
Physics of Atomic Nuclei, Vol. 66, No. 8, 2003, pp. 1434–1438. From Yadernaya Fizika, Vol. 66, No. 8, 2003, pp. 1480–1484.
Original English Text Copyright c© 2003 by Severyukhin, Voronov, Stoyanov, Van Giai.

Separabelized Skyrme Interactions and Quasiparticle RPA*

A. P. Severyukhin1)**, V. V. Voronov1), Ch. Stoyanov2), and Nguyen Van Giai3)

1)Bogolyubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research,
Dubna, Moscow oblast, 141980 Russia

2)Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria.
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Abstract—A finite rank separable approximation for the quasiparticle random phase approximation with
Skyrme interactions is applied to study the low-lying quadrupole and octupole states in some S isotopes
and giant resonances in some spherical nuclei. It is shown that characteristics calculated within the
suggested approach are in good agreement with available experimental data. c© 2003 MAIK “Nau-
ka/Interperiodica”.

1. INTRODUCTION

The random phase approximation (RPA) [1–4]
with the self-consistent mean field derived with the
use of Gogny interaction [5] or Skyrme-type interac-
tions [6, 7] is nowadays one of the standard tools to
perform nuclear structure calculations. Many proper-
ties of the nuclear collective states can be described
successfully within such models [7–14].

Due to the anharmonicity of vibrations, there is
a coupling between one-phonon and more complex
states [2, 4]. The main difficulty is that the complexity
of calculations beyond the standard RPA increases
rapidly with the size of the configuration space and
one has to work within limited spaces. It is well
known that, using simple separable forces, one can
perform calculations of nuclear characteristics in very
large configuration spaces since there is no need to
diagonalize matrices whose dimensions grow with
the size of configuration space. For example, the
well-known quasiparticle-phonon model (QPM) [4]
belongs to such a model. Very detailed predictions
can be made by QPM for nuclei away from closed
shells [15–17].

That is why a finite rank approximation for the
particle–hole (p–h) interaction resulting from Skyr-
me-type forces has been suggested in our previous
work [18]. Thus, the self-consistent mean field can
be calculated in the standard way with the origi-
nal Skyrme interaction, whereas the RPA solutions
would be obtained with the finite rank approximation
to the p–h matrix elements. It was found that the

∗This article was submitted by the authors in English.
**e-mail: sever@thsun1.jinr.ru

finite rank approximation reproduces reasonably well
the dipole and quadrupole strength distributions in Ar
isotopes [18].

Recently, we extended the finite rank approxi-
mation to p–h interactions of Skyrme type to take
into account pairing [19]. We tested our approach to
calculate characteristics of the low-lying quadrupole
and octupole states in some spherical nuclei. In this
paper, we apply our approach to study the low-lying
quadrupole and octupole states in some S isotopes.
Choosing as examples some spherical nuclei, we
demonstrate an ability of the method to describe cor-
rectly the strength distributions in a broad excitation
energy interval.

2. BASIC FORMULAS AND DETAILS
OF CALCULATIONS

We start from the effective Skyrme interaction [6]
and use the notation of [20] containing explicit
density dependence and all spin-exchange terms.
The single-particle spectrum is calculated within
the Hartree–Fock (HF) method. The continuous
part of the single-particle spectrum is discretized by
diagonalizing the HF Hamiltonian on the harmonic
oscillator basis [21]. The p–h residual interaction Ṽres
corresponding to the Skyrme force and including both
direct and exchange terms can be obtained as the
second derivative of the energy density functional with
respect to the density [22]. Following our previous
papers [18, 19], we simplify Ṽres by approximating it by
its Landau–Migdal form. For Skyrme interactions,
all Landau parameters Fl, Gl, F ′

l , G
′
l with l > 1 are

zero. Here, we keep only the l = 0 terms in Vres, and
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in the coordinate representation, one can write it in
the following form:

Vres(r1, r2) = N−1
0 [F0(r1) +G0(r1)σ1σ2 (1)

+ (F ′
0(r1) +G′

0(r1)σ1σ2)τ1τ2]δ(r1 − r2),

where σi and τi are the spin and isospin operators,
and N0 = 2kFm∗/π2

�
2 with kF and m∗ standing for

the Fermi momentum and nucleon effective mass.
The expressions for F0, G0, F ′

0, and G
′
0 in terms of

the Skyrme force parameters can be found in [20].
Because of the density dependence of the interaction,
the Landau parameters of Eq. (1) are functions of the
coordinate r.

