PUBLISHED FOR SISSA BY @ SPRINGER

RECEIVED: April 16, 2021
ACCEPTED: June 2, 2021
PUBLISHED: June 14, 2021

Three-loop vertex integrals at symmetric point

Andrey Pikelner
Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research,
Dubna 141980, Russia

Theory department, Budker Institute of Nuclear Physics,
Novosibirsk 630090, Russia

E-mail: pikelner@theor.jinr.ru

ABSTRACT: This paper provides details of the massless three-loop three-point integrals
calculation at the symmetric point. Our work aimed to extend known two-loop results
for such integrals to the three-loop level. Obtained results can find their application
in regularization-invariant symmetric point momentum-subtraction (RI/SMOM) scheme
QCD calculations of renormalization group functions and various composite operator ma-
trix elements. To calculate integrals, we solve differential equations for auxiliary integrals
by transforming the system to the e-form. Calculated integrals are expressed through the
basis of functions with uniform transcendental weight. We provide expansion up to the
transcendental weight six for the basis functions in terms of harmonic polylogarithms with
six-root of unity argument.

KEYyworDSs: Lattice QCD, Renormalization Group

ARX1v EPRINT: 2104.06958

OPEN AccCESS, © The Authors.

Article funded by SCOAP?. https://doi.org/10.1007/JHEP06(2021)083


mailto:pikelner@theor.jinr.ru
https://arxiv.org/abs/2104.06958
https://doi.org/10.1007/JHEP06(2021)083

Contents

1 Introduction 1
2 Notations for integrals topologies 3
3 Differential equations for auxiliary integrals 4
4 Fixing boundary conditions 6
5 Basis of integrals with uniform transcendentality weight 9
6 Results and conclusion 10

1 Introduction

Many physically significant quantities in QCD can be extracted from the three-point Green
functions. There is remarkable progress [1-4] in calculating QCD renormalization group
functions in the minimal subtraction(MS) renormalization scheme [5]. We can choose ex-
ceptional momenta routing(one of the external momenta set to zero) and restrict ourselves
to considering only the divergent parts of diagrams for these calculations. Due to the
unphysical nature of the minimal subtraction scheme, a group of momentum subtraction
schemes(MOM) [6] is widely used in calculations requiring finite parts of the three-point
functions. Such physical schemes are crucial for the Lattice calculations, where one has
access to vertex functions directly. Calculation of various vertices in regularization in-
variant momentum subtraction (RI/MOM) schemes provides a connection between the
lattice calculations and the MS scheme results. By choosing exceptional momenta routing,
putting one of the external momenta to zero, we define RI/MOM scheme. With symmet-
ric point kinematics configuration with all squares of external momenta equal, we define
RI/SMOM scheme.

The main difficulty in the RI/MOM and RI/SMOM scheme calculation is the necessity
to know finite parts of vertex functions in the chosen kinematics. If we require only finite
parts of the propagator type integrals for the exceptional momenta routing, then for the
vertices in the RI/SMOM case, we need to know three-point integrals at the symmetric
point. Calculation of the symmetric point integrals is the main difficulty of the RI/SMOM
scheme. The present paper focuses on how to solve the problem at the three-loop level.

There are many results based on the calculation of the two-loop three-point functions at
the symmetric point. Namely three-loop RI/SMOM beta-functions [7], two-loop correction
to the relation between RI/SMOM and MS quark mass [8, 9], and renormalization of Wilson
operator matrix elements [7—11]. We recently extended some of these calculations to the
three-loop level analytically [12, 13], using results of the present paper. Independently,
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Figure 1. External momenta assignment for auxiliary and symmetric point integrals(left) and for
the large momentum expansion procedure(right).

numerical results for renormalization of different operators matrix elements appeared in
the series of papers [14, 15].

Integrals of our interest are given on the left of the figure 1 and condition p? = p3 =
¢*> = —i? defines the symmetric subtraction point. From now on, we put p? = 1 to simplify
the calculation, but one can easily reconstruct integrals values for an arbitrary symmetric
point(y? # 1) from dimensional considerations and known powers of propagators.

