Reactions with ${}^{1}S_{0}$ diproton production: history and possible studies at SPD

Dmitry Tsirkov, Bota Baimurzinova

Dzelepov Laboratory of Nuclear Problems Joint Institute for Nuclear Research

> Dubna 15.12.2021

- **2** Diproton studies at ANKE
- ³ Diprotons and dibaryon resonances
- Prospects for diproton studies at SPD

Motivation

Intermediate energies

- ▶ Low energies hadronic degrees of freedom, pion exchange models;
- ► High energies quark degrees of freedom, perturbative QCD;
- ▶ Intermediate energies transition from hadronic to quark degrees of freedom, phenomenological models;
 - beam energies $T_{\text{beam}} \sim 1 \text{ GeV};$
 - momentum transfers $q \sim 200-400 \text{ MeV}/c$;
 - radius of interaction $r\sim$ 0.5–1.0 fm;
 - Additional experimental data desired.

Diprotons

- ► The main method of studying strong interactions at intermediate energies: $NN \rightarrow NN\pi$;
- A classic example of this channel:

 $pp \to d\pi^+ \ (I = 0, S = 1, L = 0, 2);$

- ► Spin isospin partner: $pp \rightarrow \{pp\}_s \pi^0 \ (I = 1, S = 0, L = 0),$ where $\{pp\}_s$ — diproton in final ${}^{1}S_0$ state ($E_{pp} < 3$ MeV);
- Quasibinary reaction: simplified kinematics, PWA possible;
- Spin structure simplifies theoretical analysis: half of the angular momenta forbidden in intermediate state;
- ► Maximum possible momentum transfers: short-range interaction (at the baryon-size distances).

Diproton studies at ANKE

Experimental setup

COSY synchrotron

ANKE spectrometer

Forward detector

- ▶ Unpolarized or transversely polarized proton beam
- ▶ Internal unpolarized hydrogen cluster-jet target
- Track-reconstruction precision: $\sigma(p)/p \approx 1\%$, $\sigma(\theta) \approx 0.2^{\circ}$

Diproton quasibinary kinematics

Identification of double-track events

Time of flight difference: measured and calculated from momenta and trajectories assuming proton pairs

Forward detector double-track acceptance

Separation of $pp \to \{pp\}_s \pi^0$ and $pp \to \{pp\}_s \gamma$

Separation of $pp \to \{pp\}_s \pi^0$ and $pp \to \{pp\}_s \pi \pi$

Fitting function

$$\frac{d\sigma}{d\Omega} = \frac{k}{4p} \left(a_0 + a_2 \cos^2 \theta_{pp} + a_4 \cos^4 \theta_{pp} + \dots \right)$$
$$A_y \frac{d\sigma}{d\Omega} = \frac{k}{4p} \sin \theta_{pp} \cos \theta_{pp} \left(b_2 + b_4 \cos^2 \theta_{pp} + \dots \right)$$

For pion angular momenta $\ell \leq 2$ one can choose the following parametrization:

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma_0}{d\Omega} \left(1 + \kappa \sin^2 \theta_{pp}\right)$$
$$A_y = \frac{A_y^{\max} \sqrt{1 + \kappa} \sin 2\theta_{pp}}{1 + \kappa \sin^2 \theta_{pp}}$$

- $d\sigma_0/d\Omega$ differential cross section at zero angle;
- κ angular slope of the differential cross section;
- A_y^{\max} maximum vector analyzing power.

