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a b s t r a c t

We present FMFT — a package written in FORM that evaluates four-loop fully massive tadpole Feynman
diagrams. It is a successor of the MATAD package that has been successfully used to calculate many
renormalization group functions at three-loop order in a wide range of quantum field theories especially
in the Standard Model. We describe an internal structure of the package and provide some examples of
its usage.
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propagator-type integrals, each reduced separately using generalized dimensional recurrence-relations.
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1. Introduction

In the minimal subtraction schemes (MS) it is usually possible
to reduce calculation of a divergent part of a given L-loop diagram
to calculation of a massless L-loop propagator-type diagram. This
is possible because renormalization constants are independent
of masses and external momenta of a particular diagram [1]. In
practice, an infrared rearrangement (IRR) technique [2] is used to
set all but one external momenta and masses to zero, provided
that no infrared(IR) divergences appear. If there is no way to
route external momentum without introducing an IR divergences,
another technique to calculate divergent parts of L-loop integrals
is usually used. It is based on insertion of an equal auxiliary mass
in all propagators of the diagram and setting all external momenta
to zero, hence reducing the problem to calculation of fully massive
tadpole integrals [3,4].

This techniquewas used in three-loop calculations ofHiggs self-
coupling beta-function in the Standard Model [5–7], in which one
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needs to evaluate the divergent part of four-point Green function
with four external scalar legs. At four loops, the method was used
to find anomalous dimensions and beta-function in QCD [8–10],
its generalization for the case of extended fermion sector [11,12]
and also in the course of calculations of highermoments of anoma-
lous dimensions of operators of twist-2 in QCD [13] and N =

4 supersymmetric Yang–Mills theory [14]. Finally, fully massive
tadpole diagrams had found its application in five-loop calculation
of vacuum energy beta-function in scalar theory [15] and recent
results for five-loop QCD renormalization constants [16].

All these results require calculation of thousands of fully mas-
sive integrals. For systematic solution of such a problem the
integration by parts(IBP) [17] relations are usually applied. IBP
relations allow one to reduce large number of initial integrals
to a small number of master integrals. It is possible to carry
out the procedure of initial integrals reduction to set of master
integrals in an automatic way and in general case the problem
can be solved by the Laporta algorithm [18]. In some cases one
can resolve recurrence relations originating from IBP identities
explicitly and create a special purpose package for reduction of
integrals of special type. Famous examples of such type of solutions
are the MINCER [19] package for reduction of three-loop massless
propagators and the FORCER [20] package, which extends MINCER
to the four-loop level. The problem of reduction of three-loop
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(a) H. (b) X.

(c) BMW. (d) FG.

Fig. 1. Base topologies with 9 lines (a), (b), and 8 lines (c), (d).

vacuum-type integrals, not necessary fully massive, can be solved
by the package MATAD [21]. Laporta algorithm was successfully
used for reduction of four-loop tadpoles in [22,23]. In this articlewe
present the FMFT package for reduction of fully massive four-loop
tadpoles which can find application in calculations of four-loop
renormalization group functions in Standard Model and moments
of splitting functions in QCD.

Integrals reducible by means of FMFT can be attributed to the
single auxiliary topology (1) with ten propagators, i.e.:

In1...n10 =

∫
d[k1]d[k2]d[k3]d[k4]

Dn1
1 Dn2

2 Dn3
3 Dn4

4 Dn5
1;4D

n6
2;4D

n7
3;4D

n8
1;2D

n9
1;3D

n10
1;23

, (1)

where denominators are defined as

Da = k2a − m2, Da;b = (ka − kb)2 − m2,

Da;bc = (ka − kb − kc)2 − m2. (2)

In (2) all masses m2 are set to one during integral evaluation. For
single scale integrals the mass dependence can be easily recon-
structed from dimensional considerations. The integration mea-
sure is defined as d[k] = eεγE ddk

iπd/2 .