The p–h residual interaction can be represented as
a sum ofN separable terms. To illustrate a procedure

for making the finite rank approximation, we examine
only the contribution of the term F0. In what follows,
we use the second quantized representation and Vres
can be written as

V̂res =
1
2

∑
1234

V1234 : a+
1 a

+
2 a4a3 :, (2)

where a+
1 (a1) is the particle creation (annihila-

tion) operator and 1 denotes the quantum numbers
(n1l1j1m1),

V1234 (3)

=
∫
φ∗1(r1)φ∗2(r2)Vres(r1, r2)φ3(r1)φ4(r2)dr1dr2,

V1234 =
∑
JM

Ĵ−2〈j1||YJ ||j3〉〈j2||YJ ||j4〉I(j1j2j3j4) (4)

× (−1)J+j3+j4−M−m3−m4〈j1m1j3 −m3|J −M〉〈j2m2j4 −m4|JM〉.

In the above equation, 〈j1||YJ ||j3〉 is the reduced
matrix element of the spherical harmonics YJµ, Ĵ =√

2J + 1, and I(j1j2j3j4) is the radial integral:

I(j1j2j3j4) = N−1
0 (5)

×
∞∫

0

F0(r)uj1(r)uj2(r)uj3(r)uj4(r)
dr

r2
,

where u(r) is the radial part of the HF single-particle
wave function. As is shown in [18, 19], the radial
integrals can be calculated accurately by choosing
a sufficiently large cutoff radius R and using an N-
point integration Gauss formula with abscissas rk
and weights wk:

I(j1j2j3j4) � N−1
0

R

2
(6)

×
N∑

k=1

wkF0(rk)
r2
k

uj1(rk)uj2(rk)uj3(rk)uj4(rk).

Thus, we employ the Hamiltonian including an
average nuclear HF field, pairing interactions, and
the isoscalar and isovector p–h residual forces in the
finite rank separable form [19]. This Hamiltonian has
the same form as the QPMHamiltonian withN sep-
arable terms [4, 23], but in contrast to the QPM, all
parameters of this Hamiltonian are expressed through
parameters of the Skyrme forces.

In what follows, we work in the quasiparticle
representation defined by the canonical Bogolyubov

transformation:

a+
jm = ujα

+
jm + (−1)j−mvjαj−m. (7)

The single-particle states are specified by the quan-
tum numbers (jm). The quasiparticle energies, the
chemical potentials, the energy gap, and the coeffi-
cients u,v of the Bogolyubov transformations (7) are
determined from the BCS equations.

We introduce the phonon creation operators

Q+
λµi =

1
2

∑
jj′

(
Xλi

jj′A
+(jj′;λµ) (8)

−(−1)λ−µY λi
jj′A(jj′;λ− µ)

)
,

where

A+(jj′;λµ) =
∑
mm′

〈jmj′m′|λµ〉α+
jmα

+
j′m′ . (9)

The index λ denotes total angular momentum and
µ is its z projection in the laboratory system. One
assumes that the QRPA ground state is the phonon
vacuum |0〉, i.e., Qλµi|0〉 = 0. We define the excited
states for this approximation byQ+

λµi|0〉.
Making use of the linearized equation-of-motion

approach [1], one can derive the QRPA equations
[3, 4]: 

 A B
−B −A





X
Y


 = w


X
Y


 . (10)
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Table 1. Energies,B(E2) values, and (Mn/Mp)/(N/Z) ratios for up-transitions to the first 2+ states

Nucleus
Energy, MeV B(E2 ↑), e2 fm4 (Mn/Mp)/(N/Z)

exp. theor. exp. theor. exp. theor.
32S 2.23 3.34 300 ± 13 340 0.94 ± 0.16 0.92
34S 2.13 2.48 212 ± 12 290 0.85 ± 0.23 0.87
36S 3.29 2.33 104 ± 28 130 0.65 ± 0.18 0.40
38S 1.29 1.55 235 ± 30 300 1.09 ± 0.29 0.73

