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Abstract. Starting from an effective Skyrme interaction we present a method to take into account the
coupling between one- and two-phonon terms in the wave functions of excited states. The approach is a
development of a finite rank separable approximation for the quasiparticle RPA calculations proposed in
our previous work. The influence of the phonon-phonon coupling on energies and transition probabilities
for the low-lying quadrupole and octupole states in the neutron-rich Sn isotopes is studied.

PACS. 21.60.Jz Hartree-Fock and random-phase approximations – 24.30.Cz Giant resonances – 27.30.+t
20 ≤ A ≤ 38 – 27.40.+z 39 ≤ A ≤ 58

1 Introduction

The experimental and theoretical studies of properties of
the excited states in nuclei far from the β-stability line are
presently the object of very intensive activity. The random
phase approximation (RPA) [1–4] is a well-known and suc-
cessful way to treat nuclear vibrational excitations. Using
Gogny’s [5] or Skyrme-type [6] effective nucleon-nucleon
interactions the most consistent models can describe the
ground states in the framework of the Hartree-Fock (HF)
and Hartree-Fock-Bogoliubov (HFB) approximations and
the excited states within the RPA and quasiparticle RPA
(QRPA). Such models are quite successful not only to
reproduce the nuclear ground-state properties [7,8], but
also to describe the main features of nuclear excitations
in closed-shell [9,10] and open-shell nuclei [11–14]. In the
latter case the pairing correlations are very important.
Due to the anharmonicity of vibrations there is a cou-

pling between one-phonon and more complex states [2,4]
and the complexity of calculations beyond standard RPA
or QRPA increases rapidly with the size of the configu-
ration space, so one has to work within limited spaces.
Making use of separable forces one can perform calcu-
lations of nuclear characteristics in very large configura-
tion spaces since there is no need to diagonalize matri-
ces whose dimensions grow with the size of configuration
space. For example, the well-known quasiparticle-phonon
model (QPM) [4] can do very detailed predictions for nu-
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clei away from closed shells [15], but it is very difficult to
extrapolate the phenomenalogical parameters of the nu-
clear Hamiltonian to new regions of nuclei.
That is why a finite rank approximation for the

particle-hole (p-h) interaction resulting from the Skyrme
forces has been suggested in our previous work [16]. Thus,
the self-consistent mean field can be calculated with the
original Skyrme interaction, whereas the RPA solutions
would be obtained with the finite rank approximation to
the p-h matrix elements. It was found that the finite rank
approximation can reproduce reasonably well the dipole
and quadrupole strength distributions in Ar isotopes. Al-
ternative schemes to factorize the p-h interaction were
considered in [17–19].
Recently, the finite rank approximation for p-h interac-

tions of Skyrme type has been generalized to take into ac-
count the pairing correlations [20]. The QRPA was used to
describe characteristics of the low-lying 2+ and 3− states
and giant resonances in nuclei with very different mass
numbers [20,21]. It was found that there is room for the
phonon-phonon coupling effects in many cases. The first
calculation to estimate this effect has been done for 112Sn
in [22].
In the present work, we extend our approach to take

into account the coupling between the one- and two-
phonon terms in the wave functions of excited states.
As an application of the method we present results for
low-lying 2+ and 3− states in neutron-rich Sn isotopes
and compare them with recent experimental data [23] and
other calculations [24–26].
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This paper is organized as follows: in sect. 2 we sketch
our method allowing to consider effects of the phonon-
phonon coupling. In sect. 3 we discuss details of calcu-
lations and show how this approach can be applied to
treat the low-lying collective states. Results of calcula-
tions for properties of the quadrupole and octupole states
in 124–134Sn isotopes are given in sect. 4. Conclusions are
drawn in sect. 5.

