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Quark masses: N3LO bridge from RI/SMOM to MS scheme
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We analytically compute the three-loop corrections to the relation between the renormalized quark
masses defined in the minimal-subtraction (MS) and the regularization-invariant symmetric momentum-
subtraction (RI/SMOM) schemes. Our result is valid in the Landau gauge and can be used to reduce the

uncertainty in a lattice determination of the MS quark masses.
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I. INTRODUCTION

Quark masses m,, arise in the Standard Model (SM) from
Yukawa interactions of the quarks with the Higgs field.
Although not being of fundamental origin, quark masses
are usually treated as parameters of the SM and for many
years were the only source of information on the Higgs
Yukawa couplings. As a consequence, precise knowledge
of m, is required both to test the SM and study new physics.
The values of the quark masses can be determined in
several ways (for a review see, e.g., Ref. [1]). Since all
colored fermions but the top are confined inside hadrons,
there is no unique (“physical”) definition of the corre-
sponding mass parameters, and one is free to choose a
renormalization scheme that suits better for a problem at
hand. To compare the results of different determinations, it
is customary to use perturbation theory (PT) and convert
the obtained values to the short-distance running mass

mY'S () in the minimal-subtraction scheme MS, evaluated
at a fixed scale p.

One of the approaches to the quark-mass determination,
especially useful in the case of light quarks, is based on
lattice computations (see, e.g., Ref. [2]). The resulting
values, in this case, are bare quark masses my,,, corre-
sponding to a particular discretization of QCD with the
lattice spacing a acting as the ultraviolet cutoff. While it is,

in principle, possible to directly relate n1,,,. to quS, it turns
out to be more convenient to relate my,,, to a mass para-
meter my' defined in a regularization-independent (RI)
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momentum-subtraction renormalization scheme, which can
be realized directly in lattice QCD. The continuum PT is
used in this case to convert the finite value m}' to m}'S.
Among such kind of schemes, the so-called RI/SMOM [3],
in which certain three-point Green functions with momenta
P1s P2, and g = py + p, (see, Fig. 1) are normalized at
symmetric kinematics (p? = p3 = ¢*> = —u®) and have
advantages over original RI/MOM [4] scheme. The latter
utilizes “exceptional” momenta configuration with g*> = 0,
p? = p5 = —u* and suffers from enhanced sensitivity to
nonperturbative infrared effects (see, e.g., Ref. [5] for
details). In addition, the RI/SMOM PT series show a much
better convergence behavior than that of the RI/MOM ones.

Recent state-of-the-art lattice determination [6] of
the running MS masses of the charm (mM5(3 GeV) =

0.9896(61) GeV)  and  strange  (m)S(3 GeV) =
0.008536(85) GeV) quarks in ny =4 QCD heavily
relies on the two-loop (next-to-next-to-leading, or NNLO)
conversion factor [7,8] relating MS and SMOM schemes.
According to the estimates given in this reference, the
uncertainty due to the missing next-to-next-to-next-
to-leading (N3LO) term is comparable with other sources
of uncertainties (e.g., due to continuum extrapolation or

Os

p1 P2 » 0

FIG. 1. Momentum flow of a Green function (left), and the
three-point vertex with Og = yy operator insertion (right)
considered in the paper. SMOM kinematics corresponds to
p3 = p3 = g% while in the “exceptional” case p? = p3, and
q*=0.
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condensate effects) and contribute a significant part to the
overall error budget (for details see Table VI of Ref. [6]).

In this paper, we report on the analytical computation of
the three-loop contribution, thus, providing additional
precision for such an analysis. Recently, a numerical
evaluation of the same quantity appeared in Ref. [9].
Our result confirms the estimates provided therein.

II. DETAILS OF CALCULATION

To calculate the required conversion factor C3MOM we
consider QCD with n, flavors and define

ZSMOM

agon = Zee ()

m S _ C’SnMOM’,n;MOM7

==

The mass parameters in MS and SMOM schemes
are related to the quark bare mass my,,. via Z% =

(2. zpom)

R ZMS

Mpgre = me ZSMOM SMOM (2)

q

In continuum QCD the bare mass m,,,. is usually defined in
dimensional regularization so that each ZR contains poles
in e = (4—d)/2. To determine Z® we do not compute
massive propagators but renormalize the scalar bilinear
operator Og =y (see Fig. 1) in massless QCD

[ll_ll//]R - Zl}l(li/l//)bare‘ (3)

This simplified approach neglects both valence and sea
quark masses, but still provides a reasonable approximation
to the conversion factor CSMOM in a range of renormaliza-
tion scales utilized in lattice calculations (see, e.g., Ref. [6]
for numerical studies of the two-loop corrections due to
nonzero quark masses).

