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In this letter we present our results for the four-loop beta-function of the strong coupling in the Standard 
Model of fundamental interactions. The expression is obtained from gluon self-energy diagrams in the 
background field gauge without application of special infra-red rearrangement tricks. We take top-Yukawa 
and self-Higgs interactions into account, but neglect electroweak gauge couplings. Ambiguities due to γ5
treatment are discussed and a particular “reading” prescription for odd Dirac traces is advocated.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Most of viable models describing Nature at high energies are 
based on gauge symmetries. Quantum chromodynamics (QCD) is a 
gauge theory of strong interactions and it is important to study its 
strength described by the coupling αs both in the low- and high-
energy limit. At low energies the QCD interactions play a dominant 
role in binding quarks and gluons together into nucleons. At larger 
scales the coupling αs decreases [1,2] due to non-Abelian nature of 
the underlying gauge theory. Nevertheless, the precise value of αs

is of paramount importance both for modern and future colliders 
and for theoretical studies of physics going beyond the Standard 
Model (SM) of fundamental interactions.

The renormalization group equations (RGE) relate couplings at 
different scales. By solving them one can not only confront mea-
surements carried out at different energies with theory but also 
study asymptotic behavior of the latter at scales inaccessible in 
current and even future experiments.

The progress in calculation of beta-functions — key RGE quanti-
ties — is tightly connected to the introduction of dimensional regu-
larization [3] and (modified) minimal subtraction (or MS) scheme. 
The former does not break gauge symmetry in d = 4 − 2ε dimen-
sions and the advantage of the latter lies in the fact that beta-
functions are extracted only from ultraviolet (UV) asymptotics of 
Feynman integrals. This fact allows one to drastically simplify a 
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calculation by modifying the infra-red (IR) structure of the consid-
ered integrals by means of the so-called infra-red rearrangement 
(IRR) procedure [4].

Pure QCD results for the strong coupling beta-function are 
known for quite a long time up to four loops [1,2,5–11]. The 
four-loop results are obtained with the help of IRR procedure 
leading to four-loop vacuum diagrams with all lines having the 
same mass. The beta-function is extracted from the quark–gluon 
[10] and ghost-gluon [11] vertex renormalization constants and 
the corresponding wave function renormalization constants. Inde-
pendently, the ghost field renormalization constant and the ghost-
gluon vertex renormalization constant were calculated in Ref. [12]. 
The quark field renormalization constant [13] was found by a dif-
ferent method bringing the problem to the calculation of three-
loop massless propagator-type diagrams.

It is obvious that in a precise study of QCD processes at high 
energies one should consider other SM interactions and their effect 
on the running of αs . Recently, the full set of three-loop beta-
functions for all SM parameters, including the strong coupling, was 
found in a series of papers [14–20].

In this letter we present our result for the dominant four-loop 
contribution to the beta-function of the strong coupling in the SM. 
In our calculation we neglect the electroweak gauge interactions, 
but keep top-Yukawa and Higgs self-interactions along with the 
well-known QCD corrections. The calculation is carried out in the 
background-field gauge (BFG) [21,22]. The advantage of BFG lies in 
the QED-like relation between the gauge coupling renormalization 
constant Zas and that of the background gluon field Z ˆ :
V 3
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Zas = 1/Z V̂ 3
, Z = 1 +

∞∑
i=1

δZ (i)

ε i
. (1)

This allows us to obtain the final result by considering massless 
propagator-type integrals. For the present calculation we evalu-
ate the required four-loop integrals contributing to the two-point 
Green function for the background gluon field and exploit multi-
plicative renormalizability of theory as in Refs. [9,23,24]. We only 
need to calculate bare Green-functions up to the l-loop level and 
re-express all the model parameters in terms of the renormalized 
ones in the MS-scheme:

�
(l)
ren = Z (l)

�

[
1 +

l∑
k=1

�
(k)
B (aB)

]
, aB = Zaaren, (2)

where a collectively denotes the SM couplings in the considered 
limit, i.e., strong – gs , top-Yukawa – yt , and that of Higgs self-
interaction – λ, together with SU (3) gauge-fixing parameter ξ :

