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We present the beta functions of gauge and Yukawa couplings in general four-dimensional quantum field
theory, at four and three loops, respectively. The essence of our approach is fixing unknown coefficients in
the most general ansatz for beta functions by direct calculation in several simplified models. We apply our
results to the standard model and its extension with an arbitrary number of Higgs doublets and provide
expressions for all four-loop gauge couplings beta functions with matrix Yukawa interactions.
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Introduction.—Renormalization group equations (RGE)
find their numerous applications in many physical prob-
lems formulated in the language of quantum field theory
(QFT). Being a convenient tool to improve perturbation
theory results, RGE allow one to obtain high-precision
predictions for various quantities ranging from critical
exponents in the theory of critical phenomena to observ-
ables in the standard model (SM) and its extensions.
In the early 1980s, Machacek and Vaughn [1–3] pre-

sented their two-loop RG functions in MS scheme for all
dimensionless couplings in general four-dimensional renor-
malizable QFT. Several misprints have been corrected
during the subsequent 35 years, and the classical result
has been extended to include RG functions for dimension-
ful parameters [4–7]. The two-loop general expressions
became highly demanded in studies of the SM extensions.
After the appearance of computer codes aimed to generate
RGE for user-specified models, two-loop RG studies have
become de facto standard in a new physics analysis.
After discovering the Higgs boson at the LHC [8,9] and a

burst of activity on the vacuum stability problem (see, e.g.,
[10]), it became clear that three-loop RG functions [11–16]
can play an essential role in precision studies of the SM and
its extensions. Partial four-loop results in the SM [17–19]
and three-loop beta functions in the two-Higgs-doublet
model (THDM) [20] became available during the past
few years.
Recently, two major steps toward general high-order

results have been made. First of all, RG functions in general
theories were represented by a linear combination of

independent tensor structures (TS) corresponding to con-
tractions of various indices. One can match these
“template” expressions to known results in specific models
and extract model- independent coefficients [21,22].
Second, new ideas based on the so-called Weyl consistency
conditions (WCC) [23–25] allow one to find relations
between known and unknown TS coefficients, thus, putting
constraints on to-be-computed numbers. In particular,
WCC relate gauge, Yukawa, and self-coupling beta func-
tions computed at four, three, and two loops, respectively.
Let us also mention that WCC allows us to resolve [26] a

well-known issue with γ5 ambiguity (see, e.g., [27]) in MS
RG functions. Poole and Thomsen in Ref. [26] use WCC to
relate the ambiguous four-loop terms in strong coupling
beta function [17,18] to unambiguous three-loop contribu-
tions to Yukawa beta functions [14,28] and confirm the
prescription advocated in Ref. [17]. The relation holds for
any four-loop gauge beta function in a general QFT, and it
was immediately used for the gauge sector of the SM with
diagonal Yukawa matrices [29].
There is also an (unphysical) ambiguity in RG functions

due to possible unitary contributions [20,30,31] to field
renormalization in models with flavor symmetries. In what
follows, we assume a natural choice of Hermitian anoma-
lous dimension and refer to recent work [32] for more
details.
In the current study, we present for the first time

complete results for all TS coefficients in gauge and
Yukawa beta functions at four and three loops, respectively.
Partial results are already available in the literature
[21,22,25], and we want to emphasize the difference
between our approach and methods used in previous
studies. In the latter, given WCC, the unknown beta-
function coefficients are fixed from known results for
specific (usually physical) models. One of the most power-
ful constraints of this type is provided by the three-loop
calculation in THDM [20].
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On the contrary, we, for the first time, design simple toy
models with specific gauge group structure, each giving
constraints on different unknown coefficients. We use dia-
gramsforTSprovided inSupplementalMaterialsofRef. [25]
as a guide, but it is fair to say that we found the required
models by trial and error. We use TSs implemented in the
prominent code RGBeta [33] to speed up our investigation.
General four-dimensional QFT that covers most of

possible phenomenological applications can be written in
the form [25]

L ¼ −
1

4
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2
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where A, B runs through all factors of the gauge group G.
The coupling matrix GAB is symmetric and block diagonal
with nondiagonal entries corresponding to kinetic mixing

between U(1) factors present in G. The real scalars ϕa and
Majorana fermions Ψi belong to some representation of G.
The Yukawa couplings are denoted by yaij and are
symmetric in fermion indices ij. The self-coupling λabcd
is symmetric in all four scalar indices.
In this Letter, we consider four-loop βð4ÞAB and three-loop

βð3Þaij contributions to gauge and Yukawa beta functions,
respectively. The latter are defined as
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and can be represented in terms of 202 and 308 TSs [25],
respectively,