Angular dependences for $d\sigma/d\Omega$ and A_y in the first peak region

Angular dependences for $d\sigma/d\Omega$ and A_y in the second peak region

Diprotons and dibaryon resonances

Energy dependence of forward differential cross section for $pp \to d\pi^+$

Energy dependence of forward differential cross section for $pp \to \{pp\}_s \pi^0$

Known dibaryons

 D_{01}^+ deuteron D_{10}^+ ¹S₀ diproton, ¹S₀ {pp}_s-pair $D_{10}^{-} {}^{3}P_{0} (pp \to \{pp\}_{s}\pi^{0})$ D_{03}^+ $^3D_3 (pd \rightarrow pd\pi\pi)$ $D_{12}^+ {}^1D_2 \ (pp \to d\pi^+)$ $D_{12}^{-} {}^{3}P_{2} \ (pp \to d\pi^{+} / \{pp\}_{s}\pi^{0})$ D_{21}^+ with charge 3 $(pp \to pp\pi^+\pi^-)$ $D_{12}^{-} {}^{3}F_{3} (pp \to d\pi^{+})$ D_{30} with charge 4 (???)

We are at the birth of dibaryon spectroscopy.

Dibaryon resonances in $pp \to d\pi^+$

- ► Three main dibaryon resonance transitions are known: ¹D₂, ³F₃, ³P₂ (^{2S+1}L_J for pp-pair);
- ▶ ${}^{1}D_{2}, {}^{3}F_{3}$ well known from PWA of $pp \rightarrow pp$ and $pp \rightarrow d\pi^{+}$ reactions;
- ${}^{3}P_{2}$ significant inaccuracies.

Dibaryon resonances in $pp \to \{pp\}_s \pi^0$

- $\ell \leq 2$ three possible transitions:
- ► ${}^{3}F_{2} \rightarrow {}^{1}S_{0}d$ is considered negligible;
- ► Two basic transitions ${}^{3}P_{0} \rightarrow {}^{1}S_{0}s,$ ${}^{3}P_{2} \rightarrow {}^{1}S_{0}d.$

Scientific novelty and practical significance

- The energy and angular dependences $d\sigma/d\Omega$ and A_y for the $\vec{p}p \to \{pp\}_s \pi^0$ process at small polar angles in the $\Delta(1232)$ resonance excitation region are measured for the first time;
- ▶ The partial-wave analysis of the reaction has been carried out, revealing ${}^{3}P_{0}s$ and ${}^{3}P_{2}$ dibaryon resonance transitions, the resonance behavior of ${}^{3}P_{0}s$ observed for the first time;
- ► The peculiarities observed are explained by the interference of ${}^{3}P_{0} \rightarrow {}^{1}S_{0}s$ and ${}^{3}P_{2} \rightarrow {}^{1}S_{0}d$ transitions;
- ▶ *P*-wave dibaryons are important for developing the theory of dibaryon resonances and their role in hadronic interactions at small distances, see:
 - M. N. Platonova & V.I. Kukulin, Phys. Rev. D 94 054039 (2016);
 - V.I. Kukulin et al., Phys. Atom. Nucl. 82 934 (2019);
 - O.A. Rubtsova & V.I. Kukulin & M.N. Platonova, Phys. Rev. D **102** 114040 (2020).

Prospects for diproton studies at SPD

Precision for E_{pp} measurement

[Conceptual design of the Spin Physics Detector]

Luminosity and statistics

Energy region of the first peak

Aim: Full PWA with three allowed $\ell \leq 2$ transitions

- **Pros:** Full angular range available
 - ▶ Double polarization observables
 - ▶ Theory developed, transparent analysis

Cons: • Low luminosity, several days to collect enough statistics for each energy

Energy region of the second peak

Aim: PWA to search for heavy dibaryons

- **Pros:** ► Full angular range available
 - ▶ Single and double polarization observables
- **Cons:** • Low luminosity, several days to collect enough statistics for each energy
 - ▶ Partial waves $\ell > 2$, complicates PWA
 - ► Theory not developed

Energies $\sqrt{s} > 3$ GeV

Aim: Search for resonance peaks in the cross section

- **Pros:** ► Full angular range available
 - ▶ Single and double polarization observables
 - ► Luminosity increases
- **Cons:** ► Low cross section
 - Partial waves $\ell > 2$, complicates analysis
 - ► Theory not developed

Thank you for your attention!