(16π2)a =
{

g2
s , y2

t , λ, (16π2)ξ
}

. (3)

As it is clear from (2), due to finiteness of �ren, RHS should 
be finite too and at each order of perturbation theory we have 
an equation on Z� terms. Given the knowledge of all three-loop 
renormalization constants, it is possible to extract the four-loop 
contribution to the renormalization constant Z V̂ 3

for the back-

ground gluon field V̂ 3.
For diagram generation the package DIANA [25], which inter-

nally uses QGRAF [26], was utilized. After some color [27] and 
Dirac algebra all the generated two-point functions were mapped 
onto three auxiliary topologies, each containing 11 propagators 
and 3 irreducible numerators. Before the actual integration-by-
parts (IBP) [28] reduction, a set of reduction rules was prepared 
by means of LiteRed [29] package. After that the prepared set 
was passed to the C++ version of FIRE package [30], which al-
lows one to reduce the obtained four-loop integrals in parallel on 
a multithread machine. The IBP reduction leads to a small set of 
master integrals. The expressions for the latter are known in ana-
lytical form up to the finite parts [31]. The master integrals were 
also cross-checked numerically in Ref. [32] and some additional 
terms in ε-expansion were found in Ref. [33]. We also perform 
some independent evaluation of several three-loop integrals. The 
simplest four-loop integrals with three-loop insertions in a one-
loop integral were checked by means of the FORM-based package
MINCER [34,35].

It is also worth mentioning that as an independent cross-
check of our setup, we prepared a simple QCD model with ad-
ditional fermion in the adjoint representation of SU(3) color group 
(“gluino”). The beta-function for such a model at the three-loop 
order can be predicted by means of proper color factor substitu-
tions [36]. At four loops similar procedure ceases to be sufficient 
and some additional information from the direct calculations [37]
of QED-type diagrams is required to predict the beta-function. We 
compared the predicted results [38] with that calculated by means 
of the above-mentioned setup and found a perfect agreement.

After these kind of tests we address the issue of finding the 
SM four-loop contribution to the gauge coupling beta-function. The 
calculation of bare Green-functions requires evaluation of traces 
over Dirac matrices in d �= 4 dimensions and an additional compli-
cation, comparing to QCD, arises when traces involving γ5 matrices 
are present (see, e.g., Ref. [39]).

One needs to be careful in maintaining γ5 anticommutativity 
and strict four-dimensional relation

tr
(
γ μγ νγ ργ σ γ5

) = −4iεμνρσ , (4)
Fig. 1. A typical diagram with two fermion traces giving rise to a non-zero contri-
bution to βas at four loops due to the appearance of γ5 in Yukawa-type vertices of 
the would-be Goldstone bosons χ, φ± . Fermion line momenta pi are indicated. The 
momentum flow in the loop coincides with the fermion flow. The latter is denoted 
by arrows.

involving totally antisymmetric tensor with ε0123 = 1. At three 
loops [16,40] it was proven by direct calculations that it is pos-
sible to use semi-naive approach and utilize both {γ μ, γ5} = 0
and (4) without paying much attention to apparent non-cyclicity 
of the trace operation in d �= 4. The formal ε-tensor originating 
from the trace (4) can only give a non-trivial contribution if two 
such traces are present and the anti-symmetric tensors are con-
tracted by means of

εμνρσ εαβγ δ = −T [μνρσ ]
[αβγ δ] , T μνρσ

αβγ δ = δ
μ
α δν

βδ
ρ
γ δσ

δ . (5)

Strictly speaking, the Kronecker delta-symbols in (5) should be 
considered as four-dimensional objects and the contraction with 
the remaining part of a diagram should be carried out after sub-
traction of infinities via R-operation [41]. However, it is not con-
venient in a massive calculation involving thousands of Feynman 
diagrams and it is tempting to use d-dimensional δ

μ
ν satisfying 

δ
μ
μ = d in the bare d = 4 − 2ε theory. It is easy to convince oneself 

that the cyclic property of traces gives rise to an ambiguity O(ε), 
which can play a role in determining RG coefficients. However, it 
turns out that at the three-loop level a non-trivial contribution 
originating from the contraction (5) appears for the first time in 
the Yukawa coupling beta-function [40]. Both gauge-coupling and 
higgs self-coupling turn out to be free from this kind of contribu-
tions due to gauge-anomaly cancellation conditions fulfilled within 
the SM.