2 Method of calculations

2.1 The model Hamiltonian and QRPA

We start from the effective Skyrme interaction [6] and
use the notation of ref. [27] containing explicit den-
sity dependence and all spin-exchange terms. The single-
particle spectrum is calculated within the HF method.
The continuous part of the single-particle spectrum is
discretized by diagonalizing the HF Hamiltonian on a
harmonic-oscillator basis [28]. The p-h residual interac-

tion Ṽres corresponding to the Skyrme force and includ-
ing both direct and exchange terms can be obtained as
the second derivative of the energy density functional
with respect to the density [29]. Following our previous

papers [16] we simplify Ṽres by approximating it by its
Landau-Migdal form. For Skyrme interactions all Landau
parameters Fl, Gl, F

′

l , G
′

l with l > 1 are zero. Here, we
keep only the l = 0 terms in Vres and in the coordinate
representation one can write it in the following form:

Vres(r1, r2) = N−1
0

[

F0(r1) +G0(r1)σ1 · σ2 + (F
′

0(r1)

+G
′

0(r1)σ1 · σ2)τ1 · τ2

]

δ(r1 − r2) , (1)

where σi and τi are the spin and isospin operators, and
N0 = 2kFm

∗/π2
~

2 with kF and m
∗ standing for the Fermi

momentum and nucleon effective mass. The expressions
for F0, G0, F

′

0, G
′

0 in terms of the Skyrme force parameters
can be found in ref. [27]. Because of the density depen-
dence of the interaction the Landau parameters of eq. (1)
are functions of the coordinate r.
In what follows we use the second quantized represen-

tation and Vres can be written as

V̂res =
1

2

∑

1234

V1234 : a
+
1 a

+
2 a4a3 : , (2)

where a+
1 (a1) is the particle creation (annihilation) oper-

ator and 1 denotes the quantum numbers (n1l1j1m1),

V1234 =

∫

φ∗1(r1)φ
∗
2(r2)Vres(r1, r2)φ3(r1)φ4(r2)dr1dr2.

(3)
After integrating over the angular variables one needs

to calculate the radial integrals. As is shown in [16,20] the
radial integrals can be calculated accurately by choosing

a large enough cut-off radius R and using a N -point inte-
gration Gauss formula with abscissas rk and weights wk.
Thus, the two-body matrix element is a sum of N separa-
ble terms, i.e., the residual interaction takes the form of
a rank N separable interaction.
We employ a Hamiltonian including an average HF

field, pairing interactions, the isoscalar and isovector
particle-hole (p-h) residual forces in a finite rank sepa-
rable form [20]:

H =
∑

τ

( τ
∑

jm

(Ej − λτ )a
†
jmajm

−
1

4
V (0)
τ : P †

0 (τ)P0 (τ) :

)

+ V̂res , (4)

where
P+

0 (τ) =
∑

jm

τ
(−1)j−ma+

jma
+
j−m. (5)

We sum over the proton (p) and neutron (n) indexes
and the notation {τ = (n, p)} is used. A change τ ↔ −τ
means a change p↔ n. The single-particle states are spec-
ified by the quantum numbers (jm), Ej are the single-

particle energies, λτ the chemical potentials. V
(0)
τ is the

interaction strength in the particle-particle channel. The
Hamiltonian (4) has the same form as the QPM Hamilto-
nian with N separable terms [4,30], but the single-particle
spectrum and parameters of the p-h residual interaction
are calculated making use of the Skyrme forces.
In what follows we work in the quasiparticle represen-

tation defined by the canonical Bogoliubov transforma-
tion:

a+
jm = ujα

+
jm + (−1)j−mvjαj−m. (6)

The Hamiltonian (4) can be represented in terms of
bifermion quasiparticle operators and their conjugates [4]:

B(jj
′

;λµ) =
∑

mm′

(−1)j
′

+m′〈jmj
′

m
′

| λµ〉α+
jmαj′−m′ ,

(7)

A+(jj
′

;λµ) =
∑

mm′

〈jmj
′

m
′

| λµ〉α+
jmα

+
j′m′

. (8)

We introduce the phonon creation operators

Q+
λµi =

1

2

∑

jj′

(

Xλi
jj′

A+(jj
′

;λµ)

−(−1)λ−µY λi
jj′

A(jj
′

;λ− µ)

