

Technologies Center National Technology Initiative

POLY

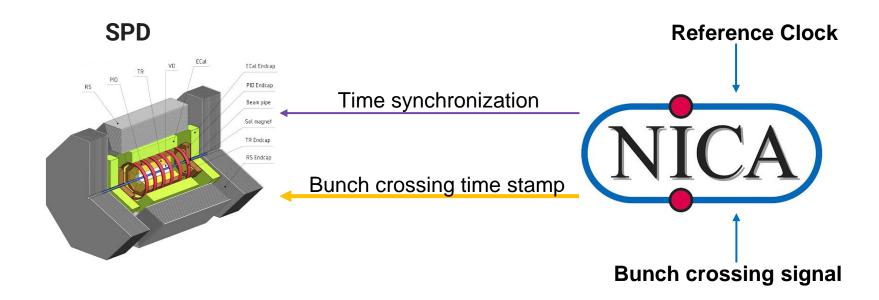
December 13th, 2021

Proposed approaches for the time synchronization in the streaming DAQ at SPD

Andrey Antonov

Laboratory "Industrial Systems for Streaming Data Processing", SPbPU NTI Center

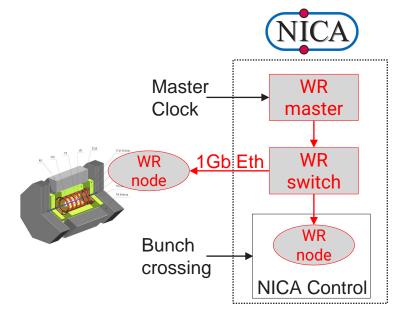
DAQ-SPD time synchronization


- Time synchronization is a major challenge in the DAQ development
- All the DAQ nodes must be synchronized with accuracy not worse than 1 ns
- All the acquired data must be annotated with time stamps
- SPD is a triggerless system trigger-based approaches are not suitable
- Bunch crossing signal from NICA is used as timing reference for the DAQ
- Bunch crossing rate is ~12.5 MHz

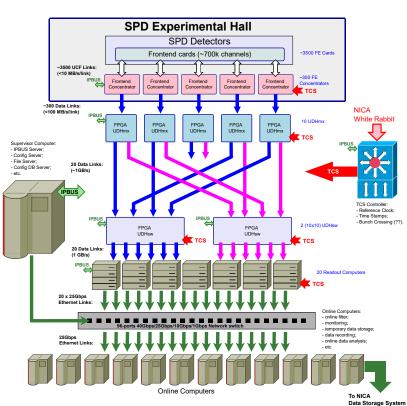
Synchronization of NICA and SPD

Synchronization of NICA and SPD

- NICA uses its own local time
- SPD's time should be the same
- DAQ synchronization subsystem should obtain bunch crossing signal time stamp (bunch clock) and distribute it to the online computers
- NICA supports White Rabbit sub-nanosecond synchronization protocol
- Planning to use WR to synchronize clocks need to implement WR node

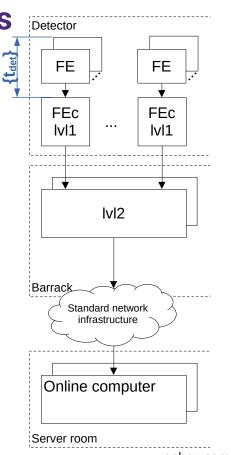


Synchronization of NICA and SPD


- WR uses standard Gigabit Ethernet
- Possibly could also be used to obtain bunch crossing time stamp
- NICA uses standard WR switch
- Our goal integrate a compatible WR node into DAQ hardware
- Expected synchronization accuracy 150-200 ps

Clock distribution into DAQ-SPD

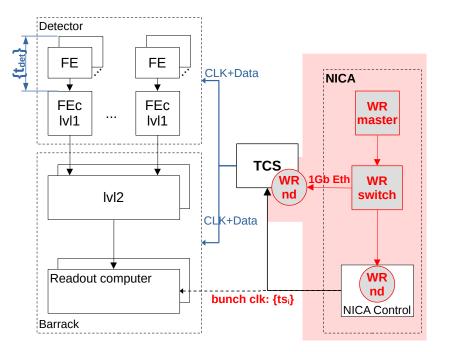
- We have a precise clock from NICA. Now what?
- SPD-DAQ has up to 500 front-end concentrators inside the detector
- All of them should be synchronized with ~1 ns accuracy


POLYTECH

Peter the Great St. Petersburg Polytechnic

DAQ-SPD time synchronization approaches

- We assume deterministic latencies inside the detector
- Latencies on the higher levels of the DAQ are unpredictable
- Lvl1 FE concentrator generates clock for FE cards, it must be synchronized with NICA
- There is no need of bunch crossing time stamps on lvl1 and lvl2, it should go straight to the online computers


DAQ-SPD time synchronization approaches: TCS

- TCS: Trigger (Timing) and Control System
- Designed for the COMPASS project
- Originally used to distribute triggers and follow-up data to Front-End
- Could be adopted for triggerless system using e.g., bunch clock instead of triggers
- The original COMPASS TCS should be redesigned for DAQ-SPD

