Momentum resolution dependence on straw tube orientation, polar angle, and momentum

> Ruslan Akhunzyanov JINR

SPD Physics & MC meeting, Nov 10, 2021

Straw tracker geometry

SpdTsTBGeoMapper* mapper = SpdTsTBGeoMapper::Instance();

mapper->SetStrawModulePars(1,

mapper->SetStrawLayerPars(1, mapper->SetStrawLayerPars(1, mapper->SetStrawLayerPars(1, mapper->SetStrawLayerPars(1, mapper->SetStrawLayerPars(1, mapper->SetStrawLayerPars(1,

0., 'e', 1.0, 0.); 0., '0', 1.0, 0.); deg, 'e', 1.0, 0.);

0., 'e', 1.0, 0);

-deg, 'e', 1.0, 0.);

deg, 'o', 1.0, 0.);

-deq, 'o', 1.0, 0.);

(picture with enlarged tubes and gaps between layers for better visibility)

Angle (α) is varied from 0.1 to 20 degrees.

No vertex detector.

Generation of events

- SpdIsotropicGenerator
- Muons with fixed momentum p and polar angle θ .
- Azimuthal angle φ is varied from 0° to 360°.
- 100 events with 100 tracks in each event.
- Scan over values:
 - α: 0.1°, 0.2°, 0.3°, 0.5°, 1°, 2°, 5°, 10°, 20°;
 - θ: from 40° to 90° with step 5°;
 - *p*: from 0.5 to 4 GeV/c with step 0.5 GeV/c.

Cuts on tracks used in the analysis

- Only tracks from primary vertex.
- Fit parameters exist.
- GetIsAcceptable() (no fit error flags, ndf \ge 3, χ^2 /ndf \ge 2)
- [No hits in endcaps.]

About 80% of tracks pass these cuts.

Calculation of momentum resolution

$$\sigma_{p}^{2} = \left(\frac{\partial p}{\partial p_{x}}\right)^{2} \sigma_{p_{x}}^{2} + \left(\frac{\partial p}{\partial p_{y}}\right)^{2} \sigma_{p_{y}}^{2} + \left(\frac{\partial p}{\partial p_{z}}\right)^{2} \sigma_{p_{z}}^{2} + 2\frac{\partial p}{\partial p_{x}} \frac{\partial p}{\partial p_{y}} \operatorname{cov}(p_{x}, p_{y}) + 2\frac{\partial p}{\partial p_{x}} \frac{\partial p}{\partial p_{z}} \operatorname{cov}(p_{x}, p_{z}) + 2\frac{\partial p}{\partial p_{y}} \frac{\partial p}{\partial p_{z}} \operatorname{cov}(p_{x}, p_{z}) + 2\frac{\partial p}{\partial p_{y}} \frac{\partial p}{\partial p_{z}} \operatorname{cov}(p_{y}, p_{z}) = \left(\frac{p_{x}}{p}\right)^{2} \sigma_{p_{x}}^{2} + \left(\frac{p_{y}}{p}\right)^{2} \sigma_{p_{y}}^{2} + \left(\frac{p_{z}}{p}\right)^{2} \sigma_{p_{z}}^{2} + 2\frac{p_{x}p_{y}}{p^{2}} \operatorname{cov}(p_{x}, p_{y}) + 2\frac{p_{x}p_{z}}{p^{2}} \operatorname{cov}(p_{x}, p_{z}) + 2\frac{p_{y}p_{z}}{p^{2}} \operatorname{cov}(p_{y}, p_{z})$$

$$\sigma_{p_{T}}^{2} = \left(\frac{\partial p_{T}}{\partial p_{x}}\right)^{2} \sigma_{p_{x}}^{2} + \left(\frac{\partial p_{T}}{\partial p_{y}}\right)^{2} \sigma_{p_{y}}^{2} + 2\frac{\partial p_{T}}{\partial p_{x}} \frac{\partial p_{T}}{\partial p_{y}} \operatorname{cov}(p_{x}, p_{y}) = \left(\frac{p_{x}}{p_{T}}\right)^{2} \sigma_{p_{x}}^{2} + \left(\frac{p_{y}}{p_{T}}\right)^{2} \sigma_{p_{y}}^{2} + 2\frac{p_{x}p_{y}}{p_{T}^{2}} \operatorname{cov}(p_{x}, p_{y}) = \left(\frac{p_{x}}{p_{T}}\right)^{2} \sigma_{p_{y}}^{2} + 2\frac{p_{x}p_{y}}{p_{T}^{2}} \operatorname{cov}(p_{x}, p_{y}) = \left(\frac{p_{x}}{p_{T}}\right)^{2} \sigma_{p_{y}}^{2} + 2\frac{p_{x}p_{y}}{p_{T}^{2}} \operatorname{cov}(p_{x}, p_{y}) = \left(\frac{p_{y}}{p_{T}}\right)^{2} \sigma_{p_{y}}^{2} + 2\frac{p_{x}p_{y}}{p_{T}^{2}} \operatorname{cov}(p_{x}, p_{y}) = \left(\frac{p_{y}}{p_{T}}\right)^{2} \sigma_{p_{y}}^{2} + 2\frac{p_{y}p_{y}}{p_{T}^{2}} \operatorname{cov}(p_{x}, p_{y}) = \left(\frac{p_{y}}{p_{T}}\right)^{2} \sigma_{p_{y}}^{2} + 2\frac{p_{y}p_{y}}{p_{T}^{2}} \operatorname{cov}(p_{y}, p_{y}) = \left(\frac{p_{y}}{p_{T}}\right)^{2} \sigma_{p_{y}}^{2} + 2\frac{p_{y}p_{T}}{p_{T}^{2}} \operatorname{cov}(p_{y}, p_{y}) = \left(\frac{p_{T}}{p_{T}}\right)^{2} \sigma_{p_{y}}^{2} + 2\frac{p_{T}}{p_{T}^$$

 $p = \sqrt{p_x^2 + p_y^2 + p_z^2}, p_T = \sqrt{p_x^2 + p_y^2}$

Relative momentum resolutions

Momentum resolution dependence on polar angle

Momentum resolution dependence on polar angle

Momentum resolution dependence on polar angle

Momentum resolution dependence on momentum

Momentum resolution dependence on momentum

Conclusions

- The momentum resolution does not change significantly starting from a straw tilt angle of 1°.
- Transverse momentum resolution depends very weakly on α , but uncertainty in longitudinal momentum is large for small α .
- Relative momentum resolution grows approximately linearly in momentum.

Momentum resolution dependence on polar angle (π)

Momentum resolution dependence on polar angle (π)

Momentum resolution dependence on polar angle (π)

