

Updates of the SPD experimental setup

Alexander Korzenev, JINR/LHEP

SPD TB #2 meeting Dec 2, 2021

Outline

(news with respect to the previous meeting)

- Relative position of ECal and Magnet
- Two option for the magnet
 - Rutherford cable based (team of BINP Novosibirsk)
 - Nuclotron cable based (team of LHEP JINR)
- ECal construction options (power frame + baskets)
 - Half-sector approach (as in MPD)
 - Rim approach
- MRPC options for the Time-of-flight system
 - Tsinghua proposal
 - Protvino proposal
- MicroMegas proposal for the Vertex Detector (1-st stage of experiment)
- Priorities for subsystems in view of the construction stages of SPD
 - Release for the schematic views of the SPD setup
- Agreement for the detector nomenclature scheme
- Conclusions

+15 cm in radius w.r.t. CDR

- 6 coils inside ECal were replaced by a single cryostat outside ECal
- Final complete set of detectors

Two options for the SC magnet technology

Option based on the PANDA cable

- The team of the Budker Institute of Nuclear Physics / Novosibirsk.
- The PANDA magnet will be moved to GSI in 2024 for final tests
- The Rutherford cable with 8 strands extruded in Al matrix
- Design of cryogenic system (refrigerator, pipelines and so on) in JINR

Option based on the <u>NICA cable</u>

- Coil construction similar to one used for the NICA magnets (produced in JINR)
- Two layers of NbTi/CuNi cable. The same cable as used in Nuclotron magnets: hollow superconductor with the helium flows inside (~4 K)
- Design of cryogenic system (refrigerator, pipelines and so on) in JINR

• Example: solenoid of KEDR is 22.5 cm thick

E.Pyata S.Pivovarov A.Krasnov

Option based on the PANDA cable

- The Rutherford cable with 8 strands extruded in Al matrix
- Cooling provided by liquid helium which circulates in pipes welded to the outside of the coil former

- Preliminary estimates for deformations shows satisfactory results
- The BINP team visited JINR for one week in October
- The PANDA magnet will be moved to GSI in 2024 for final tests. Engineers will be available for the SPD magnet in 2023-2024

Option based on the NICA cable

- Two layers of NbTi/CuNi cable. The same cable as used in Nuclotron magnets: hollow superconductor with the helium flows inside (~4 K)
- Will require an intensive R&D since coils of large size made of Nuclotron-type cable has never been constructed before
- Main issue is a quench handling

H.Khodzhibagiyan et al.

Cable used for magnets of Nuclotron

I.Moshkovsky

Magnetic field calculation (cryostat outside ECal)

Infrastructure for the cryogenic system

Electromagnetic Calorimeter (ECal)

TOF system: Tsinghua and Protvino

Presented by A.Ivanov at S&C meeting on 26.10.2021

Tsinghua TOF system: Barrel and End-cap

Proposal from Tsinghua

⁽⁹⁵⁻¹¹⁵⁾ R=85 (proposal) → 105 as in SpdRoot

14

Protvino TOF system: Barrel and End-cap

Proposal from Protvino

module

Length=40 cm Width=33 cm Height=2.5 cm

Size module as from Protvino

Hybrid TOF system

R=105 cm

R=85 → **105 cm**

Barrel-module (Protvino)

Length= $40 \rightarrow 44$ cm Width=33 cm Height=2.5 cm

Geometry Barrel as from Protvino

End-cap-module (Tsinghua)

Width1=14.0 cm Width2=34.0 \rightarrow 42 cm Length=70 \rightarrow 85.0 cm Height=3.0 cm

Geometry End-Cap as from Tsinghua ¹⁸

Presented by A.Ivanov at S&C meeting on 26.10.2021

MicroMegas proposal for the Vertex Detector

- For the first years of the experiment, it is proposed to replace the silicon vertex detector with a simpler and cheaper to manufacture MicroMegas
- It is assumed that MicroMegas for SPDs will be manufactured using bulk technology. Namely, PCB (~ 300 μ m) with readout strips and a grid represent a single module made by photolithography methods. The cathode is glued to this module on a cylindrical frame. The gap and the shape of the detector are set by the power elements glued along the edges.
- A FE board based on the VMM3 chip is supposed to be used as the readout electronics. A convenient option for us is hybrid128 (2 VMM3 chips, 128 channels), developed by the RD51 collaboration. The size of one board is 50 x 80 mm, the price is ~ 1 to kCHF / pcs.

Cross section and developed views of one detector

MicroMegas proposal for the Vertex Detector

 The number of channels is about 25 thousand (~ 200 boards, ~ 400 chips), power consumption ~ 2 kW. It is necessary to develop a cooling system

D.Dedovich

A.Gongadze

Cylindrical Micromegas

Segmentation and preparation

Gluing of the side carbon ribs on circular shape

Electric leak test

Gluing of additional ribs

Setting drift plane

Gluing of the drift plane

CEA/IRFU - Maxence Vandenbroucke - RD51 - 12/2

7

Negotiation with the team of CEA/Saclay is ongoing!

Zero Degree Calorimeter (ZDC)

ZDC will be locates in 'cold' zone between two beampipes

• Discussion with accelerator people (Syresin, Meshkov, Butenko) on 27.10.2021.