2. Internal structure and usage details

Since FMFT is written in FORM [24], its installation reduces
to extraction of distribution archive to an appropriate place. For
proper operation of the FMFT package at least FORM version 4
is required. The latter supports PolyRatFun, which is used for
polynomial division and factorization.

The main steps of operation of the FMFT package are explained
in the dia. 1. The detailed description of each step can be found in
the following sections.

2.1. Reduction of the top-level topologies

We can associate any fully massive four-loop tadpole integral
with one of two top-level nine propagator topologies: planarH (see
Fig. 1(a)) and nonplanar X (see Fig. 1(b)) or their subtopologies. If
we shrink one of the lines in a diagram corresponding to topologies
H or X, we get an integral corresponding to either BMW (see
Fig. 1(c)) or FG (see Fig. 1(d)). All other integrals can be associated
with topology FG and its subtopologies.

As a rule, in the course of integral reduction the most time-
consuming part is not the reduction of integrals of the top-level
topologies, e.g., X,H and BMW, but the reduction of integrals with

smaller number of lines, which still have large powers of propa-
gator denominators and numerator. All such integrals in the case
of four-loop tadpoles can be mapped onto the topology FG. Due to
this, for topologies X, H and BMWwe use recurrence relations ob-
tained from the rules generated by the LiteRed package [25]. Our
main goal, however, is to optimize the reduction of the topology FG.

2.2. Reduction of topology FG

The main idea of the reduction strategy for topology FG imple-
mented in FMFT is based on the observation that the corresponding
integrals can be represented as a convolution of two propagator-
type integrals:

JFG =

∫
d[p]

⎛⎜⎜⎜⎜⎜⎜⎝ k2 − pk1 − p

k1 k2

k1 − k2

k4 − p

k4

p

⎞⎟⎟⎟⎟⎟⎟⎠ . (3)

One of these integrals is two-loop (F), while another one is
one-loop (G). The main difference between the standard IBP re-
duction and the proposed approach is the application of reduction
to each part separately. Both parts are propagator-type diagrams
with all propagators having equal masses and arbitrary external
momentum. For the reduction of one- and two-loop propagator-
type integrals with arbitrary masses and external momenta there
exists a closed-form solution as a set of generalized recurrence
relations [26]. The latter are also implemented in the form of
Mathematica package TARCER [27].

Diagram 1Main steps of four-loop tadpoles reduction with FMFT

1. Apply the reduction rules for topologies X, H, BMW

2. Map the integrals onto topology FG expressible as a
convolution of two-loop (F) and one-loop (G) inte-
grals

3. Reduce tensor one-loop integral corresponding to
the G part of the integral to a scalar one with shifted
space-time dimension

4. Reduce the F part of the integral with a numerator:

(a) cancel scalar products, if possible

(b) substitute integrals with irreducible scalar
products by scalar integrals in shifted space-
time dimension (by means of tables)

(c) apply dimension recurrence relations to con-
vert integrals with shifted space-time dimen-
sion to the initial dimension

(d) reduce the obtained scalar integrals (in origi-
nal space-time dimension) to a set of master
integrals

5. Do partial fractioning in p2 (the momentum, exter-
nal to F and G)

6. Rewrite (1 − loop) ⊗ (2 − loop) as an integral FG
with a different mass on line with p5 and arbitrary
power n5

7. Apply recurrence relations to reduce the power n5
of the topology FG to zero or one
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Possible presence of numerators involving scalar products like
k1 · k4 or k2 · k4, which connect both integrals do not let to apply
reduction rules immediately. To disentangle integrals we need to
apply tensor reduction to one of the integrals first. The easiestway
is to express one-loop integral G in the form:

Gµ1...µr (n; n1, n2) =

∫
dnk

kµ1 . . . kµr

dn11 dn22
, (4)

d1 = k2 − m2 , d2 = (k − p)2 − m2.