In our calculation we tried to employ the above-mentioned 
semi-naive approach to study the diagrams giving rise to a non-
zero terms due to (5). A typical diagram is shown in Fig. 1. By 
counting coupling constants and performing color algebra it is easy 
to convince oneself that γ5 affects only a2

s a2
t T 2

F contribution with 
T F = 1/2. We have 24 planar diagrams of this type and 48 non-
planar graphs, which can be obtained by permutation of internal 
lines connecting two fermion traces. It contains box-type closed 
sub-loops involving two gauge bosons and two scalars as external 
legs.2 Direct evaluation of the diagram shows that, indeed, the re-
sulting expression is free from higher poles in ε .

An additional argument to the fact that the four-loop higher 
poles are not affected by different γ5 prescriptions comes from an 
observation that they can be found in advance from the known 
three-loop results [14–20] and the so-called pole equations [3]. 
Dangerous contributions due to (5) to the four-loop higher poles 
can only appear if three-loop Yukawa coupling beta-function βat is 
involved. However, it is easy to prove that it is not the case for βas . 
Since one-loop gauge-coupling beta-functions does not depend on 
other couplings, only one- and two-loop terms in βat contribute 
to the four-loop pole equations for as and we expect no dangerous 
high-order poles in Zas . It is worth stressing that the argument can 
also be applied to all gauge-coupling beta-functions in the full SM 
provided that all gauge anomalies are canceled.

2 Similar sub-diagrams of three-loop Yukawa vertex were discussed in papers [16,
40] in the same context.
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This kind of reasoning lead us to a premature conclusion that 
the semi-naive approach is sufficient to get the correct answer 
for the strong coupling beta-function at four loops. The question 
whether the absence of higher poles in the considered diagrams 
is sufficient for them to be unambiguous was initially left without 
consideration.

However, a more careful study, triggered by the appearance of 
similar result in Ref. [42], of all the above-mentioned 72 diagrams 
have shown that our initial treatment leads to results inconsistent 
with formal charge-conjugation symmetry. For example, the left 
fermion loop in Fig. 1 gives

tr
(

p̂1γρ p̂2 p̂3γ5 p̂4γμ

) = tr
(

p̂1γρ p̂2 p̂3γ5 p̂4γμ

)T
, (6)

where μ, ρ are Lorentz indices of gluons connected to the loop, 
pi correspond to momenta of fermion propagators, and γ5 comes 
from the vertex with neutral would-be goldstone boson (χ ). As-
suming standard relations CγμC−1 = −γ T

μ and Cγ5C−1 = γ T
5 due 

to charge conjugation transformation C , one can show that the 
right-hand side (RHS) of Eq. (6) can be rewritten in the form

tr
(
γμ(−p̂4)γ5(−p̂3)(−p̂2)γρ(−p̂1)

)
, (7)

which corresponds to a diagram with flipped fermion flow of the 
considered closed chain. As a consequence, these two diagrams 
should be equal. However, an inconsistent treatment of γ5 could 
spoil this C-symmetry. As it is know [43], the cyclic property of 
the Dirac trace should be abandoned if one tries to utilize both 
γ5 anticommutativity and trace relation (4). Due to this, the “read-
ing” point [43], which defines the position of γ5 in an “odd” trace, 
should be chosen consistently for diagrams related by C-symmetry. 
In our initial treatment the choice was made by the utilized dia-
gram generation code DIANA, which starts writing closed fermion 
loops from a propagator with certain momentum, irrespectively of 
its fermion flow. e.g., from (−p̂1) for Eq. (7). As it will be shown 
latter, this prescription leads to an inconsistent result.