Before providing details of the three-loop calculation, we need to review techniques
used at two loops. The first two-loop calculation at the symmetric point [16] used a large
momentum expansion procedure. This technique does not rely on any symmetric point
integrals knowledge and requires only results for massless propagator integrals. In sub-
sequent two-loop calculations [7—11], authors adopted Integration-By-Parts(IBP) [17, 18]
reduction to the minimal set of two-loop master integrals known for a long time, even in
general kinematics not restricted to the symmetric point [19-21]. This way, the problem
of the master integrals calculation had not appeared explicitly in those works.

On the other hand, a very restricted subset of the three-loop master integrals needed
for analytical calculations at the symmetric point [12, 13] is known [22].

Our starting point for three-loop master integrals calculation is a paper [23], where
linear reducibility of the two-loop three-point integrals with off-shell legs is demonstrated
after an appropriate variable change. Linear reducibility of three-loop integrals with off-
shell kinematics was indicated in the E.Panzer Ph.D. thesis [24]. Since symmetric point
integrals are a particular case of considered integrals, we expect them to be expressed in
terms of generalized polylogarithms(GPL) as a direct consequence of the linear reducibility.
The same property will have auxiliary integrals with p? = p3, but ¢? arbitrary, and we will
be able to reduce differential equations (DE) system for such integrals to the so-called
e-form [25].

As the primary calculation method, we solve differential equations system for auxiliary
integrals. Due to performance issues with the most complicated integrals, we use direct
integration in terms of GPLs for partial checks only. Also, the method of direct integration
requires construction of a new set of master integrals without sub-divergences, which is
possible to achieve by shifting space-time dimension and increasing some propagators pow-
ers [26]. Conversion between the set of finite integrals and the original basis is an additional
complication of the method. However, an alternative based on the DE system solution is



also highly nontrivial. We need to consider more complicated integrals depending on at
least one dimensionless variable and provide boundary conditions(BC) sufficient to fix all
needed integration constants in the DE solution.

The paper organized as follows: we define auxiliary topologies containing all integrals
of our interest in section 2, we describe the solution of differential equations for auxiliary
integrals in section 3, we describe our approach to fixing boundary conditions with a
detailed two-loop example in section 4, construction of the uniform transcendentality weight
basis of integrals can be found in section 5, and in section 6 we provide the list of calculated
master integrals. Actual results for the integrals are in the supplementary materials to
the paper.

2 Notations for integrals topologies

To reduce many integrals in the course of calculations [12, 13], we apply IBP reduction to
the small set of master integrals considered in the present paper. To perform the reduction
efficiently, we use the Laporta algorithm [27] implemented in the package Reduze2 [28].
We define auxiliary topologies containing the complete set of propagators to express all the
appearing scalar products for the algorithm’s work. To uniquely identify an integral inside
topology, we use a vector of integer numbers corresponding to propagators’ powers.

For a vertex integral at the symmetric point, we assign external momenta according to
the left part of the figure 1 and set p? = p3 = ¢*> = —1. This definition makes all integrals
real, and self-energy integrals are in one-to-one correspondence with integrals from the
MINCER package [29, 30]. Later, this property will be helpful for the boundary conditions
fixing procedure described in section 4.

At the one-loop level, we have a single topology A; with three propagators

dPk; 1
im P72 ((kr +p1)?)m (k1 — p2)?)m (k)

I [n1,n9,n3] = GEVE/

(2.1)

At the two-loop level, we have two seven-propagator topologies, As and Bs

dPky dPksy 1
inD/2 i D/2 (P2 (P2)n7’

I, [n1, ... ne] = €375 / (2.2)
where X = {A, B} and propagators’ momenta are defined explicitly in table 1.
At three-loops, we have three topologies, As, Bs, and C3, each with 12 propagators

dPky dPky dPks 1

inD/2 ixD/2 jzD/2 (P2ym . (PZ)m2’ (23)

IX3[n1, . ,nlg] = 6357E/

Table 2 provides explicit expressions for momenta P; for each of the three-loop topologies
with X = {4, B,C}.

The number of unique master integrals after IBP reduction are given in table 3. We
present all master integrals graphs in tables 4, 5 and 6.



Ay By
Py k1 +p1 k1 +p1
Py k2 + p1 ko + p1
Py k1 — p2 k1 — p2
Py k2 — p2 k1 — ko — po
Py k1 — ko k1 — ko
Ps k1 ko
P; k2 k1

Table 1. Two-loop auxiliary topologies.