)

, (9)

where the index λ denotes the total angular momentum
and µ is its z-projection in the laboratory system. One as-
sumes that the ground state is the QRPA phonon vacuum
| 0〉, i.e. Qλµi | 0〉 = 0. We define the excited states for
this approximation by Q+

λµi | 0〉. The quasiparticle ener-

gies (εj), the chemical potentials (λτ ), the energy gap and
the coefficients u,v of the Bogoliubov transformations (6)
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are determined from the BCS equations with the single-
particle spectrum that is calculated within the HF method
with the effective Skyrme interaction. Making use of the
linearized equation-of-motion approach [1]

〈0|
[

δQλµi,
[

H,Q+
λµi

]]

| 0〉 = ω
λi
〈0|
[

δQλµi, Q
+
λµi

]

| 0〉,

(10)
with the normalization condition

〈0 | [Qλµi, Q
+
λµi′
] | 0〉 = δii′ , (11)

one can get the QRPA equations [3,4]:

(

A B
−B −A

)(

X
Y

)

= w

(

X
Y

)

. (12)

In QRPA problems there appear two types of inter-

action matrix elements, the A
(λ)
(j1j′1)(j2j

′

2
) matrix related to

forward-going graphs and the B
(λ)
(j1j′1)τ (j2j′2)qτ

matrix re-

lated to backward-going graphs. Solutions of this set of lin-
ear equations yield the eigenenergies and the amplitudes
X,Y of the excited states. The dimension of the matrices
A,B is the space size of the two-quasiparticle configura-
tions. For our case expressions for A,B and X,Y are given
in [20]. Using the finite rank approximation we need to in-
vert a matrix of dimension 4N × 4N independently of the
configuration space size [16,20]. Therefore, this approach
enables one to reduce remarkably the dimensions of the
matrices that must be inverted to perform structure cal-
culations in very large configuration spaces.

2.2 Phonon-phonon coupling

Our calculations [20] show that, for the normal-parity
states one can neglect the spin-multipole terms of the
p-h residual interaction (1). Using the completeness and
orthogonality conditions for the phonon operators one
can express the bifermion operators A+(jj

′

;λµ) and

A(jj
′

;λµ) through the phonon ones and the initial Hamil-
tonian (4) can be rewritten in terms of quasiparticle and
phonon operators in the following form:

H = h0 + hQQ + hQB , (13)

h0 =
∑

jm

εj α
+
jm αjm , (14)

hQQ = −
1

4

∑

λµii′τ

Wλii′ (τ)Q+
λµiQλµi′ , (15)

hQB = −
1

2

∑

λµiτ

∑

jj′

τ
Γλi
jj′ (τ)

(

(−)λ−µQ+
λµi +Qλ−µi

)

×B(jj
′

;λ− µ) + h.c. . (16)

The coefficientsW , Γ of the Hamiltonian (13) are sums
of N combinations of phonon amplitudes, the Landau pa-
rameters, the reduced matrix elements of the spherical

harmonics and radial parts of the HF single-particle wave
function (see appendix A). It is worth pointing out that
the term hQB is responsible for the mixing of the config-
urations and, therefore, for the description of many char-
acteristics of the excited states of even-even nuclei [4].
To take into account the mixing of the configurations

in the simplest case one can write the wave functions of
excited states as

Ψν(λµ) =

{

∑

i

Ri(λν)Q
+
λµi

+
∑

λ1i1λ2i2

Pλ1i1
λ2i2

(λν)
[

Q+
λ1µ1i1

Q+
λ2µ2i2

]

λµ

}

|0〉 (17)

with the normalization condition
∑

i

R2
i (Jν) + 2

∑

λ1i1λ2i2

(Pλ1i1
λ2i2

(Jν))2 = 1 . (18)

Using the variational principle in the form

δ (〈Ψν(λµ) |H | Ψν(λµ)〉

−Eν(〈Ψν(λµ) |Ψν(λµ)〉 − 1)) = 0 , (19)

one obtains a set of linear equations for the unknown am-
plitudes Ri(Jν) and P

λ1i1
λ2i2

(Jν):

(ωJi − Eν)Ri(Jν) +
∑

λ1i1λ2i2

Uλ1i1
λ2i2

(Jν)Pλ1i1
λ2i2

(Jν) = 0 ,

(20)
∑

i

Uλ1i1
λ2i2

(Ji)Ri(Jν)+2(ωλ1i1+ωλ2i2−Eν)P
λ1i1
λ2i2

(Jν) = 0 .