In order to shed light on possible solutions to this issue, i.e., we 
study different “reading” points [43] for the involved Dirac traces. 
We “cut” a trace at a certain point, i.e., start writing a fermion 
string from either propagator or vertex, and utilize {γ5, γμ} = 0, 
γ 2

5 = 1 properties to anticommute γ5 to the rightmost position 
of the corresponding chain. For example, Eq. (6) corresponds to 
cutting the trace at the external gauge vertex, while the flipped 
version (7) is cut at the propagator entering the vertex. Then the 
resulting traces involve more than four γ -matrices and direct ap-
plication of the trace condition (4) is not possible. We made use 
of the algorithm given in the FORM [44] manual to reduce these 
traces to Eq. (4).

Simple “scan” over different reading points indicates that, in-
deed, there is an ambiguity in the resulting expression depending 
on the position, at which the traces are “cut”. We can distinguish 
three situations: A) both traces start (or end3) at external ver-
tices; B) only one trace starts (or ends) at an external vertex; C) 
both traces start (or end) at some internal vertex. The ambiguous 
divergent contribution to the gluon self-energy from a diagram in-
volving odd traces with γ5 can be parameterized in the following 
way

a2
s a2

t T 2
F

ε
(X1 + X2ζ3) . (8)

3 We can also consider situations when traces are terminated at fermion propa-
gators, but it is easy to convince oneself that these cases are also included in our 
consideration.
For the case A, the planar graphs give X1 = 1/6, X2 = 0, while 
non-planar ones lead to X1 = −1/18 and X2 = 1/6. Summing con-
tributions from 24 planar and 48 non-planar diagrams we obtain

a2
s a2

t T 2
F

ε

(
4

3
+ 8ζ3

)
. (9)

For the case B we have found that the corresponding coeffi-
cients are multiplied by a factor of 2, while the prescription C gives
rise to a factor of 3. The same expressions for the considered three 
cases are obtained if, after moving γ5 to the rightmost position, 
the original definition [45]

γ5 → − i

4!εαβμνγ
αγ βγ μγ ν (10)

is used. The resulting traces with four additional gamma-matrices 
is evaluated as in D-dimension, while ε-tensor from (10) is treated 
according to (5).

It is worth mentioning that we also tried to utilize Larin-like 
[46] prescription for dealing with γ5, i.e., the substitution

γμγ5 → − i

3!εμνρσ γ νγ ργ σ , (11)

which, in a cyclic trace with anticommuting γ5, can be interpreted 
as a reading prescription, which corresponds to an average of two 
adjacent cut-points

tr
(
. . . γμγ5

) → 1

2

[
tr

(
. . . γμγ5

) − tr
(
γμ . . . γ5

)]
. (12)

This latter fact was confirmed by direct calculations. There is a 
subtlety with (11) coming from the fact that γμ may not only 
come from a gauge vertex, but from a propagator, connecting ex-
ternal and internal vertices. For example, if one terminates the 
left fermion chain in Fig. 1 by the external vertex, but the right 
one — by the Yukawa vertex involving, e.g., a neutral Goldsone 
boson χ (marked by a blue circle), the outcome will be the 
mean of the results corresponding to the cases A and B, i.e., 
X1 = 1/2 · 1/6 · (1A + 2B) = 1/4.

Similar situation appears if we do not move γ5 in (a part of) the 
trace with single γ5, but just use (10) or (11) without anticommut-
ing it to some cut-point. This approach turns out to be equivalent 
to the one, when the cut-point is actually fixed to be the vertex, in 
which γ5 appears. Again, referring to Fig. 1 with internal χ , appli-
cation of Larin-like prescription (11) from the very beginning gives 
rise to X1 = 1/2 · 1/6 · (2B + 3C ) = 5/12. The only complication in 
the charged φ± goldstones case comes from the necessity of addi-
tional averaging over four different ways to choose the position of 
single γ5 in both traces, since 1 ± γ5 enters each vertex with φ± . 
For example,