I.Alekseev

- Agreed on: 4 identical zones in the region of beampipe merging to be allocated for ZDC
- Funds to be shared in equal proportion between SPD, MPD and Accelerator teams.
- Two ZDC prototypes to be ready by the end of Oct 2022

Location of ZDC in the SPD hall

Zero Degree Calorimeter (ZDC)

- Weight is ~100 kg
- Located inside the cryostat (vacuum, about -200 °C)
- To be loaded section-by-section
- About 1000 DAQ channels
- Two few-section ZDC prototypes to be ready by the end of Oct 2022

Subsystems in view of the construction stages of SPD

Systems employed before start of physics programme	First stage of experiment	Following stages of experiment
ZDC, MCP, BBC	Magnet, RS, ST, MM (a.k.a. VD)	VD, TOF, ECal, Aerogel
 Detectors for local polarimetry and luminosity control Elastic scattering 	 Charmonia SSA for π and K Light vector mesons 	 Open charm Prompt photon p̄ production Physics with light ions

Table 4.1: Required setup configuration for each point of the SPD physics program. (+++) - absolutely needed, (++) - extremely useful, (+) - useful, (-) - not needed.

Program	Vertex	Straw	PID	Electromagnetic	Beam-beam	Range
	detector	tracker	system	calorimeter	counter	system
Gluon content with:						
charmonia	+	++	+	++	+	+++
open charm	+++	++	++	+	+	++
prompt photons	+	+	-	+++	+	-
SSA for π and K	+	++	+++	++	+	-
Light vector meson production	+	++	-	+	+	-
Elastic scattering	+	++	-	-	+++	-
\bar{p} production	+	++	+++	++	+	-
Physics with light ions	++	+++	+	++	++	+

- 6 coils inside ECal were replaced by a single cryostat outside ECal
- Final whole set of detectors

... Few more figures for technical presentations ...

... Few more figures for technical presentations ...

S.Sukhovarov

Agreement for the detector nomenclature scheme

1065.000.000.000 - NICA 1065.170.000.000 - Энерготехнологические и инженерные системы 1065.171.000.000 - Системы водоохлаждения 1065.100.000.000 - Инжекционный комплекс 1065.172.000.000 - Системы энергообеспечения 1065.110.000.000 - Источники лёгких нонов 1065.173.000.000 - Геодезаческая сеть 1065.120.000.000 - Лазерный источник 1065.174.000.000 - Конструкционные и монтажные элементы 1065.130.000.000 - ИТИ «КРИОН» 1065.190.000.000 - Линак ЛИЛУ 1065.131.000.000 - Магиятно-криостатиая система источника 1065.191.000.000 - Форынскектор 1065.133.000.000 - Источники питания, АСУ 1065.192.000.000 - Начальная часть на 7МэВ/н 1065.134.000.000 - Вакуумная система 1065.135.000.000 - Инженерные системы КРИОН 1065.140.000.000 - Источник поляризованных частиц 1065.141.000.000 - Источных поляризованных атомов 1065.142.000.000 - Зарядово-плазменный нонизатор 1. 2. 3. 4. 1065.143.000.000 - Система управления и питания SPI 1065.700.000.000 - Детектор МРD 1065.144.000.000 - Ижкенерные системы SPI 1. 1065 - номер темы 1065.150.000.000 - Линак ЛУ-20М 2. 700 - идентификатор группы в структуре проекта 1065.151.000.000 - Основная ускоряюще-фокусирующая структура 3. 000 - сборочные единицы 1065.152.000.000 - Форинскектор 4. 000 – детали 1065.153.000.000 - Высоковольтный терминал 1065.154.000.000 - Вакууыная система и диагностика 1065.701.000.000 - детектор ТОГ 1065.155.000.000 - Высокочастотный генератор 1065.702.000.000 - детектор ТРС 1065.156.000.000 - Система автоматизированного управления 1065.703.000.000 - детектор ЕСАL 1065.157.000.000 - Система питания 1065.704.000.000 - детектор ITS 1065.160.000.000 - Линейный ускоритель тяжёлых ионов 1065.161.000.000 - Основная ускоряюще-фокусирующая структура 1065.705.000.000 - детектор FFD 1065.162.000.000 - ВЧ генератор 2. 3. 4. 1. 1065.163.000.000 - Вакуумная система и диагностика 1065.164.000.000 - Форыккектор, LEBT 1065.700.000.000 - Детектор МРД 1065.165.000.000 - Система автоматизированного управления 1065.166.000.000 - Системы питания 1. 1065 - номер темы 2. 700 - идентификатор группы в структуре проекта 3. 000 - сборочные единицы

4. 000 - детали

1065.710.000.000 – система сбора данных
1065.711.000.000 – система медленного контроля
1065.712.000.000 – инженерная инфраструктура
1065.712.200.000 – ионопровод.
1065.712.300.000 – платформа для электроники
1065.712.400.000 – система электропитания
1065.712.500.000 – система охлаждения детектора
1065.712.600.000 – инфраструктура МРД
1065.712.700.000 – система газового обеспечения МРД
1065.713.000.000 – тестовая экспериментальная зона

<u>1065.800.000.000</u> – Детектор SPD 1065.801.000.000 – детекторы

> 1065.701.000.000 – детектор ТОF 1065.702.000.000 – детектор ТРС 1065.703.000.000 – детектор ECAL 1065.704.000.000 – детектор ITS 1065.705.000.000 – детектор FFD

Conclusions

- Major update in the detector layout: magnet coils are outside ECal
- Good development progress in the SC magnet design. Several meetings with the local magnet team and the Novosibirsk team recently
- Discussion ongoing about layout and dimensions of ECal, TOF
- Agreement on ZDC location has been concluded
- MM detector in place of silicon VD for the 1-st stage of SPD
- TDR preparation is in active phase

Backup slides

SC magnet location with respect to ECal

Option under development A single cryostat with several coils

RS

Zero Degree Calorimeter (ZDC)

- Located inside the cryostat (vacuum, about -200 °C)
- Loaded section-by-section