We compute ZSMOM and order-by-order in PT by
considering bare three-point one-particle-irreducible vertex
function

ZMS

<l//( pZ)OS( ) ( pl)>|p =pi=q*=—p*
q4=pi+p> (4)

AS(pl’ p2)|sym =

in SMOM kinematics. We use Landau gauge and require
that

1
| = ZSMOM _ 7SMOM ok tr[A'gaIe]Isym,
1
| = ZSMOM . [lSt:are( ) ]|p2:—/42’ (5)

v 12p%

where both A and the bare quark inverse propagator

Sy are reexpanded in terms of MS strong coupling aMS

(4m)azzs via the well-known formula p= @y, = Z,_ayss

available with five-loop accuracy [10,11]. In Eq. (5) the
quark field renormalization constants are defined as'

Yoare = 1/ ZI;RIWR7

The conditions (5) can be implemented in lattice com-
putations, leading to a nonperturbative determination [4]
of ZSMOM _The latter converts the bare lattice mass into

MS
q

The MS counterparts ZMS, Z)S of the renormalization
constants in Eq. (5) requlred to compute CSMOM are
obtained by subtracting only divergent terms of the
corresponding Green functions.

A comment is in order regarding the determination of
the wave function renormalization constant ZE,MOM. Due
to Ward identities, the latter can also be obtained from
the (non)renormalization of vector (axial) quark bilinear
operators O%, = yy*y (O = wy'ysw). In the continuum,
Ward identifies and chiral symmetry guarantee that
Zy =Z, =1, and it can be proven [3] that the condition

R = {MS.SMOM}  (6)

SMOM

, providing input for m,> calculation via Eq. (1).

n ZSMOM given in Eq. (5) corresponds to
— 7SMOM Jbare
1 - Zl/’ . qu tr[qﬂAl\l/ areq”gym’
bare o
1= ZSMOM‘qu‘U[CIﬂAﬁ 158l oym (7)

with A§, (A%}) being analogs of (4) with O replaced by O,
(0. Tt is also possible to use the so-called RI/ SMOM
[3] and require

smom,, 1 b
1=z, 7 Th trly, Ay m”Sym,
smom, 1 b
1 = Z'I/ e, & . tr[Aﬁ’ areyS}/ﬂ]lsym. (8)

Both RI/SMOM and RI/ SMOMYM conditions can be

implemented on lattice (see, e.g., Refs. [5,12] for details
and subtleties). In Ref. [8] it was demonstrated that the PT
series for the quark-mass conversion factor exhibits slightly
better behavior in RI/SMOM than in RI/ SMOMn. Given

this argument we carry out our calculation in RI/SMOM.

Let us mention a few technical details of our calculation.
We generate Feynman graphs with DIANA [13] and take
fermion and color [14] traces according to Eq. (5).
Resulting scalar integrals are reduced to the set of master
integrals identified in our previous paper [15] on a
renormalization in the SMOM scheme. To perform

"t is worth mentioning that, e.g., in Refs. [3,6,8], different
notation can be adopted for the renormalization constants, and
one should make the substitutions Z,, — Zl,‘,1 and Z,, —» Z;' to
compare the results.
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reduction we make use of the FIRE6 [16] package.
Substituting masters integrals evaluated previously, we
end up with expressions valid for a general gauge group.
The number of master integrals and the necessary expan-
sion depth in dimensional regularization parameter & =
(4 —d)/2 are the same as in the paper [15]. It is worth
noting that as a cross-check of our calculation we also
consider the renormalization of the pseudoscalar quark

|

current Op = Wysy, which can also be used to extract
ZSMOM from lattice calculations.

III. RESULTS AND CONCLUSION

Expressing all the renormalization constants in terms of
ays» from Eq. (1) we obtain the following N3LO con-
version factor

CYMOM — 1 + xjays + x2a s+ x3aM—s (9)
with
2 2
=Cr —4—§7T +y (10)
83 40 , 20 19 28 , 14 58, 52 3 1
XzznfTFCF<g+E”2—3W1> C2<8 3”2—?%4‘453 Ta” —ﬁll/ﬂfz“‘jl//%—%l//z)
1285 385 , 385 8 8 2
+CACF<—7—5—4772+ 36 l//1+1()Cs——77 +ﬁ” Wy = 91l/%) (11)
7514 800 , 400 32 32 4
— 272 I T 4
=T FCF( W " TRV T 98 T TV )
95387 13172 , 6586 152 3952
T,.C,C 2 _ Ef MRt
trleCa F< 243 243 7781 V1T 9 T 3ea5”
0, 0 80, 23 320 5. 16240, 160 64
_ e o - Ay
BT TV TR TR TS T g ST Vi g s
1109 241 , 241 1384 15392 , 2080
T.C2 2 _ 4 2
e ( 9 81" Tsa1T g ST 3645 " T a3 1
520, 67 128 ,. 32480, 64 128
- - °H
BV T T g T T g ST e Ty 5)
227 191, 191 992 , 232 58 37
C3 e T2 —58 _ 7= 4 == 2_ .2 =
F< o "ty G g i SVt v
80 ,. 32080 40 112 131776 , 23992, 394 ,
TG T STV Ty s TG s Tt e V1T T g V1T
619, 679 L1972
6561Y3" ~a37a V3 T T Vi T 135 Y Tgsos 16
8781 23231 , 23231 2879 34423 11306
C,C? 2 _ 4 _ 2
+Ca F( 72 T 3a T T a6 T o ST s T T aas T
5653 , 3937 178 L. 379285 89 1840 1519
S et S el H< — 6
162 V17 12967 Tt g ST s g s — g5 T
4 NEITN 1 1 2 77
FRIVIE T g ViT gV T VIV T o5V~ Jieenn Vs
3360023 243283 , 243283 4511 20513 , 5107
CZC _ _ 2 _ 4 2
e F< 3888 1944 7 1206 1T s BT mm T Top 7
5107 , 3433 7535, L4075 7535 668 L 100133
129671 518473 T 304 T3 T T5g30 5T 16 V1S3 T *314928"
10619, 325 ., 461 -, 46l 325 611 - (12)
13122717 T304V 73120V T 748V Y3 T eag ¥ T 373248 Y5 T 17010776 )
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Here (; is the Riemann zeta function, and y,, = y(") (1/3) corresponds to the (m + 1)th derivative of the gamma function.
Additional constants of uniform transcendental weight Hs and Hyg, introduced in Ref. [15],