X1 = 1

22
· 1

22
· 1

6
· (2B · 4 + 3C · 3 · 4) = 11

24
. (13)

However, it is easy to understand that such a prescription will 
give rise to a result incompatible with the above-mentioned C-
symmetry, since flipping the right loop fermion flow results in

X1 = 1

22
· 1

22
· 1

6
· (3C · 4 · 4) = 1

2
. (14)

Nevertheless, it is worth pointing that the issue arises only due 
to identical handling of both diagrams. In general, one is able to 
use different reading prescriptions for different diagrams and by a 
proper choice it is possible to maintain the C-symmetry. We can 
parametrize our ignorance of the correct reading prescription by 
means of a function
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R(x, y, z) = 1A · x + 2B · y + 3C · z

x + y + z
, 1 ≤ R(x, y, z) ≤ 3,

x, y, z ∈ N, (15)

which corresponds to an average over x + y + z reading points, x of 
which are of type A, y – of type B, and z – of type C.

In spite of the observed ambiguity, in what follows we provide 
some arguments leading us to a conclusion that the prescription C
with R = 3 is preferred among the others.

First of all, as it is noted in Ref. [43], reading points at external 
vertices could spoil gauge invariance of the final result of our two-
point function. Indeed, we have checked that finite parts of the 
(sum of) corresponding diagrams are not transverse if both Dirac 
traces are cut at the external vertices. It turns out that the pre-
scription B also yields zero upon multiplication by the product of 
external momenta qμqν . Nevertheless, if we want to avoid non-
symmetric treatment of the external vertices, we are left with the 
only reasonable prescription, which is C in our case.

One more argument comes from utilization of Fierz identities, 
which convert two closed fermion chains into a single loop. A well-
known subtlety lies in the fact that the relations in non-integer 
dimensions involve infinitely many terms (see, e.g., Ref. [47]). In 
our calculation we have tried to incorporate the following iden-
tity

∞∑
μ=1

γ
μ

a1a4γ
μ

a3a2

= 2−d/2
∞∑

l=0

(−1)
l(l+1)

2
(d − 2l)

l!
∞∑

μi=1

�
μ1,...,μl
a1a2 �

μ1,...,μl
a3a4 , (16)

in which totally anti-symmetric combinations

�μ1,...,μl = 1

l!
∑

P

(−1)P γμi1
γμi2

...γμil
(17)

are introduced. In our case the two contracted indices in RHS of 
(16) correspond to the gluon propagator connecting two fermion 
traces in the Feynman gauge. We have checked that up to terms 
l = 4 the obtained result coincides with the one corresponding to 
R = 3.

Finally, we re-calculated the problematic diagrams by applying 
an infra-red rearrangement technique [4,48], i.e., by transforming 
the integrals into fully-massive bubbles. An important difference 
from Ref. [42] lies in the fact that we perform Dirac traces apply-
ing self-consistent BMHV-algebra [3,49] after (tensor) integrals are 
evaluated in d-dimension. We have used spinney package [50]
to keep track of the dimension of the involved Lorentz indices and 
cross-checked that the final expression does not depend on the cut 
point.

After providing this kind of arguments, let us now proceed with 
our result. We define the four-loop beta-function for as as

d as

d logμ2
= βas as = −as

3∑
i=0

βih
i+2 (18)

where we use h to count the powers of coupling constants given 
in (3). Our final result for β3 can be written in terms of SU(3) 
casimirs and the number of SM generations – nG :

β3 = β
QCD
3 (n f = 2nG) + a3

s at

[
T F C2

F (6 − 144ζ3)

+ T F C A C F

(
523

9
− 72ζ3

)
+ 1970

9
T F C2

A

− 1288
T 2

F C F nG − 872
T 2

F C AnG

]
+ asa

3
t T F

(
423 + 12ζ3

)

9 9 2
Fig. 2. Relative size of the calculated four-loop contributions and the pure QCD five-
loop term O(a5

s ) (found recently in Ref. [51] and indicated by arrow) with respect 
to their sum. Nontrivial part due to γ5 is also indicated. The numbers in the inset 
should be multiplied by 10. Negligible correction due to asata2

λ is not shown.

