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A finite rank separable approximation for the quasiparticle RPA calculations with 
Skyrme interactions that was proposed in our previous work is extended to take into 
account the coupling between one- and two-phonon terms in the wave functions of ex- 
cited states. It is shown that characteristics calculated within the suggested approach are 
in a good agreement with available experimental data. 

1. INTRODUCTION 

Many properties of the collective nuclear excitations can be described within the random 
phase approximation (RPA) [l-4]. Th e most consistent models employ the Gogny’s [5] 
or Skyrme-type [6] effective interactions which can describe the ground states in the 
framework of the Hartree-Fock (HF) approximation and the excited states within the 
RPA. Such models are quite successful for predicting nuclear states properties [7--111. 

Due to the anharmonicity of vibrations there is’ a coupling between one-phonon and 
more complex states [2,4] and the complexity of calculations beyond standard RPA in- 
creases rapidly with the size of the configuration space, so one has to work within limited 
spaces. Using simple separable forces one can perform calculations of nuclear charac- 
teristics in very large configuration spaces since there is no need to diagonalize matrices 
whose dimensions grow with the size of configuration space. For example, the well-known 
quasiparticle-phonon model (QPM) [4] can do very detailed predictions for nuclei away 
from closed shells[l2]. 

The possibility for such a simplification was the motivation for proposing in our previous 
work [13] a finite rank approximation for the particle-hole (p-h) interaction resulting from 
Skyrme-type forces. Thus, the self-consistent mean field can be calculated in the standard 
way with the original Skyrme interaction whereas the RPA solutions would be obtained 
with the finite rank approximation to the p-h matrix elements. It was found that the 
finite rank approximation reproduces reasonably well the dipole and quadrupole strength 
distributions in Ar isotopes [13]. 
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Recently, we extended the finite rank approximation for p-h interactions of Skyrme type 
to take into account pairing [14]. In this paper we generalize our approach to take into 
account a coupling between the one- and two-phonon components of wave functions. As 
an application we present results of our first calculations for the quadrupole and octupole 
states in 112Sn. 

2. METHOD OF CALCULATIONS 

We start from the effective Skyrme interaction[6] and use the notation of Ref.[lS] con- 
taining explicit density dependence and all spin-exchange terms. The single-particle spec- 
trum is calculated within the HF method. The continuous part of the single-particle 
spectrum is discretized by diagonalizing the HF hamiltonian on the harmonic oscillator 
basis[l6]. The p-h residual interaction v& corresponding to the Skyrme force and includ- 
ing both direct and exchange terms can be obtained as the second derivative of the energy 
density functional with respect to the density[l7]. Following our previous paper[l3] we 
simplify vre, by approximating it by its Landau-Migdal form. For Skyrme interactions all 
Landau parameters K, Gl, Fi, G; with I > 1 are zero. Here, we keep only the 1 = 0 terms 
in V,,, and in the coordinate representation one can write it in the following form: 

Kes(rll r2) = NC1 [Fo(~I) + Go(TI)~I~ + (Fi(rd + Gb(7-&~11~2)7172] 6(rl - 112) (1) 

where oi and ri are the spin and isospin operators, and Na = 2kFm*/7r2fL2 with k~ and 
m* standing for the Fermi momentum and nucleon effective mass. The expressions for 
Fo, Go, Fi, Gb in terms of the Skyrme force parameters can be found in Ref.[15]. Because 
of the density dependence of the interaction the Landau parameters of Eq. (1) are functions 
of the coordinate r. 

The p-h residual interaction can be presented as a sum of N separable terms. Let us 
explain this procedure for making the finite rank approximation by examining only the 
contribution of the term Fo. In what follows we use the second quantized representation 
and VT,, can be written as: 

where at (ai) is the particle creation (annihilation) operator and 1 denotes the quantum 
numbers (nilijimi), 

V 1234 = J &(rl)4a(rz)Kes(rl, r2)~3(rl)&4(r,)dr,dr,, 

V 1234 = z j-‘(jl(lyJllj3)(j2(IyJ(jj4)l(jlj2j3j4) x 

C-1 
J+js+jeM-ms-w 

(31mj3 - m3 I J - M)(j2m2j4 - m4 ( JM). 

(3) 

(4 
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In the above equation, (ji]]Y~]]js) is the reduced matrix element of the spherical har- 
monics YJ~, j = dm, and 1(jlj2j&) is the radial integral: 

where U(T) is the radial part of the HF single-particle wavefunction. As it is shown in 
[13,14] the radial integrals can be calculated accurately by choosing a large enough cutoff 
radius R and using a N-point integration Gauss formula with abscissas and weights rk, wk. 

(6) 

So we employ the hamiltonian including an average nuclear HF field, pairing interac- 
tions, the isoscalar and isovector particle-hole residual forces in the finite rank separable 
form [14]. This hamiltonian has the same form as the QPM hamiltonian with N separable 
terms [4,18], but in contrast to the &PM all parameters of this hamiltonian are expressed 
through parameters of the Skyrme forces. 

In what follows we work in the quasiparticle representation defined by the canonical 
Bogoliubov transformation: 

+ - ajm - ujc& -t (-l)J~?Jjaj-m. (7) 

The single-particle states are specified by the quantum numbers (jm) The quasiparticle 
energies, the chemical potentials, the energy gap and the coefficients U,W of the Bogoliubov 
transformations (7) are determined from the BCS equations. 