A3 B3 Cs3
Py k1 k1 k1
Py ko ko ko
P3 k3 ks ks
Py k1 — ko k1 — ko k1 — ko
Ps k1 — ks k1 — ks k1 — ks
P ko — ks k1 — ko — k3 ko — k3
P; k1 —p1 k1 —p1 k1 — ks —po
Py k1 —p1 —p2 k1 —p1 —p2 k1 —p1 —p2
Py ks —p1 ko —p1 ko — p1
Py k2 —p1 — p2 k2 —p1 — p2 k1 — k2 — po
Py ks — p1 ks — p1 ks — p1
Py ks —p1 — p2 ks —p1 — p2 ks —p1 — po

Table 2. Three-loop auxiliary topologies.

Ay || A2 | By || A3 | Bs | C3
2 7 1 38 | 12 1

Table 3. Distribution of the number of integrals over topologies.

3 Differential equations for auxiliary integrals

As stated in the introduction, our main calculation method is a solution of the DE system
for specially constructed auxiliary integrals. We consider integrals similar to original three-
point ones, but now with ¢? not fixed, and introduce scaleless variable z with ¢® = zp?. At
first glance, this makes us calculate more complex integrals than the initial set. However,
the advantage is that now we have access to the DE system, connecting point x = 1 with
any other point, where boundary conditions can be constructed easily. In our calculation,
we consider the limit x — 0 for fixing boundary conditions and the limit « — oo for checks.

We analyze the same topologies as before, but now with ¢? not fixed for auxiliary
integrals. After performing IBP reduction and identification of master integrals for each
of topologies, we have the following number of master integrals: 3 for Ay, 12 for As, 11 for
By, 88 for Az and 91 for Bs. Since for topology C'5 at the symmetric point, we have only



one integral, which factorizes into lower-loop integrals from topologies Ay and Bs, we do
not consider it here.
To differentiate master integrals in variable z and reduce the result back to master

integrals, we make use of the package Reduze 2 [28]. To convert the obtained DE system
(z=1)?

z
lar points of the DE system correspond to the following set of singular points in an old

to the e-form with first apply a variable change x = — . In a new variable z, singu-

variable x:

roefT ool 221220, 2—=0:2 00, z——1:z—4. (3.1)

% is a solution we are interested in, limit z = 1 we use in section 4 as

The point z = e
boundary conditions to fix integration constants in the DE solution. The solution in the
point z = 0 is used to derive known results for the there-loop massless form-factor type
integrals [31-33], which is necessary for checking obtained results. We do not consider the
point z = —1 in the present paper.

After the variable change, the system of differential equations for the vector of integrals
f (z,¢) for each of the considered topologies has the following form

— —

0.f(z,6) = M(z,e)f(z,¢). (3.2)

With matrix M having only a limited set of e-independent singularities of the finite
order in the set of points S = {0,1,—1,\,\*}, where A = e3 and \* is its complex
conjugate.

- XY klwzz’% © (53)

z;€S k>0 k>0
This form of the DE system is ideally suited for further conversion to the canonical form [25].
Only one complication is the appearance of sixth-roots of unity residues at the three-loop
order. For one and two-loop integrals, the DE systems are singular only in z = {0,1,—1}.
Following the strategy from [25] and with algorithm [34] implemented in the publicly
available package epsilon [35], we convert the original DE system to another DE system

—

for a new basis of integrals §(z,e) = T 1(z,¢) f(z,¢)

5 AO A1 A,1 A/\ A)\* .
,G(z,e) =¢ |— ,E). 4
0:9(z.¢) = € z+z—1+z+1+z—)\+z—)\* g(z.¢) (3.4)

Obtained DE system matrix has only Fuchsian singularities, and ¢ dependence completely
factorizes. Applying epsilon for reduction of the original system to the form (3.4), we
perform all the steps of the algorithm [34] except the last one. Due to the performance
issues, we were forced to find a constant matrix transforming the system to the form with
¢ factorized manually. Another reason to make the last step manually is that the found
transformation matrix is not unique, as not unique the DE system matrix in e-form. This
freedom in the transformation matrix and related freedom in the e-form matrix we use
in section 5, where we construct a new basis of integrals with uniform transcendental-
ity (UT) weight.