+ 60asa
2
t aλT F − 72asata

2
λT F

− a2
s a2

t

⎡
⎣T 2

F

⎛
⎝48 − 96ζ3 + R︸︷︷︸

3

·
[

16

3
+ 32ζ3

]⎞
⎠

+ T F C F (117 − 144ζ3) + 222T F C A] , (19)

where pure n f -flavour QCD contribution β
QCD
3 is available from 

Refs. [10,11], in which the same notation for beta-function and 
coupling constants was used. The result is free from gauge-fixing 
parameter dependence. This serves as a welcome check since at 
the intermediate steps one has to take into account that the gauge-
fixing parameter ξ is renormalized in the same way as quantum 
gluon field. In (19) we emphasize terms O(a2

s a2
t T 2

F ), which are 
affected by contributions from diagrams similar to that given in 
Fig. 1 and multiply the corresponding terms by the factor R from 
Eq. (15).

Before going to numerical analysis of the corrections, we would 
like to mention that in Ref. [42] the same expression was obtained 
for the non-ambiguous part of the beta-function. The result, pre-
sented in Eq. (3.11) of that reference is found with the reading 
prescription A and coincides (up to an overall sign) with (19) for 
R = 1. However, as it was mentioned earlier, this choice violates 
the Ward identities in the finite part of the gluon self-energy and 
should be abandoned. In addition, we were not be able to repro-
duce an uncertainty factor of six [42] by considering traces with 
single γ5, in which the latter is not moved from the initial ver-
tex and is replaced by its original definition (10). Since there is no 
γ5 in the external gluon vertices, we again obtain the result corre-
sponding4 to R = 3.

Now we turn to the numerical impact of the addition of new 
terms (see Fig. 2). Using as input the values of strong, Yukawa 
and Higgs self-coupling from [52] at the scale μ = Mt and also 
evolving the same input up to the Planck scale, we see that at 
both scales the leading pure QCD contribution O(a4

s ) accounts 
∼ 93% of the total four-loop result while the dominant O(a3

s at)

terms due to top-Yukawa only account ∼ 10%. We observe that 
the O(a2

s a2
t ) contribution has an opposite sign and is about ∼ 5%

of β3 but terms O(asa3
t ) have the same sign and contribute to 

the order of ∼ 1%. The other contributions are less than 1% at 

4 The author of Ref. [42] informed us privately that there was a bug in his initial 
treatment and now he agrees with our result in Eq. (19).
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both the considered scales. Terms due to non-trivial γ5 treat-
ment lead to about −0.5% reduction in β3. Nevertheless, the cor-
responding contribution is much larger than pure QCD five-loop 
corrections, found recently in Ref. [51] and partially confirmed in 
Ref. [53].

In conclusion, we calculated four-loop beta-function for the 
SM strong coupling in the limit of vanishing electroweak gauge-
couplings. By means of the background-field gauge formalism 
the result was obtained solely by considering four-loop massless 
propagator-type diagrams. We studied the γ5-issue and found that 
the semi-naive treatment is not sufficient to obtain unambiguous 
expression. In our approach the ambiguity manifests itself in the 
dependence of the result on the “reading” prescription, chosen to 
evaluate traces with odd number of γ5, and was parametrized by 
the factor 1 ≤ R ≤ 3 in our final expression for β3 (19). Never-
theless, we provide several arguments supporting the prescription 
with R = 3, for which both traces are “cut” at some internal ver-
tex.

The obtained result is a necessary step towards a four-loop RG 
analysis of the SM. However, one should keep in mind that proper 
inclusion of three-loop non-QCD decoupling corrections is required 
to evaluate αs consistently at the electroweak scale in the full SM 
(for pure QCD results up to the four-loop level see Refs. [54–56]
and for the leading two-loop electroweak corrections see Ref. [57]). 
In addition, the results can be applied to the study of the so-called 
Weyl consistency conditions [58–60] within the SM, thus, extend-
ing the analysis of Ref. [61] to the four-loop level.
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