(21)

Uλ1i1
λ2i2

(Ji) is the matrix element coupling one- and two-

phonon configurations [4,31]:

Uλ1i1
λ2i2

(Ji) = 〈0|QJihQB

[

Q+
λ1i1

Q+
λ2i2

]

J
|0〉. (22)

The expression of Uλ1i1
λ2i2

(Ji) is given in appendix B.

The number of linear equations (20), (21) equals the num-
ber of one- and two-phonon configurations included in the
wave function (17).
The energies of the excited states Eν are solutions of

the secular equation

F (Eν) ≡ det

∣

∣

∣

∣

(ωλi − Eν)δii′

−
1

2

∑

λ1i1,λ2i2

Uλ1i1
λ2i2

(λi)Uλ1i1
λ2i2

(λi′)

ωλ1i1 + ωλ2i2 − Eν

∣

∣

∣

∣

= 0 , (23)

where the rank of the determinant equals the number of
the one-phonon configurations. Using eqs. (20), (21) and
the normalization condition (18), one can find the ampli-

tudes Ri(Jν) and P
λ1i1
λ2i2

(Jν).
It is necessary to point out that the equations de-

rived above have the same form as the basic QPM equa-
tions [4,31], but the single-particle spectrum and the p-
h residual interaction are determined making use of the
Skyrme interactions.
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Table 1. Energies and B(E2) values for up-transitions to the first 2+ states.

Nucleus Energy B(E2 ↑)
(MeV) (e2b2)

Exp. Theory Exp. Theory

QRPA 2PH QRPA 2PH
124Sn 1.13 1.92 1.03 0.1660±0.0040 0.177 0.151
126Sn 1.14 1.96 1.30 0.10±0.03 0.149 0.133
128Sn 1.17 2.08 1.48 0.073±0.006 0.111 0.100
130Sn 1.22 2.37 1.73 0.023±0.005 0.064 0.058
132Sn 4.04 4.47 4.03 0.14±0.06 0.136 0.129
134Sn 0.73 1.65 1.34 0.029±0.006 0.016 0.015

3 Details of calculations

We apply the present approach to study characteristics of
the low-lying vibrational states in the neutron-rich Sn iso-
topes. In this paper we use the parametrization SLy4 [32]
of the Skyrme interaction. This parametrization was pro-
posed to describe isotopic properties of nuclei from the
β-stability line to the drip lines. Spherical symmetry is
assumed for the HF ground states.
The pairing constants V 0

τ are fixed to reproduce the
odd-even mass difference of neighbouring nuclei. It is well
known [11,12] that the constant gap approximation leads
to an overestimate of occupation probabilities for subshells
that are far from the Fermi level and it is necessary to
introduce a cut-off in the single-particle space. Above this
cut-off, subshells do not participate in the pairing effect.
In our calculations we choose the BCS subspace to include
all subshells lying below 5 MeV.
In order to perform QRPA calculations, the single-

particle continuum is discretized [28] by diagonalizing the
HF Hamiltonian on a basis of twelve harmonic-oscillator
shells and cutting off the single-particle spectra at the en-
ergy of 100 MeV. This is sufficient to exhaust practically
all the energy-weighted sum rule.