The differential equations system (3.4) has an excellent property that, after expanding
all the master integrals in ¢, the differential equations for the series coefficients g;(z) with
G(z,e) = 3. Gi(2)e" decouple entirely, and the solution for the particular coefficient has
the form:

. z A() Al A_1 A)\ A)\* 5 5
i(z)= | dy|— + + + + i—1(y) + 7 3.5
gi(2) /0 y[y R v S W vl K 1(y) +7 (3.5)

To perform integration, we utilize GPLs [36] integration rules, and starting with some
order n of e-expansion where all g, = 0 we proceed by induction. At the next step we
associate integration constants with zero weight GPLs, since G(;z) = 1. Singularities of
the system (3.4) define the alphabet of GPLs. In the examined case, we have a subset of the
full six-root-of-unity alphabet considered in [37], and for lower loop orders, the alphabet
of HPLs containing only {0,1,—1} is enough. GPLs are directly integrated with

dt
t—a1

G(al,...,an;z):/oz G(ag,...,anp;t). (3.6)

Each order of e-expansion of the constructed solution is built from the GPLs of the
uniform transcendental weight multiplied by some unknown constants. In the general
case, actual values of integration constants 7; can spoil the uniform transcendentality(UT)
structure of the solution, and we address the question of restoring UT expansion in sec-
tion 5. Our next step is to fix integration constants 7; by providing appropriate boundary
conditions.

4 Fixing boundary conditions

To fix integration constants in the solution of DE from the previous section, we consider
its behavior near the point z = 1. Since the point z = 1 is a singular point of the DE
system (3.4), we can not take the limit directly due to the logarithmic singularities log(1—z)
appearing in the solution. Thanks to the Fuchsian form of the DE system (3.4), the leading
order term of expansion in a small variable Z = 1 — 2z can be constructed directly from the
matrix residue A; [38]:!

lim (e, z) = 251 é(e) + O(2). (4.1)

z—0
This leading term of the solution is exact in €, and vector of unknown e-dependent func-
tions ¢(e) has the same size as the vector of master integrals §(e, z). Knowledge of the
vector of functions ¢(e) up to sufficiently high order in ¢ is enough to fix all needed inte-
gration constants. The series solution in the form (4.1) allows us to separate contribution
from different subgraphs by considering terms with different non-integer powers of z. It
is handy to extract contribution from the hard subgraph, accessible from the naive Taylor
expansion of the integrand under the integral sign. However, in the considered case, naive
expansion is not enough to fix all required integration constants, and we need to consider
asymptotic expansion, including all relevant subgraphs. To calculate the vector of func-
tions ¢(e), we develop a highly automated setup based on the package EXP [40, 41] and a

'Higher orders of expansion in z can be constructed recursively, as shown in [39].



version of the MINCER [29, 30] package keeping all intermediate e-dependent expressions in
unexpanded form.

Momenta routing used for the asymptotic expansion coefficients calculation is given
in figure 1(right). With this routing, our kinematics constraints are as follows P? = x Q?
and P-Q = %QQ, and results of the expansion in the limit x — 0 we can obtain from
the large momentum procedure(LMP) considering @) large. For more details on the LMP,
see [42] and references therein. Expansion of the arbitrary three-point vertex integral with
external momenta P, @ in large momentum () has the form:

P2 es P. i P2 J
J(P,Q)~Z<Q2> Zafj( Qf) <Q?> (4.2)

S %,J

To fix coeflicients a;s: ; of the expansion, we use setup based on the package EXP. First, using
EXP, we identify all needed subgraphs to expand in large external momenta, then we expand
to sufficiently high order in the large momentum @), further we perform tensor reduction
to separate powers of the scalar products Q2 and P - @ from loop integrals dependent
on a single external momenta (). The remaining two-point integrals are calculated with
MINCER, which is fast enough to provide us with expansion terms to high order in variable
z. We determine coefficient a; ; as a linear combination of massless propagator-type master
integrals, these integrals we can expand later up to the required order in e.

After conversion of obtained expansions back with 77!, we truncate the series to get
the leading term for § and fix ¢(e) from eq. (4.1). Contributions of different subgraphs
from different integrals to the same set of functions ¢ provide us with a strong check on
the validity of the procedure.

Now expanding both solution of the system (3.4) in z — 1 and leading order solu-
tion (4.1) with ¢(e) substituted, we can fix all integration constants up to required order
in € simply expanding MINCER master integrals deep enough in €.