ð3Þ

with universal numerical coefficients gð4Þn and yð3Þn . Our
ultimate goal is to provide all these 202þ 308 numbers
explicitly.
Models.—We emphasize two different sources of con-

straints on beta-function coefficients. One type is coming
from direct calculations and fixes independently gð4Þ and
yð3Þ. Another one is WCC providing relations between
these coefficients. Most of the first type constraints, which
one can obtain from SM and THDM, are already included
in the analysis by Poole and Thomsen [25]. We extend
these results by direct calculations in toy SUðnÞ gauge
models described below. Calculation with arbitrary n [34]
gives an additional handle on unknown coefficients.
Because of the nature of constraints from WCC, it is

natural to consider Gauge and Yukawa together. Since
constraints from different sources are independent, the
combined system becomes overdetermined, and we have
a large number of equalities. The latter allows us not only to
fix the TS coefficients but also to make extensive cross-
checks of the RGBeta code and the validity of our results.
First of all, we consider an analog of scalar QCD with a

gauge group G ¼ SUðn1Þ × SUðn2Þ, in which a fundamen-
tal scalar ϕ is charged under both factors. The Lagrangian
can be cast into the form

LM1¼−
1

2g2i
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−
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2
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where g1 and g2 are gauge couplings. To carry out
renormalization, we need the self-interactions of scalars
λ1, λ2 compatible with G. In Eq. (4) we explicitly write
group indices α, β and ρ, σ corresponding to fundamental
representations of SUðn1Þ and SUðn2Þ, respectively.
The second model that we use is a gauge theory with

single SUðnÞ. The spectrum of the model consists of two
fields in fundamental representation, a vectorlike Dirac
fermion Q and a scalar h, and two singlet fields, a Weyl
spinor (in what follows, we use Dirac four-component
spinors) uR ≡ PRu and a scalar s:

LM2 ¼ −
1

4g2
Fa
μνFa

μν þ iQ̄γμDμQþ iūRγμ∂μuR

þ 1

2
ð∂μsÞ2 þ jDμhj2 − ysQ̄Qs − yu½ðQ̄hÞuR þ H:c:�

−
λss4

24
−
λsh
2

s2ðh†hÞ − λh
2
ðh†hÞ2: ð5Þ

PHYSICAL REVIEW LETTERS 127, 041801 (2021)

041801-2



Here g, ys, and yu are gauge and Yukawa couplings of our
interest, and λs, λsh, and λh are the required scalar self-
couplings.
We also study a gauge theory with G ¼ SUðn1Þ ×

SUðn2Þ × SUðn3Þ describing interactions of a Dirac
fermion Ψ in fundamental representation of each factor
in G and three adjoint scalars ϕi, each charged only under
one SUðniÞ:

LM3¼−
1

2g2i
TrðFi
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μνÞþTr½ðDμϕiÞðDμϕiÞ�þ iΨ̄γμðDμΨÞ
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8
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−
λi
24
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where summation over i, j ¼ 1, 3 is assumed. The gauge
and Yukawa couplings are denoted by gi and yi, respec-
tively, and we have nine independent self-couplings in the
model, λi and symmetric λij.
Finally, we consider a U(1) model with three Dirac

fermions arranged as Ψ ¼ ðψ1;ψ2Þ and ψ . They interact
with charged (h) and neutral (s) Higgs bosons via matrix
ðy1Þij, vector ðy2Þi, ðy3Þi, and scalar y4 Yukawa couplings:
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The U(1) charges satisfyQh þQψ ¼ QΨ, and the sums run
over i ¼ 1, 2.

This choice of models is also motivated by the fact that
we can easily implement them both in RGBeta [33] and
DIANA [35]. We use the former to obtain the beta functions
in terms of unknown coefficients, while the latter allows us
to utilize our standard setup [13,17] and compute required
two- and three-point functions with FORCER [36].
To extract RG functions for gauge and Yukawa cou-

plings, we need one-loop renormalization of the self-
couplings. We again use RGBeta to generate the necessary
Z factors.
Fixing coefficients.—With explicit results of calculation

in modelsM1 (4),M2 (5),M3 (6), andM4 (7) at hand, we
are in a position to apply all the collected constraints and fix
all beta-function coefficients. We summarize our procedure
in Table I, where we show how the number of unknowns ug
and uy reduces after sequential application of available
constraints. We start with WCC connecting gð4Þ and yð3Þ
and interpret them as constraints on gauge beta-function
coefficients. Applying further constraints, we obtain new
relations (we denote the corresponding number by n), and
also a set of identities (the corresponding number is given
by c) for cross-checking.
After matching template expressions with our toy

models we are left with two unknowns in the gauge sector.
In Ref. [25] the authors conjectured that TIJ tensor entering
WCC can be symmetric. This provides an additional ten
constraints. We use two of them to constrain the remaining
coefficients. The other eight equations become identities
and, thus, verify the assumption on TIJ. It is worth noting
that we use models M1–M3 to constrain all TSs but the

difference yð3Þ172 − yð3Þ173 ≡ 2δ in Yukawa beta function. To
deal with δ, we developed a special model M4, which
explicitly confirms our initial guess that δ ¼ 0.
With this procedure we fix all coefficients in gauge and

Yukawa beta functions at four and three loops, respectively.