The Landau parameters F0, G0, F
′

0, G
′

0 expressed in
terms of the Skyrme force parameters [27] depend on kF.
As is pointed out in our previous works [16,20] one needs
to adopt some effective value for kF to give an accurate
representation of the original p-h Skyrme interaction. For
the present calculations we use the nuclear matter value
for kF.
Our previous investigations [20] enable us to conclude

that N = 45 for the rank of our separable approximation
is enough for multipolarities λ ≤ 3 in nuclei with A ≤ 208.
Increasing N , for example, up to N = 60 in 208Pb changes
results for energies and transition probabilities not more
than by 1%. Our calculations show that, for the natural-
parity states one can neglect the spin-multipole interac-
tions and this reduces by a factor 2 the total matrix di-
mension, i.e., the matrix dimensions never exceed 2N×2N
independently of the configuration space size [16,20].
The two-phonon configurations of the wave function

(17) are constructed from natural-parity phonons with
multipolarities λ = 2, 3, 4, 5. All one-phonon configura-

tions with energies below 8 MeV for 124–130,134Sn and 10
MeV for 132Sn are included in the the wave function (17).
The cut-off in the space of the two-phonon configurations
is 21 MeV. An extension of the space for one- and two-
phonon configurations does not change results for energies
and transition probabilities practically.

4 Results of calculations

As an application of the method we investigate effects of
the phonon-phonon coupling on energies and transition
probabilities to 2+1 and 3

−
1 states in

124–134Sn.

Results of our calculations for the 2+1 energies and
transition probabilities B(E2) are compared with exper-
imental data [23,33] in table 1. Columns “QRPA” and
“2PH” give values calculated within the QRPA and taking
into account the phonon-phonon coupling, respectively.
As is seen from table 1, there is a remarkable increase

of the 2+1 energy and B(E2 ↑) in
132Sn in comparison with

those in 130,134Sn. Such a behaviour of B(E2 ↑) is related
with the proportion between the QRPA amplitudes for
neutrons and protons in Sn isotopes. The neutron am-
plitudes are dominant in all Sn isotopes and the contri-
bution of the main neutron configuration {1h11/2, 1h11/2}

increases from 81.2% in 124Sn to 92.8% in 130Sn when neu-
trons fill the subshell 1h11/2. At the same time the contri-
bution of the main proton configuration {2d5/2, 1g9/2} is

decreasing from 9.3% in 124Sn to 3.9% in 130Sn. The clo-
sure of the neutron subshell 1h11/2 in

132Sn leads to the
vanishing of the neutron paring. The energy of the first
neutron two-quasiparticle pole {2f7/2, 1h11/2} in

132Sn is

greater than energies of the first poles in 130,134Sn and
the contribution of the {2f7/2, 1h11/2} configuration in the

doubly magic 132Sn is about 61%. Furthermore, the first
pole in 132Sn is closer to the proton poles. This means
that the contribution of the proton two-quasiparticle con-
figurations is greater than those in the neighbouring iso-
topes and, as a result, the main proton configuration
{2d5/2, 1g9/2} in

132Sn exhausts about 33%. In 134Sn the
leading contribution (about 99%) comes from the neutron
configuration {2f7/2, 2f7/2} and, as a result, the B(E2)

value is reduced. Such a behaviour of the 2+1 energies and
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Table 2. Energies and B(E3) values for up-transitions to the first 3− states.

Nucleus Energy B(E3 ↑)
(MeV) (e2b3)

Exp. Theory Exp. Theory

QRPA 2PH QRPA 2PH
124Sn 2.60 3.64 3.25 0.073±0.010 0.208 0.196
126Sn 2.72 4.16 3.76 0.191 0.176
128Sn 4.66 4.22 0.181 0.161
130Sn 5.17 4.75 0.183 0.159
132Sn 4.35 5.66 5.36 0.202 0.191
134Sn 5.01 4.51 0.128 0.111

B(E2) values in the neutron-rich Sn isotopes reflects the
shell structure in this region. It is worth mentioning that
the first prediction of the anomalous behaviour of 2+ exci-
tations around 132Sn based on the QRPA calculations with
a separable quadrupole-plus-pairing Hamiltonian has been
done in [24]. In comparison with other QRPA calculations
of Sn isotopes done with the Gogny force [26], and espe-
cially with Skyrme forces [25], the present QRPA results
for 2+1 energies are in agreement but our B(E2) values
are somewhat larger. One possible cause for this discrep-
ancy may lie in the fact that different prescriptions for
the residual interaction in the p-p channel are adopted in
ref. [25] and here.