Then applying the general formula for one-loop tensor integral
reduction [28], we can express it as a sum of scalar integrals with
shifted space–time dimension. For the one-loop propagator case
the general expression is reduced to

Gµ1...µr (d; n1, n2) = (−1)r
[r/2]∑
j=0

(
−

1
2

)j {
[g]

j
[p]r−2j}

µ1...µr
(5)

×
Γ (n1 + r − 2j)

Γ (n1)
G(d + 2(r − j); n1 + r − 2j, n2),

where the structure{
[g]

a
[p]b

}
µ1...µr

is symmetric with respect to µ1 . . . µr Lorentz indices and is con-
structed from ametric tensors gµν and bmomenta p.

The resulting scalar integrals with shifted space–time dimen-
sion can be reduced to master integrals in the initial space–
time dimension by means of dimension recurrence relations(DRR)
from [26]. The latter are also used in the course of two-loop integral
reduction (see below).

2.3. Generalized recurrence relations and the reduction of two-loop
massive propagator-type integrals

After splitting the topology FG into parts and the tensor reduc-
tion of one-loop subdiagram via (5), we end up with a convolution
of the scalar one-loop propagator-type diagram and a two-loop
diagram with a numerator. The most general form of two-loop
diagram can be represented as

T abxyz
n1n2n3n4n5 =

∫
d[k1]d[k2]

×
(k1 · p)a(k2 · p)b(k1 · k1)x(k2 · k2)y(k1 · k2)z

Cn1
1 Cn2

2 Cn3
3 Cn4

4 Cn5
5

, (6)

where massive denominators are introduced in accordance
with (3):

C1 = k21 − m2, C2 = k22 − m2, C3 = (k1 − p)2 − m2,

C4 = (k2 − p)2 − m2,

C5 = (k1 − k2)2 − m2 . (7)

The rules from [26] can be used to cancel some of scalar prod-
ucts in the numerator and denominator of (6), leading to integrals
with x, y, z = 0. In particular, if we have all ni > 0 we are only left
with scalar integrals without numerator. If some of ni are equal to
zero then the irreducible scalar products in the numerator, (k1 · p)
and (k2 · p), cannot be canceled. Due to this, the general form of
two-loop subintegral we need to reduce can be cast into:

T ab
n1n2n3n4n5 =

∫
d[k1]d[k2]

(k1 · p)a(k2 · p)b

Cn1
1 Cn2

2 Cn3
3 Cn4

4 Cn5
5

. (8)

The integrals (8) with irreducible numerator can be reduced to
a combination of scalar integrals in shifted space–time dimension

using rules from [26].2 To speed up the calculation we prefer to
use tables for such substitutions. The latter were pre-generated in
advance, instead of generating them on the fly. The substitution
rules stored in the tables distributed with the package should be
sufficient for most of practical applications and allow to reduce
integrals with a+ b ≤ 20. For higher powers of numerator, RHS of
substitution rules stored in tables becomes too long and it is more
efficient to implement reduction for integrals (8) with negative
powers of denominators instead of performing dimensional shifts
on integrals with irreducible numerators.

As a next step we use DRR to connect scalar integrals in shifted
space–time dimension with integrals in initial space–time dimen-
sion and reduce later to a set of irreducible integrals. For such a
purpose we follow along the lines of [26] and implement in the
FMFT package a set of DRR connecting integrals with space–time
dimension d+2 and d togetherwith recurrence relations to reduce
integrals with fixed space–time dimension to the followingmaster
integrals:[ F[11111], V[1111], J[211]
J[111], T2[111], G[11]G[11]

G[11]T1[1], T1[1]T1[1]

]

⊗

[
G[11]
T1[1]

]
. (9)

In (9) G and T1 are one-loop self-energy and tadpole integrals
respectively, T2 is the two-loop tadpole and F,V,J are two-loop
integrals with five, four and three lines, respectively, as defined
in [26]. All possible one- and two-loop integrals entering convo-
lution (9) are listed in Appendix.