Hs = —23.9316195698, Hg = 248215.038289 (13)

are linear combinations of real parts of harmonic polylogarithms with six-root of unity argument from the basis constructed
in Ref. [17]. Our result reproduces the well-known analytic one-loop [3] and two-loop [7,8] expressions, together with
recent numerical evaluation of Ref. [9]:

CYMOM — 1 — 0.6455188560ay5 — (22.60768757 — 4.01353947Onf)a§ﬁ

— (860.2874030 — 164.7423004n  + 2.18440226211%) (14)

3
a—.
MS

Given this general result (14), we are ready to provide our numerical estimates of the N3LO contribution for different n;.

Expanding the matching factor in powers of a, = aMS, we obtain
ny=0:1-0.05136875839a, — 0.1431648540a7 — 0.4335248250a;, (15)
ny=1:1-0.05136875839a, — 0.1177488184a? — 0.3516069867a;, (16)
ny=2:1-0.05136875839, —0.09233278278a; — 0.2718907211a;, (17)
ny=3:1-0.05136875839a, — 0.06691674717a% — 0.194376028 13, (18)
ny =4:1-0.05136875839a, — 0.04150071157a3 — 0.1190629077c;, (19)
ny =5:1-0.05136875839a, — 0.01608467597a% — 0.045951360060, (20)
ny = 6:1—-0.05136875839a, + 0.009331359638a2 + 0.024958614980; . (21)

Given the value o'~*(3 GeV)=0.2545 used by
HPQCD collaboration [6] in the determination of charm-
and strange-quark masses, we evaluate the matching factor
at the reference scale p; = 3 GeV

MS/SMOM _ ~SMOM _ | _ () 0130733
m m .
— 0.00268801 — 0.00196264 = 0.982276.

o a;

p =73 GeV. (22)

nf:4,

One can see that the three-loop contribution is of the same
order as the two-loop correction and is of the same size as
the uncertainty 0.22% quoted in Ref. [6] and attributed to
the missing N3LO term. The comparision with the result
given in Ref. [6] also shows that the effect of the o term in
Eq. (22) is four times larger than the two-loop contribution
due to massive charm quark in the sea and becomes an
order of magnitude larger if 4 =5 GeV is chosen.

It is also worth mentioning that the authors of Ref. [9]
also consider vector and tensor quark bilinears. We apply
the projector (8) to the expression for the vector-operator
Oy matrix element given in Ref. [9], evaluate the quark
wave function renormalization in RI/ SMOMJ,N, and obtain

the following numeric result for the corresponding match-
ing factor:

OM _ | 1.978852189ax<

— (5503243483 — 6.161687618n ) a2
— (2086.34(14) — 362.560(3)n,

+6.7220(1)n?) . (23)

C

While the two-loop contribution to Eq. (23) is known in
analytic form [8], the three-loop term is new and, to our
knowledge, is not presented in the literature. One can see
that numerical coefficients in RI/ SMOM},M (23) is indeed
larger than that in RI/SMOM (14), and, e.g., at our
reference scale p.; we have

SMOM
Cin

" =1-10.04007663 — 0.012463065 — 0.006177
—_——

2
a oy a

= 0.941283, np=4, u=3GeV. (24

To conclude, we analytically calculate the three-loop
correction to the matching factor in RI/SMOM scheme

required to extract MS quark masses from nonperturbative
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lattice computations [6,12]. Our numerical evaluation
confirms the estimate of x3 given in Ref. [9]. In addition,
we use the results of Ref. [9] to evaluate the three-loop
expression for the corresponding matching factor in
RI/ SMOM},”. We believe that the obtained N3LO contri-

bution to C3MOM will increase the precision of the resulting

MS quark masses and/or provide a more reliable estimate of
the uncertainties due to missing high-order terms.
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