As a real example, we consider the DE system for non-trivial two-loop integrals

Ji = Ié%,O,O,l,l,Ov Jo = Ié%,1,0,1,0,0» J3 = I(fi1,0,1,1,0a Jy = Ié§,1,0,1,1,0- (4-3)
Integrals J are transformed to the canonical basis integrals 5 = T-1J with the matrix
—92g3
(1725)(2725)(1735) 0 0 0

0 —2e3(1—2)2 0 0

T — (1—2¢)(2—3¢)(1—3¢)z (4 4)
0 0 2¢2 ez :

(1-2e)(1-3e) (1—2¢)(1-3¢)(1+%)

0 0 0 =1

DE system for integrals f(z) now is in the e-form

d.j(z) =¢ (io + Zfill + ZA_;ll) j(2), (4.5)
with numeric matrices
00 0 O 0 0 0 O 000 O
Ay = 02 0 O A= 0 40 0 A= 000 01 (4.6)
0-11 0 -1 0 -1 0 000 —35
2 4 =2 -1 0 0 0 -1 000 2



Due to the Fuchsian form of the DE system, the leading order solution in the limit z — 1
is determined by the matrix exponent:

lim j(e, 2) = #MEe) + O(3). (4.7)

With z =1 — 2 it reads when we keep leading terms in z only

ji=c1, jo=2 %cy, js=-—c1+2 (c1+e3), ja=2Z ‘e (4.8)
Here all ¢; are functions of ¢, and we see that some of the functions ¢; can be fixed
independently from different integrals expansions stemming as an additional cross check.
In provided example ¢; can be fixed both from the j; and j3. With EXP we obtain the
following expansions for original integrals:

2 —
J=T1, Jo= (2" T +0Z%), J3= €3€T1 +0(z), Ji=0() (4.9

Where T} is the two-loop massless sunset integral with Q2 = —1. Above we provide only
orders needed to fix all ¢;(¢) entering (4.8). After multiplication with T~! we find the
required functions:

(1 —2¢e)(2—3e)(1 — 3e)
2e3

] = — Ti, ¢ = (—1)1_25017 c3=—c1, c4=0 (4.10)

After fixing the required integration constants, the obtained solution can be checked by
considering the limit z — 0, corresponding to infinitely large (¢ — co) external momentum
squared. The hard subgraph’s contribution in this limit allows us to extract results for the
massless form-factor integrals and compare them with expressions known up to the three-
loop order [32, 33].

As before due to the Fuchsian form of the DE system, we can follow procedure described
in [39] and construct general form of the expansion in z — 0

g9(z,¢e) = Z 2% Z cj (e)27 (4.11)

Jj=0

Expanding integrals g(z) in €, we can find several first terms of a Laurent expansion of ¢;(¢)
around € = 0. With the help of the matrix T, we can construct expansion for the original
basis of integrals f, which we utilize to extract terms with specific noninteger powers of
z. We can extract the value Igp for the massless form-factor integral with L-loops and F
internal edges from the hard subgraph contribution of the form:

Jhard = (_Z)E_2L+L6(IFF + O(Z)) (4'12)

From the present paper results, we found agreement with the results of the paper [33] for
all master integrals up to the transcendental weight six.



5 Basis of integrals with uniform transcendentality weight

The main problem with the already obtained solution is that its expansion coefficients
lack the UT property. For practical applications like [12, 13], we need to expand some of
the integrals to high order in & corresponding to the transcendental weight seven. Only
part of the integrals with GPLs up to the transcendental weight six enters the final result,
and all GPLs with transcendental weight seven cancel in the sum. At intermediate steps,
manipulations with a weight seven GPLs are highly complicated, since reduction rules are
available up to the weight six only [37].

Possible solution to the problem is a new basis of UT weight functions, which need
to be known up to the transcendentality weight six to express results containing GPLs up
to the weight six. Explicitly we want to find a basis of pure functions U=T, [}% f, with
e-expansion in the form U = Z?:o il + O(e7), where each coefficient @; has uniform
transcendental weight j.

The UT integral basis construction is a complicated task even with special tools de-
signed to attack the problem [43, 44]. Fortunately, with already available results we can
easily avoid all these difficulties.

First, we notice that if the integrals with arbitrary 2z have UT weight, this property
also holds for the integrals at the symmetric point(z — e%). The weight of GPLs and all
z-dependent prefactors do not change transcendentality after taking the limit, and we can
focus on constructing UT basis for auxiliary integrals.