As a result of application of the above-mentioned relations, the
integral in the form (3) can be represented as a sum of different
convolutions of one- and two-loop massive propagator-type mas-
ter integrals (9) and a p2-dependent function. This p2-dependent
function has the form of a product of scalar propagators with
momentum p2 and differentmasses, not necessary equal tom2. The
masses different from m2 arise from coefficients dependent on p2
andm2 in front of integrals. Such a coefficients goes to denominator
when integral is substituted into other relations. Fortunately only
quadratic in p2 denominators arise during reduction of massive
propagator-type integrals and number of these newmasses is fixed
and Section 2.4 is devoted to the problem of reduction of such
tadpole integrals with different masses.

2.4. Recurrence relations for tadpoles with different masses

At the last stage of reduction by applying partial fractioning
to p2-dependent denominators each term of the integrand of (3)
can be represented as a convolution of one and two-loop integrals
with fixed indices from the set (9) and a single p2-dependent
propagator:

Ji(n,mj) =

∫
d[p]

Fi(p2)Gi(p2)(
p2 − m2

j

)n . (10)

Here for each of the integrals Ji the corresponding integrals
Fi(p2) and Gi(p2) have fixed propagator powers given by combina-
tions from (9) and the mass m2

j takes one of the possible values:
m2

j = {0,m2, 3m2, 4m2, 9m2
}. The denominator power n can be

either positive or negative, whereas for subsequent evaluation we
need to reduce it to zero or one.

One of the possible ways to construct recurrence relations con-
necting integrals in the formof (10)with different propagator pow-
ers n is to apply original Laporta ideas [18] and derive difference

2 Alternatively reduction rules for the integrals with negative indices can be used
and will be implemented in future versions of the code.
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equations for the integrals, in which one of the propagator powers
is treated symbolically and all others are fixed numbers.

Unfortunately, the application of Laporta reduction algorithm
to the integrals with symbolic power of one of the propagators
is not a well-developed field and there is no publicly available
software tools. Due to this, we decided to use the following trick.
Instead of a system of difference equations for integrals Ji(n,mj),
we construct system of differential equations
∂Li
∂M2 = AikLk (11)

for auxiliary integrals Li = Ji(1,M) in the variable M2, which was
kept as symbol during all the steps.

For further discussion we need to separate two cases: the first
one, when integral (10) has n ≥ 0, and the second one, when
p2-dependence is in the numerator. The second case will be con-
sidered later, but now we want to focus on the first case.

We can see that the expansion of scalar M2-dependent prop-
agator of one of the Li integrals in a small dimensionless variable

z =
M2

−m2
j

m2 has the following form:

1
p2 − M2 =

1
p2 − m2

j
+

m2(
p2 − m2

j

)2 z +
m4(

p2 − m2
j

)3 z2 + · · · . (12)

If we set m2
j in (12) to be equal to one of the values of our

interest, we can relate the nth coefficients of Li integral expansions
in the variable z with the integral Ji(n + 1,mj). At the same time,
we can look for a solution of the system (11) in the form of formal
series (13) in small variable z:

Li =

∞∑
n=0

ci,nzn, z =
M2

− m2
j

m2 . (13)

From Eqs. (12) and (13) we can construct the following rela-
tion (14):

Ji(n + 1,mj) =
ci,n
m2n , (14)

connecting the integral Ji having the denominator involving m2
j

in power n with the coefficients of expansion of the auxiliary
integrals Li in Taylor series in z. For each possible m2

j from the
set {0,m2, 3m2, 4m2, 9m2

} expansion variable z and system of
Eqs. (14) are unique.