One can see from table 1 that the inclusion of the two-
phonon terms results in a decrease of the energies and a
reduction of transition probabilities. Note that the effect of
the two-phonon configurations is important for the ener-
gies and this effect becomes weak in 132Sn. There is some
overestimate of the energies for the QRPA calculations
and taking into account the two-phonon terms improves
the description of the 2+1 energies. The reduction of the
B(E2) values is small in most cases due to the crucial
contribution of the one-phonon configuration in the wave
function structure.

Results of our calculations for the 3−1 energies and the
transition probabilities B(E3) compared to experimental
data [34] are shown in table 2. As for the quadrupole ex-
citations the influence of coupling between one- and two-
phonon terms in the wave functions of the 3−1 states leads
to the decrease of the energies and the reduction of tran-
sition probabilities. In spite of the fact that the 3−1 states
have strong collectivity and many two-quasiparticle con-
figurations give a contribution in the QRPA wave func-
tions in Sn isotopes, the phonon-phonon coupling is not
very strong in this case. Our calculation shows that the
main reason is the smallness of the matrix elements cou-
pling the one-phonon configuration {3−1 } and the two-

phonon configuration {2+1 ; 3
−
1 } (U

2+

1

3−
1

(3−1 )). As a result, the

decrease of the 3−1 energies is about 10%. In the present
paper we neglect the p-p channel that can be important
for collective phonons and can reduce the collectivity of
states [4,35]. This can give an additional lowering of ener-
gies and transition probabilities , but this is not the case

Table 3. (Mn/Mp)/(N/Z) ratios for the first 2+, 3− states.

State 124Sn 126Sn 128Sn 130Sn 132Sn 134Sn

2+
1 0.99 0.99 0.98 0.97 0.81 1.44

3−1 0.94 0.92 0.89 0.86 0.83 0.91

for 132Sn. Comparing with the QRPA results of ref. [25]
for 3−1 energies and transition probabilities we find that
the energies are in general agreement, whereas our cal-
culated B(E3) are larger than those of ref. [25]. Again,
the reason may be in the different treatments of the resid-
ual interaction in the p-p channel. It is worth mentioning
that experimental data for 3−1 states in the neutron-rich
Sn isotopes are very scarce.
An additional information about the structure of the

first 2+, 3− states can be extracted by looking at the ra-
tio of the multipole transition matrix elements Mn/Mp

that depends on the relative contributions of the proton
and neutron configurations. In the framework of the col-
lective model for isoscalar excitations this ratio is equal
to Mn/Mp = N/Z and any deviation from this value can
indicate an isovector character of the state. The Mn/Mp

ratio can be determined experimentally by using differ-
ent external probes [36–38]. Our calculated values for the
Mn/Mp ratios for the 2

+
1 and 3

−
1 states are shown in ta-

ble 3. The calculated Mn/Mp ratios are rather close to
N/Z except 2+1 in

134Sn. It is worth noting that the de-
viation of the ratio for the 2+1 state in 132Sn correlates
with the increase of the contribution of the proton two-
quasiparticle configurations.

5 Conclusions

The finite rank separable approximation for the QRPA
calculations with Skyrme interactions that was proposed
in our previous work is extended to take into account the
coupling between one- and two-phonon terms in the wave
functions of excited states. The suggested approach en-
ables one to reduce considerably the dimensions of the
matrices that must be diagonalized to perform structure
calculations in very large configuration spaces. As an ap-
plication of the method we have studied the behaviour of
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Y
λki
τ =

2 (2λ+ 1)2
(

Dλik
M (τ)

(

κ
(M,k)
0 + κ

(M,k)
1

)

+Dλik
M (−τ)