Table 2. Energies,B(E3) values, and (Mn/Mp)/(N/Z) ratios for up-transitions to the first 3− states

Nucleus
Energy, MeV B(E3 ↑), e2 fm6 (Mn/Mp)/(N/Z)

exp. theor. exp. theor. theor.
32S 5.01 7.37 12700± 2000 8900 0.89
34S 4.62 5.66 8000 ± 2000 8500 1.06
36S 4.19 3.86 8000 ± 3000 7200 1.15
38S – 5.68 – 6200 1.01

In QRPA problems, there appear two types of
interaction matrix elements, the matrix related to
forward-going graphs A(λ)

(j1j′1)(j2j′2)
and the matrix

related to backward-going graphs B(λ)
(j1j′1)(j2j′2)

. Solu-

tions to this set of linear equations yield the eigenen-
ergies and the amplitudes X, Y of the excited states.
The dimension of the matrices A, B is the space size
of the two-quasiparticle configurations. Expressions
forA, B andX, Y are given in [19].

Using the finite rank approximation, we need to
invert a matrix having a dimension 4N × 4N inde-
pendently of the configuration space size. One can
find a prescription of how to solve the system (10)
within our approach in [18, 19]. The QRPA equations
in the QPM [4, 23] have the same form as the equa-
tions derived within our approach [18, 19], but the
single-particle spectrum and parameters of the p–h
residual interaction are calculated making use of the
Skyrme forces.

In this work, we use the standard parametriza-
tion SIII [24] of the Skyrme force. Spherical symme-
try is assumed for the HF ground states. It is well
known [11, 12] that the constant gap approximation
leads to an overestimation of occupation probabilities
for subshells that are far from the Fermi level, and it is
necessary to introduce a cutoff in the single-particle
space. Above this cutoff, subshells do not participate
in the pairing effect. In our calculations, we choose
the BCS subspace to include all subshells lying below
5 MeV. The pairing constants are fixed to reproduce

the odd–even mass difference of neighboring nuclei.
In order to perform RPA calculations, the single-
particle continuum is discretized [21] by diagonaliz-
ing theHFHamiltonian on a basis of twelve harmonic
oscillator shells and cutting off the single-particle
spectra at the energy of 160 MeV. This is sufficient
to exhaust practically all the energy-weighted sum
rule. Our investigations [19] enable us to conclude
that N = 45 is sufficient for multipolarities λ ≤ 3 in
nuclei with A ≤ 208. Increasing N , for example, up
to N = 60 in 208Pb, changes the results for energies
and transition probabilities by no more than 1%, so
all calculations in what follows have been done with
N = 45. Our calculations show that, for the normal
parity states one can neglect the spin-multipole in-
teractions as a rule and this reduces by a factor 2 the
total matrix dimension. For example, for the octupole
excitations in 206Pb [19], we need to invert a matrix
having a dimension 2N = 90 instead of diagonalizing
a 1376 × 1376 matrix as would be the case without
the finite rank approximation. For light nuclei, the
reduction of matrix dimensions due to the finite rank
approximation is 3 or 4. Thus, for heavy nuclei our
approach gives a large gain in comparison with an ex-
act diagonalization. It is worth pointing out that, after
solving the RPA problemwith a separable interaction,
to take into account the coupling with two-phonon
configurations requires one to diagonalize a matrix
having a size that does not exceed 40 for the giant
resonance calculations in heavy nuclei, whereas one
would need to diagonalize a matrix with a dimension
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Fig. 1. Strength distributions of the GDR in 36Ar, 112Sn,
and 208Pb.

of the order of a few thousand at least for a nonsepa-
rable case.

3. RESULTS OF CALCULATIONS

As a first example, we examine the 2+
1 and 3−1 state

energies and transition probabilities in some S iso-
topes. The results of our calculations for the energies
and B(E2) values and the experimental data [25] are
shown in Table 1. One can see that there is rather
good agreement with experimental data. Results of
our calculations for S isotopes are close to those of
QRPA with Skyrme forces [26]. The evolution of the
B(E2) values in the S isotopes demonstrates clearly
the pairing effects. The experimental and calculated
B(E2) values in 36S are lower by a factor of two than
those in 34,38S. The neutron shell closure leads to the
vanishing of the neutron pairing and a reduction of
the proton gap. As a result, there is a remarkable re-
duction of the E2 transition probability in 36S. Some
overestimate of the energies in 34,38S indicates that
there is room for two-phonon effects. The study of
the influence of two-phonon configurations on prop-
erties of the low-lying states within our approach is in
progress now.