Substituting the ansatz (13) into the system (11) and equating
the coefficients of equal powers in z, we obtain the system of
difference equations in variable n for the coefficients ci,n and,
hence, for the integrals Ji(n,mj). The constructed system can be
transformed to the triangle form and then used for reduction of
the integrals Ji(n,mj) to a set of master integrals having the form
Ji(1,mj) or Ji(0,mj). It should be noticed that one needs to construct
a separate system of recurrence relations for all possible values of
the massm2

j .
As an example, we consider recurrence relations for the integral

of topology FG with the following set of indices: n1, n2, n3, n6,
n10 = 0 and n4, n7, n8, n9 = 1. This integral is a product of two
one-loop tadpoles T1[1] with propagators in unit power and a
two-loop vacuum integral dependent on n. One-loop integrals do
not contribute to difference equations and can be discarded, so it is
sufficient towrite down a recurrence relation only for the two-loop
part (15):

n
= θ (n − 3)

n − d
3(n − 1)

n − 2

+ θ (n − 2)
d + 1 − 2n
3(n − 1)

n − 1

+ θ (n − 2)
d − 2

3(n − 1) n − 1

+ δ(n − 2)
2 − d
3

n
= θ (n − 2)

d + 2 − 2n
2(n − 1) n − 1

, n > 1. (15)

Here θ (n)withn ≥ 0 and δ(n)withn = 0 are equal to one,while for
other values of n both functions are equal to zero. We can see that
such ‘‘one-dimensional’’ relations affect only single propagator
power leading to small number of terms at each reduction step and
can be effectively implemented in FORM.

In the second case with p2-dependence in the numerator of the
integral (10) it is sufficient to consider m2

j = 0 and n ≤ 0. Such
integrals with arbitrary power n should also be reduced to the
integrals Ji(0, 0).

We can use the same auxiliary integrals Li = Ji(1,M) dependent
on the mass M2 and the system of differential equations (11) as
before, but now expand the scalar propagator with massM2 in the
opposite limit, i.e., in small z̄ =

m2

M2 :

1
p2 − M2 = −

1
m2 z̄ −

p2

m4 z̄
2
−

p4

m6 z̄
3
+ · · · . (16)

As before we can construct formal solution of the system (11)
in the form of series:

Li =

∞∑
n=0

c̄i,nz̄n, z̄ =
m2

M2 . (17)

Then the integrals (10) with n ≤ 0 will be related to expansion
coefficients (17) in z̄

Ji(−n, 0) = −c̄i,nm2(n+1). (18)

As in the case of integrals with denominators we substitute
the ansatz (17) into the system (11) and equate the coefficients in
front of equal powers of z̄. In such a way we obtain a system of
difference equations for c̄i,n, which means that we can construct
the recurrence relations for reduction of the integrals Ji(−n, 0) to
the integrals of the type Ji(0, 0).

It is necessary to note that after the application of the recur-
rence relations to the integrals (10) with m2

j ̸= m2 the result can
involve the integrals like Ji(1,mj)with two differentmasses. On the
other hand, we know that if one applies traditional IBP reduction
to the fully massive four-loop tadpoles that can be expressed in
terms of master integrals with only one mass scale [10]. Thanks to
this property all integrals Ji(1,mj ̸= m) should cancel in the final
answer. Such cancellation is a good check for correctness of the
whole four-loop integrals reduction procedure implemented in the
FMFT package.

At this step the main reduction part of FMFT is finished and the
result is expressed in terms of symbolic expressions corresponding
to master integrals from paper [10] and coefficients dependent
on d. For the case of four space–time dimensions result can be
expanded in ε near d = 4 − 2ε and actual expansions for master
integrals from [10] can be substituted.