Second, due to the UT property, the DE system for UT integrals is also in e-form. Our
goal is to find a transformation matrix between canonical master integrals from section 3
and the new UT basis. As mentioned in section 3, the last step of reduction to the e-form
has a freedom, and we are looking for the transformation to UT basis by varying these
parameters.

Another important observation is that for the z-dependent integrals with UT weight,
this property also holds when considering their expansion near singular points. For example
leading terms of expansion in z — 1 used for fixing boundary conditions in section 4.

Jur(2) ~ Zgaiffci (5.1)

Since e-expansion of the prefactor z%¢ in (5.1) has transcendental weight zero, all coeffi-
cients C; for expansion of the UT integral Jyr also have UT weight. In considered limit, all
coefficients C; are built from massless propagator integrals only. After reduction to master
integrals, most of them are known for arbitrary D, and for the remaining, transformation
to the UT basis is known from [45]. In this way, we find transformation matrix Ty by
analyzing expansion coefficients in the limit z — 1.

All UT integrals constructed in this way are regular in the limit z — e and going
back to the original integrals and then reducing to the basis of symmetric point integrals,
we obtain representation for integrals of our interest in terms of pure functions.
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A1[110] A1[111]

Table 4. One-loop master integrals.

| | |

< ~ . ~ ~ ¢ ~ — ~
42[0110100] 42[0210110] 42[1101110] A2[1111010]
— ~ ~ ~ < ~ ~

A2[0110110] A2[1101010] A2[1111000] B2[1111110]

Table 5. Two-loop master integrals.

6 Results and conclusion

In addition to the described method, we use IBP reduction to the new basis of finite
integrals to follow the strategy described in the paper [26]. With package HyperInt [46],
we find an analytical solution for several integrals, except the most complicated, which is
in complete agreement with results of the previous sections. All integrals calculated in the
paper were checked numerically with the sector decomposition approach implemented in
the package pySecDec [47].

In tables 4, 5 and 6, we present all master integrals needed for calculations at the
symmetric point up to the three-loop order. Analytical results for integrals can be found
in supplementary files to the paper and contain a transformation matrix to the basis of UT
weight functions and expansion of latter up to the transcendental weight six.

Up to the three-loop level, expansion of the basis functions is expressed in terms of
HPLs with the sixth-root of unity argument. Instead of the basis constructed in paper [48],
which has an attractive feature, that reduction rules for real(imaginary) part of HPLs con-
tain only real(imaginary) parts of basis functions. We construct a new basis allowing us to
present results in a more compact form. Also, our basis contains as basis elements products
of lower weight functions, which simplifies products of lower-loop integrals during renor-
malization. The total number of elements N, at weight w is the same N,, = 2F5,,, where
F,, is the n-th Fibonacci number and explicitly is given by N, = {2,6,16,42,110, 288} for
the weights considered in the paper.

In the paper, we calculated all massless three-point master integrals at the symmetric
point. As the solution method, we apply differential equations for specially constructed
auxiliary integrals and fix boundary conditions from the large momentum expansion. Re-
sults for integrals are expressed through the basis of functions with uniform transcendental
weight. We provide expansion in ¢ for these functions in terms of the HPLs with the sixth
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Table 6. Three-loop master integrals.

>
>
ke
P>

A3[001101110000]

A3[002111011000]

i
-

A3[001110011000] A3[001110021000]

A3[011000110110] A3[011010011000]

A3[011011211000]

=
N

P

|

A3[011100110110] A3[011110011000]

A3[011111110110]

-
-
>

-

A3[012010111000] A3[012110011000]

A3[001111011000]

A3[011010101000]

A3[011110100000]

g

A3[021011111000]

>

A3[021111110110]

A3[111000011010]

x>
>

B3[001111100110]

X
<>
<>

A3[101001111000] A3[101011011000]

>

)

A3[111000101010] A3[111000110110]

X
X

B3[010101110110] B3[011001110110]

B3[011111101110]

€3[110110111100]

— 11 -

B3[011111110110] B3[011211110110]

A3[110011011000]

A3[111000111010]

B3[011002110110]

>

B3[020101110110]



root of unity argument up to the transcendental weight six. The obtained result can find its
application in future calculations in the RI/SMOM scheme and as the boundary conditions
for three-point integrals in more general kinematics.
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