DAQ-SPD time synchronization approaches: TCS

- Redesigned TCS will include WR node to synchronize with NICA
- Generates clock and control data for DAQ
- Could be used to translate bunch clock to online computers
- Might suffer problems with achieving the demanded synchronization accuracy due to non-deterministic latencies

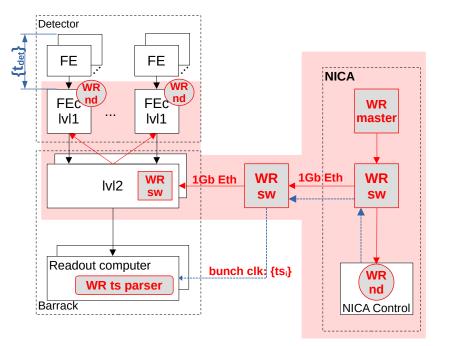
White Rabbit basics

- Originally was designed in CERN to synchronize all the units of experiment, even front-end cards
- Supports thousands of nodes
- Allows to achieve <100ps synchronization accuracy
- Uses Gigabit Ethernet (1000Base-X)
- Open-source software and hardware
- We have some experience in implementing WR node on a custom platform

DAQ-SPD time synchronization approaches: WR

- The main idea is to integrate WR node into front-end (lvl1) concentrators with adding the following functions:
 - Distribute/convert WR clock to the main clock and all control signals to eLink outputs;
 - Add time-stamp with accuracy about 1 ns to the data flux;
 - Distribute a periodical signal for a front-end time calibration;
- TCS can only distribute clocks

18 Port White Rabbit Switch


- Developed in Spain by Seven Solutions
- Price ~\$5k
- Has 18 ports: 1 for upstream and 17 for nodes
- Open hardware and software
- To operate 500 front-end concentrators, we will need to have ~30 WR switches

DAQ-SPD time synchronization approaches: WR

- NICA clock and local time is distributed down to FE concentrators
- Numerous WR switches are used
- Bunch crossing information can be transferred directly to the online computers

WR vs TCS: advantages

- Slices in each detectors will start in the same astronomic (logical) time, time calibration needed only for the front-end electronics and cables from detector.
- Only one ethernet link needed for clock distribution from a barrack to the experimental hall. No need for a dedicated high-power optical splitter as in TCS.
- Easy adding of a new branch/detector at any distance.
- Commercially available WR switch, "CERN support".

WR vs TCS: disadvantages

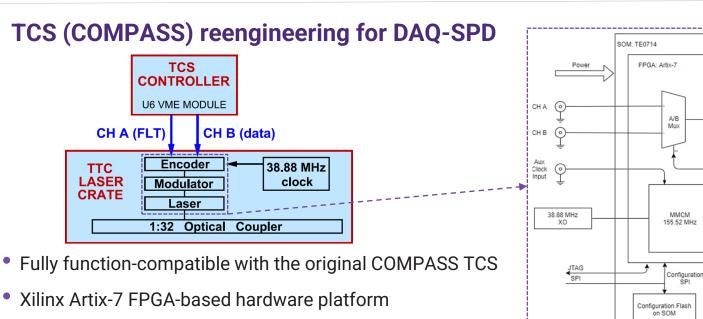
- Front-end concentrator with WR node would be more complex especially for radiation tolerant implementation
- Increased development and testing time
- Higher Price. FE concentrator price will increase slightly by adding WR node, but many WR switches should be purchased (>\$100k)

Conclusion

- Both approaches should be evaluated thoroughly according to system requirements
- Working on TCS redesign will help to evaluate this approach
- Possibility of using WR for control flow distribution: bunch clock, lvl1 commands, etc. — TBD
- Front-end electronics should be radiation tolerant development might be challenging, especially if it will include WR node

Manchester

Encoder


/4

12

/1

P LVDS

SFP (or laser driver

- Rapid device development using Trenz TE0714 SoM
- Different form factor no need of using VME for standalone device
- Planned implementation in a 19-inch rack unit with standard AC power supply – TCS does not require high-precision or exotic supply voltages
- Low-cost solution

TCS (COMPASS) reengineering for DAQ-SPD

ROADMAP: TCS FOR STRAW TRACKER

- Schematic and PCB design TCS Controller + Encoder
- TCS Encoder FPGA design
- TCS Encoder debugging and testing in the real straw tracker experiment environment
- Full TCS FPGA design
- Full TCS debugging and testing in the real straw tracker experiment environment

ROADMAP: FURTHER STEPS

- TCS architecture redesign for DAQ-SPD: adding WR node
- New TCS development, debugging and testing
- Optimization of online processing tasks and DAQ

Thank you for your attention

spbpu.com | 18

Contacts

Andrey Antonov

Lead Engineer

Tel: +7 (921) 322-47-67 E-mail: <u>andrey.antonov@spbpu.com</u>

spbpu.com | 19