3. Comparison with other codes and examples

To estimate the FMFT package performance and illustrate its
applicability to reduction of complicated integrals we calculate a
nonplanar integral of topology X (Fig. 1(b))

F (n) = I(−n, 1, 1, 1, 1, 1, 1, 1, 1, 1), (19)
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in which the propagator powers are written in accordance with
the auxiliary topology (1). The integral has a nontrivial numerator
and we compare the results of calculation for different numerator
powers n. The comparison was performed with the C++ version of
the FIRE 5 [29] package. Code FIRE is known to be very efficient
general-purpose tool for solution of the reduction problem with
many successful applications and not restricted to the reduction
of fully massive tadpoles. It can be used not only for IBP reduc-
tion with the help of Laporta algorithm, but also in combination
with the package LiteRed [25]. When used together FIRE 5 acts
as efficient tool for application of reduction rules from resolved
recurrence relations obtained by means of LiteRed.

Timing results for reduction of a single integral with FMFT and
FIRE 5 are present in Table 1. For the FMFT reduction we use
multithread version TFORMwith eight active workers(-w8 option).
Similar setup was used for FIRE 5. It was running on eight CPU
cores and in memory reduction was used (options #memory and
#threads 8). In addition, the reduction rules from LiteRed
package were utilized. The main goal of comparison present in
Table 1 is to illustrate that FMFT can be used for reduction of
complicated integrals as can bee seen from the time spent for
integral reduction with such efficient tool as FIRE.

In the listing 1 we present simple FORM program to illustrate
FMFT usage for reduction of four-loop integrals. Integral with nu-
merator is defined via pi for scalar products in the numerator and
di = p2i − m2 for massive denominators in correspondence to one
of the top-level topologies Figs. 1(a) and 1(b). Themain entry point
is the fmft routine. The result of its application is the reduction
of the initial integral to the set of master integrals identified in
thework [10]with coefficients exhibiting exact dependence on the
space–time dimension parameter d.

#-
* load main library code
#include fmft.hh
* input with numerator
L ex = p2.p3/d1/d2^2/d4/d5/d6/d7/d8/d9;
* call reduction routines
#call fmft
* expand near d=4-2*ep up to ep^1
#call exp4d(1)

b ep;
Print+s;
.end

Listing 1: Example program

By means of procedure exp4d(n) the result of the reduction can
be expanded in ε up to the order εn near d = 4 − 2ε space–time
dimensions. Output from the program calculating integral from the
listing 1 is the following:

ex =
+ ep^-4 * ( 3/8 )

+ ep^-3 * ( 25/8 )

+ ep^-2 * ( 137/8 + 3/4*z2 - 81/4*S2 +
3/4*z3 )

+ ep^-1 * ( 363/8 - 3/2*T1ep - 1/2*z2 -
81*S2 - 3/8*z4 + 1/2*D6 - 6*z3)

+ 1/2*PR14ep0 + 1/2*PR15ep0;

+ ep * ( 1/2*Oep(1,PR14) + 1/2*Oep(1,PR15
) )

Listing 2: Sample output

Table 1
Comparison to FIRE, time format is hh:mm:ss.

n = 3 4 5 6 7 8

FMFT 0:00:11 0:00:27 0:01:55 0:07:35 0:25:31 01:30:31
FIRE 0:01:58 0:09:10 0:28:17 2:16:42 9:19:57 46:42:29

where z2,z3,z4 are Riemann zeta functions, S2,T1ep are non
zeta parts of two-loop and D6 three-loop terms of tadpole integrals
ε-expansion defined in [21]. Finite parts of four-loop integrals
PR14ep0,PR15ep0 are kept as symbols and its numerical values
can be substituted from [23]. To denote truncation of ε-expansion
series we use common function Oep with first argument corre-
sponding to order in ε and second argument containing master
integral name.
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Appendix. Two-loop massive master integrals

F[11111] = T11111 = (A.1)

V[1111] = T01111 = (A.2)

J[211] = T20011 = (A.3)

J[111] = T10011 = (A.4)

T2[111] = T11001 = (A.5)

G[11]G[11] = T11110 = (A.6)

G[11]T1[1] = T11100 = (A.7)

T1[1]T1[1] = T11000 = (A.8)
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