(

κ
(M,k)
0 − κ

(M,k)
1

))2 (A.3)

the energies and transition probabilities of the 2+1 and 3
−
1

states in 124–134Sn. The tendency of our QRPA results
is to overestimate the energies. The inclusion of the two-
phonon configurations results in a decrease of the energies
and a reduction of transition probabilities. However, we
find that the effects modify significantly only the energies
of quadrupole states. The maximum energy correction is
about 46% and it occurs for the 2+1 state in

124Sn, whereas
the effect becomes weaker in 132Sn. We find also that, for
the energies of 3−1 states, the effect is minor and changes
the QRPA energies by about 10%. In this case, the main
discrepancies between measured and calculated energies
are too large to be overcome by the inclusion of the two-
phonon configurations and one should seek for improve-
ments in the effective interaction used. Our calculations
show that the influence of the phonon coupling is small
for B(E2) and B(E3) values. We emphasize also that
the inclusion of the two-phonon terms does not change
the effect of a remarkable increase of the QRPA value of
B(E2; 0+ → 2+1 ) in the doubly closed shell nucleus

132Sn
in comparison with its neighbours. A systematical study
of the influence of the two-phonon terms taking into ac-
count the p-p channel on properties of the low-lying states
is now in progress.
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Appendix A.

The coefficients of the Hamiltonian (13) are given by the
following expressions:

Wλii′ (τ) =

N
∑

k=1

(

Dλik
M (τ)

√

2Yλki′
τ

+
Dλi′k

M (τ)
√

2Yλki
τ

)

, (A.1)

Γλi
jj′ (τ) =

N
∑

k=1

f
(λk)

jj′
v
(−)

jj′
√

2Yλki
τ

, (A.2)

where

Dλik
M (τ) =

∑

jj′

τ
f

(λk)

jj′
u

(+)

jj′

(

Xλi
jj′
+ Y λi

jj′

)

,

see eq. (A.3) above,

v
(−)

jj′
= ujuj′ − vjvj′ u

(+)

jj′
= ujvj′ + vjuj′ .

In the above expressions f
(λk)

jj′
denotes the single-

particle radial matrix elements [20]:

f
(λk)
j1j2

= uj1(rk)uj2(rk)i
λ〈j1||Yλ||j2〉,

where uj1(rk) is the radial part of the HF single-particle
wave function at the abscissas of the N -point integration

Gauss formula rk. κ
(M,k)
0 and κ

(M,k)
1 are defined by the

Landau parameters as

(

κ
(M,k)
0

κ
(M,k)
1

)

= −N−1
0

Rwk

2r2k

(

F0(rk)
F ′

0(rk)

)

.

Appendix B.

The matrix elements Uλ1i1
λ2i2

(Ji) have the following form:

Uλ1i1
λ2i2

(λi) = (−1)λ1+λ2+λ
√

(2λ1 + 1)(2λ2 + 1)
∑

τ

τ
∑

j1j2j3

×

(

Γλi
j1j2 (τ)

{

λ1 λ2 λ
j2 j1 j3

}

(

Xλ2i2
j2j3

Y λ1i1
j3j1

+Xλ1i1
j3j1

Y λ2i2
j2j3

)

+ Γλ1i1
j1j2

(τ)

{

λ1 λ2 λ
j3 j2 j1

}

(

Y λ2i2
j3j1

Y λi
j2j3 +Xλi

j2j3X
λ2i2
j3j1

)

+ Γλ2i2
j1j2

(τ)

{

λ1 λ2 λ
j1 j3 j2

}

(

Y λ1i1
j2j3

Y λi
j3j1 +Xλi

j3j1X
λ1i1
j2j3

)

)

.

(B.1)
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10. G. Colò, N. Van Giai, P.F. Bortignon, R.A. Broglia, Phys.

Rev. C 50, 1496 (1994).



A.P. Severyukhin et al.: Effects of phonon-phonon coupling on low-lying states in neutron-rich Sn isotopes 403

11. E. Khan, Nguyen Van Giai, Phys. Lett. B 472, 253 (2000).
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