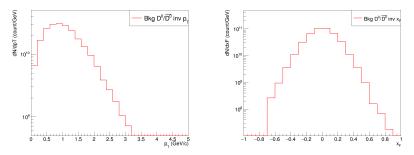
< ロ > < 回 > < 回 > < 回 > < 回 >


Invariant Mass of Neutral D Mesons

Neutral D mesons accepted within $\pm 3~\sigma$ window around mean value of invariant mass



Distribution of Individual Neutral D Mesons


Distribution of $D^0 \overline{D^0}$ Invariant Systems

Counts scaled to 1 year of data

Distribution of Background $D^0 \overline{D^0}$

Counts scaled to 1 year of data. Background distributions orders of magnitude higher.

Cross-Section Predictions (for $D^0 \overline{D^0}$ Pairs)

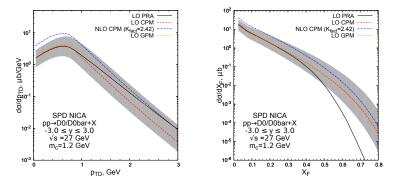


Figure: $D^0 \overline{D^0}$ vs p_T : A. Karpishkov Figure: $D^0 \overline{D^0}$ vs x_F : A. Karpishkov

< ロ > < 回 > < 回 > < 回 > < 回 >

18/22

D Meson Pairs Kinematic Distributions

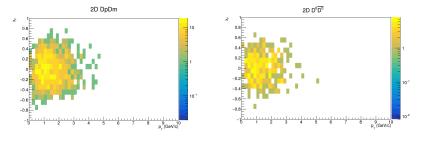


Figure: D^+D^- pairs : unscaled counts Figure: $D^0\overline{D^0}$ pairs : unscaled counts

Some Numbers

- ▶ Using PYTHIA 8.3, 1 Billion p + p HardQCD events generated at $\sqrt{s} = 27$ GeV
- Among them 509232 $D^0 \overline{D^0}$ and 145330 $D^+ D^-$ events
- ► About 4.4% of D⁺D⁻ and 12% D⁰D⁰ are from higher resonances (D^{*} decays)
- $D^+ \longrightarrow K^- \pi^+ \pi^+$ branching fraction ~ 9.38% (PDG value 9.22%)
- ▶ Both of the pair should decay through this channel for us to be able to detect \sim 0.88% of the produced D^+D^- pairs
- $D^0 \longrightarrow K^- \pi^+$ branching fraction ~ 3.82% (PDG value 3.89%)
- ▶ Both of the pair should decay through this channel for us to be able to detect $\sim 0.15\%$ of the produced $D^0 \bar{D^0}$ pairs

Outlook

- An extremely challenging measurement due to very high background
- Two techniques can directly help in background suppression
- 1) Event selection that can record events with charmed mesons with high likelihood
- A very difficult task for the online event selection ML techniques might help
- ► 2) Secondary vertex reconstruction with high precision (decay length for these charmed mesons 100 - 300 µm) can be crucial in meaningful measurements at SPD
- Of course this is probably more relevant for the later stage of upgrades at SPD

・ロト ・日ト ・ヨト ・ヨト

Thank You