Results of our calculations for the 3−1 energies and
the transition probabilities B(E3) are compared with
experimental data [27] in Table 2. Generally, there is
good agreement between theory and experiment.

Additional information about the structure of the
first 2+, 3− states can be extracted by looking at
the ratio of the multipole transition matrix elements
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Fig. 2. The octupole strength distribution in 208Pb.

Mn/Mp that depend on the relative contributions of
the proton and neutron configurations. In the frame-
work of the collective model for isoscalar excitations,
this ratio is equal to Mn/Mp = N/Z, and any devia-
tion from this value can indicate an isovector charac-
ter of the state. TheMn/Mp ratio can be determined
experimentally by using different external probes [28–
30]. Recently [26], QRPA calculations of theMn/Mp

ratios for the 2+
1 states in some S isotopes have been

done. The predicted results are in good agreement
with experimental data [26]. Our calculated values of
theMn/Mp ratios for the 2+

1 and 3−1 states are shown
in Tables 1 and 2, respectively. Our results support the
conclusions of [26] about the isovector character of
the 2+

1 states in 36S. As one can see from Table 2 our
calculations predict that theMn/Mp ratios for the 3−1
states are rather close to N/Z, thus indicating their
isoscalar character.

To test our approach for high-lying states, we
examine the dipole strength distributions. The cal-
culated dipole strength distributions (GDR) in 36Ar,
112Sn, and 208Pb are displayed in Fig. 1. For the
energy centroids (m1/m0), we get 19.9, 15.8, and
12.7 MeV in 36Ar, 112Sn, and 208Pb, respectively.
The calculated energy centroid for 208Pb is in a sat-
isfactory agreement with the experimental value [31]
(13.4 MeV). The values of energy centroids for 36Ar,
and 112Sn are rather close to the empirical system-
atics [32] Ec = 31.2A−1/3 + 20.6A−1/6 (MeV). For
36Ar the QRPA gives results that are very similar
to our previous calculations with the particle–hole
RPA [18] because the influence of pairing on the giant
resonance properties is weak. It is worth mentioning
that experimental data for the giant resonances in
light nuclei are very scarce.
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The octupole strength distribution in 208Pb is
rather well studied in many experiments [33, 34]. The
calculated octupole strength distribution up to the ex-
citation energy 35MeV is shown in Fig. 2. According
to experimental data [33] for the 3−1 state in 208Pb,
the excitation energy equals Ex = 2.62 MeV and the
energy-weighted sum rule (EWSR) is exhausted by
20.4%, which can be compared with the calculated
values Ex = 2.66 MeV and EWSR = 21%. For the
low-energy octupole resonance below 7.5 MeV, our
calculation gives the centroid energy Ec = 5.96 MeV
and EWSR = 12% and the experimental values are
5.4 MeV and 12%, accordingly. For the high-energy
octupole resonance, we get values Ec = 20.9 MeV
and EWSR = 61%, which are in good agreement
with experimental findings Ec = 20.5 ± 1 MeV and
EWSR = (75 ± 15)% [34]. One can conclude that
present calculations reproduce correctly not only
the 3−1 characteristics but also the whole octupole
strength distribution in 208Pb.

4. CONCLUSION

A finite rank separable approximation for the
QRPA calculations with Skyrme interactions that
was proposed in our previous work is applied to study
the evolution of dipole, quadrupole, and octupole
excitations in several nuclei. It is shown that the
suggested approach enables one to reduce remark-
ably the dimensions of the matrices that must be
inverted to perform structure calculations in very
large configuration spaces.

As an illustration of the method, we have calcu-
lated the energies and transition probabilities of the
1−, 2+, and 3− states in some S, Ar, Sn, and Pb
isotopes. The calculated values are very close to those
that were calculated in QRPA with the full Skyrme
interactions. They are in agreement with available
experimental data.
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