TABLE I. Reduction of the number of unknown coefficients ug and uy after sequential application of constraints. Here r ¼ nþ c is
the rank of the system without any previous constraints included, n corresponds to new independent constraints, and c relations are
automatically satisfied due to previous steps.

Type of the beta function Gauge Yukawa

Number of equations and unknowns r ¼ nþ c ug r ¼ nþ c uy
Initial number of unknown coefficients � � � 202 � � � 308
Weyl consistency conditions 128þ 0 74 133þ 0 175
Four-loop SM gauge beta functions 63þ 84 11 � � �
Three-loop matrix Yukawa beta functions in the SM � � � 128þ 17 47
Three-loop matrix Yukawa beta functions in THDM � � � 33þ 213 14
Four-loop QCD beta function for general group 2þ 11 9 � � �
SUðn1Þ × SUðn2Þ gauge theory (4) (M1) 5þ 25 4 � � �
SUðnÞ gauge theory (5) (M2) 2þ 55 2 4þ 76 10
SUðn1Þ × SUðn2Þ × SUðn3Þ gauge theory (6) (M3) � � � 9þ 89 1
U(1) gauge theory (7) (M4) � � � 1þ 199 0
Constraints from symmetric TIJ 2þ 8 0 � � �
Final number of unknowns 0 0
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Results and discussion.—We combine the constraints
from WCC [23] and our explicit computations in toy
models to fix all the coefficients in the ansatz for the
4-3-2 ordering given in Ref. [25]. As an application of our
general expressions, we derive all four-loop gauge beta
functions in the SM extension with the arbitrary number nd
of Higgs doublets (NHDM). We keep matrix Yukawa
couplings, and by setting nd ¼ 1 or nd ¼ 2, we obtain
the SM and THDM result. Direct computation in such a
scenario would be very complicated.
Let us return to the ambiguities in theories possessing a

flavor symmetry. In Refs. [25,30,32], for the coupling yaij a
flavor-improved, i.e., unambiguous, version Baij of the
Yukawa beta function βaij is introduced

Bð3Þ
aij ¼ βð3Þaij − Sð3Þik yakj − Sð3Þjk yaik − Sð3Þab ybij: ð8Þ

Here Sð3Þij and Sð3Þab are three-loop quantities that can be
represented as linear combinations of antisymmetric two-
point TS for fermions and scalars, respectively [25,30].

There are six coefficients fð3Þ1–6 entering Sð3Þij and three

coefficients sð3Þ1–3 entering Sð3Þab . All but one (f
ð3Þ
3 ) numerical

coefficients are predicted from WCC (see Supplemental

Material of Ref. [25]) in terms of gð4Þi and yð3Þi computed in

this Letter. The authors of Ref. [32] calculated fð3Þ4 ¼ −3=8
and fð3Þ5 ¼ −5=16. Given our results, we provide full set of
three-loop corrections to Sij and Sab:

fð3Þ1 ¼ 0; fð3Þ2 ¼ 29

8
− 3ζ3; fð3Þ3 ¼ 21

8
− 3ζ3;

fð3Þ4 ¼ −
3

8
; fð3Þ5 ¼ −

5

16
; fð3Þ6 ¼ −

7

16
: ð9Þ

sð3Þ1 ¼ 7

2
− 6ζ3; sð3Þ2 ¼ 5

8
; sð3Þ3 ¼ −

3

4
: ð10Þ

These coefficients can be tested by direct calculations along
the lines of Refs. [30,32].
Conclusion.—The calculation of four-loop Gauge and

three-loop Yukawa beta functions performed in this Letter
complements recent six-loop results in general pure scalar
theory [37], and represents the most advanced achievement
in this field. The obtained TS coefficients can be incorpo-
rated into modern computer codes, giving access to a new
precision level for model building. The dummy-field
method (see, e.g., Ref. [38]) applied to our results provides
us with scale dependence of such important quantities as
fermion mass matrices.

We make all our results, including the TS coefficients
and four-loop gauge-coupling beta functions in the SM,
THDM, and NHDM, available as Supplemental Material
[39]. We also provide a modified version of the RGBeta
package with all our findings included [40].
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