Ne introduce the phonon creation operators 

QTpi = ; c (X;: A+(jj’; Xp) - (-1)x+,?;:: A(jj’; X - p)) (8) 
u’ 

where 

A+(jj’; X,u) = C (jr&m’ 1 X&+I;~, (9) 

The index X denotes total angular momentum and p is its z-projection in the laboratory 
system. One assumes that the quasiparticle RPA (QRPA) ground state is the phonon 
vacuum ] 0), i.e. Qxpi 1 0) = 0. We define the excited states for this approximation by 
Q;t,i I 0). 

Making use of the linearized equation-of-motion approach [l] one can derive the QRPA 
equations [3,4]: 

(2 FA)(;)=w(:). 00) 

In QRPA problems there appear two types of interaction matrix elements, the J![$~~~~~;, 

matrix related to forward-going graphs and the Btjl’,;,li2ji, matrix related to backward- 
going graphs [14]. Solutions of this set of linear equations yield the eigen-energies and the 
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amplitudes X, Y of the excited states. A dimension of the rnatrixes A, B is a space size 
of the two-quasiparticle configurations. 

Using the finite rank approximation we need to invert a matrix having a dimension 
4N x 4N independently of the configuration space size. One can find a prescription how 
to solve the system (10) within our approach in [13,14]. The QRPA equations in the 
QPM [4,18] have the same form as the equations derived within our approach[l3,14], but 
the single-particle spectrum and parameters of the p-h residual interaction are calculated 
making use of the Skyrme forces. 

In this work we use the standard parametrization SIII [19] of the Skyrme force. Spherical 
symmetry is assumed for the HF ground states. It is well known [lO,ll] that the constant 
gap approximation leads to an overestimating of occupation probabilities for subshells 
that are far from the Fermi level and it is necessary to introduce a cut-off in the single- 
particle space. Above this cut-off subshells don’t participate in the pairing effect. In 
our calculations we choose the BCS subspace to include all subshells lying below 5 MeV. 
The pairing constants are fixed to reproduce the odd-even mass difference of neighboring 
nuclei. In order to perform RPA calculations, the single-particle continuum is discretized 
[16] by diagonalizing the HF hamiltonian on a basis of twelve harmonic oscillator shells 
and cutting off the single-particle spectra at the energy of 190 MeV. This is sufficient to 
exhaust practically all the energy-weighted sum rule. 

Our investigations [14] enable us to conclude that N=45 is enough for multipolarities 
X 5 3 in nuclei with A < 208. Increasing N, for example, up to N=60 in ‘08Pb does not 
change results for energies and transition probabilities practically. Our calculations show 
that, for the normal parity states one can neglect the spin-multipole interactions as a rule 
and this reduces by a factor 2 the total matrix dimension. For heavy nuclei our approach 
gives a large gain in comparison with an exact diagonalization [14]: 

To take into account the mixing of the configurations in the simplest case one can write 
the wave functions of excited states as: 

with the normalization condition: I 

The matrix element coupling one- and two-phonon configurations is: 

(11) 

(13) 

U;$i(Ji) is some combination of the geometrical factors and the QRPA phonon ampli- 
tudes [4,20]. 

The energies of the states qIu(Xp) are solutions of the following equation [4]: 

(14) 
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The rank of the determinant equals the number of the one-phonon configurations in- 
cluded in the first term of the wave function qU(X~). 

It is worth to point out that after solving the RPA problem with a separable interaction, 
to take into account the coupling with two-phonon configurations demands to diagonalize 
a matrix having a size that does not exceed 40 even for the giant resonance calculations 
in heavy nuclei whereas one would need to diagonalize a matrix with a dimension of the 
order of a few thousands at least for a non-separable case. 

3. RESULTS OF CALCULATIONS 

As an example we consider the 2:, 3; state energies and transition probabilities B(EX) 
in l12Sn The experimental data [21,22] and the results of our calculations within the 
QRPA (the second line) and with taking into account the two-phonon terms (the third 
line) are shown in Table 1. In our calculations the two-phonon terms of the wave func- 
tion (11) include phonons with multipolarities X = 2,3,4,5. One can see that there is 
some overestimate of the energies and transition probabilities for the QRPA calculations. 
The inclusion of the two-phonon configurations results in a reduction of the enrgies and 
transition probabilities for the 2:,3, states in 112Sn. Generally there is a reasonable 
agreement between theory and experiment. The study of an influence of a choice for the 
Skyrme forces parameters on properties of the low-lying states within our approach and 
calculations for other nuclei are in progress now. 

Table 1 
Energies and B(EX)-values for up-transitions to the first 2+, 3- states in “‘Sn 

State 2+ 1 3; 

Energy BOW Energy BOW 
(MeV) (e2fm4) (MeV) (e2fm6) 

EXP. 1.26 24OO~tl40 2.36 87000 zt12~00 

QRPA 1.49 2600 2.73 97000 

2PH 0.90 2200 1.90 72000 

4. CONCLUSION 

A finite rank separable approximation for the QRPA calculations with Skyrme interac- 
tions that was proposed in our previous work is extended to take into account the coupling 
between one- and two-phonon terms in the wave functions of excited states. 

It is shown that the suggested approach enables one to reduce remarkably the dimen- 
sions of the matrices that must be inverted to perform structure calculations in very large 
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configuration spaces. 
As an illustration of the method we have calculated the energies and transition proba- 

bilities of the 2: and 3; states in i12 Sn. 
They are in a reasonable agreement with experimental data. A systematical study of 

an influence of the two-phonon terms on properties of the low lying states is in progress 
now. 
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