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We use the quasiparticle random phase approximation to study properties of the low-lying 2+ states in
the even–even nuclei around 132Sn. Starting from a Skyrme interaction in the particle–hole channel and
a density-dependent zero-range interaction in the particle–particle channel, the calculation within the
finite-rank separable approximation for the residual interaction is performed.

PACS: 21.60.Jz, 23.20.-g, 27.60.+j

1. INTRODUCTION
New experiments [1–8] give spectroscopic obser-

vations in nuclei near 132Sn and this is a good pos-
sibility to test theoretical approaches. An evolution
of the low-energy spectrum in nuclei around 132Sn
is an increasingly important point of study in nu-
clear structure physics and nuclear astrophysics. To
investigate this region, one can comprehend features
of evolution of the shell closures in the neutron-rich
nuclei since the shell structure is reflected in the
low-energy spectrum behavior. Note also that there
is a relation between the N = 82 shell closure and
the A ≈ 130 peak of the solar r-process abundance
distribution, i.e., the structure peculiarities of theN =
= 82 isotones below 132Sn are important for stellar
nucleosynthesis.

By means of an effective nucleon–nucleon inter-
action which is taken whether as the nonrelativistic
two-body force [9–11] or derived from the relativistic
lagrangian [12], the quasiparticle random phase ap-
proximation (QRPA) with the self-consistent mean
field is nowadays one of the successful tools to
perform the nuclear structure calculations [13–17].
Such the QRPA calculations do not require to intro-
duce new parameters since the residual interaction
is derived from the same energy density functional
as that determining the mean field. Among devel-
opments for nuclear structure studies, a finite-rank
separable approximation for the residual interaction is
particularly promising. The separable residual inter-
action can simplify the solution of the QRPA equa-
tions since there is no need to diagonalize matrices
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whose dimensions grow with the size of configuration
space. Starting from a Skyrme interaction, the finite-
rank separable approximation was proposed [18] for
the particle–hole (p–h) residual interaction. This
means that the self-consistent mean field can be cal-
culated by the Hartree–Fock (HF) method with the
original Skyrme interactions, whereas the RPA equa-
tions are solved with the finite-rank approximation for
the p–h matrix elements. Alternative schemes to fac-
torize the p–h interaction have also been considered
in [19–21]. This approach was extended to include
the pairing correlations within the BCS approach
with the constant gap approximation [22]. Recently,
we generalized our method to take into account the
particle–particle (p–p) residual interaction [23].

A complexity of calculations taking into account
a coupling between one-phonon and more complex
states increases rapidly with the size of the con-
figuration space. The separable form of the residual
interaction is the practical advantage of the quasi-
particle phonon model (QPM) [24] which allows
one to perform structure calculations in very large
configuration spaces. The QPM can do the detailed
predictions for nuclei away from closed shells [25],
but it is very difficult to extrapolate the phenomeno-
logical parameters of the model to new regions of
nuclei. Recently, we have generalized our approach to
take into account a coupling between the one- and
two-phonon components of wave functions in [26],
where we follow the basic QPM ideas. However, the
single-quasiparticle spectrum and the parameters of
the residual interaction are calculated with Skyrme
forces.

In the present paper we describe our method
for the one-phonon case [23]. As an application
we present results of calculations for the low-lying
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quadrupole states in the N = 80, 82, 84 isotones and
the Z = 48, 50, 52 isotopes around 132Sn.

2. THE METHOD

This method has already been presented in de-
tail [18, 22, 23]. Let us briefly describe this ap-
proach. The starting point of the method is the HF–
BCS calculation [27] of the ground states, where
spherical symmetry is imposed on the quasiparticle
wave functions. The continuous part of the single-
particle spectrum is discretized by diagonalizing the
HF Hamiltonian on a harmonic-oscillator basis [28].
Wework in the quasiparticle representation defined by
the canonical Bogoliubov transformation:

a+
jm = ujα

+
jm + (−1)j−mvjαj−m, (1)

where jm denote the quantum numbers nljm. The
Hamiltonian includes the Skyrme interaction [29] in
the p–h channel and the surface peaked density-
dependent zero-range force

Vpair(r1, r2) = V0

(
1 − ρ (r1)

ρc

)
δ (r1 − r2) (2)

in the p–p channel. The strength V0 is a parameter
fixed to reproduce the odd–even mass difference of
nuclei in the studied region.

The residual interaction in the p–h channel V ph
res

and in the p–p channel V pp
res can be obtained as the

second derivative of the energy density functional with
respect to the particle density ρ and the pair density
ρ̃, respectively. Following our previous paper [18] we
simplify V ph

res by approximating it by its Landau–
Migdal form. For Skyrme interactions all Landau
parameters with l > 1 are zero. We keep only the
l = 0 terms in V ph

res . In this work we study only normal
parity states and one can neglect the spin–spin terms
since they play a minor role [22]. The Coulomb and
spin–orbit residual interactions are also dropped.
Therefore we can write the residual interaction in the
following form:

V a
res(r1, r2) = N−1

0 [F a
0 (r1) + (3)

+ F
′a
0 (r1)(τ1 · τ2)]δ(r1 − r2),

where a is the channel index a = {ph, pp}; σi and
τi are the spin and isospin operators, and N0 =
= 2kFm∗/π2

�
2 with kF and m∗ standing for the

Fermi momentum and nucleon effective mass. The
expressions for F ph

0 , F
′ph
0 and F pp

0 , F
′pp
0 can be found

in [30] and in [23], respectively.
The p–hmatrix elements and the antisymmetrized

p–p matrix elements can be written as the separable
form in the angular coordinates [18, 22, 23]. After

integrating over the angular variables one needs to
calculate the radial integrals

Ia(j1j2j3j4) = (4)

= N−1
0

∞∫
0

(
F a

0 (r) + F
′a
0 (r)τ1 · τ2

)
×

× uj1(r)uj2(r)uj3(r)uj4(r)
dr

r2
,

where uj(r) is the radial part of the single-particle
wave function. The radial integrals (4) can be cal-
culated accurately by choosing a large enough cutoff
radius R and using a N-point integration Gauss
formula with abscissas rk and weights wk:

Ia(j1j2j3j4) � (5)

� N−1
0

R

2

N∑
k=1

wk

r2
k

(
F a

0 (rk) + F
′a
0 (rk)τ1 · τ2

)
×

× uj1(rk)uj2(rk)uj3(rk)uj4(rk).

Thus, the residual interaction can be expressed as a
sum of N separable terms. The Hamiltonian of our
method has the same form as the Hamiltonian of the
well-known quasiparticle-phonon model [24], but the
single-quasiparticle spectrum and the parameters of
the residual interaction are calculated by the Skyrme
forces.

We introduce the phonon creation operators

Q+
λµi =

1
2

∑
jj′

(Xλi
jj

′A+(jj
′
;λµ) − (6)

− (−1)λ−µY λi
jj′

A(jj
′
;λ − µ)),

where the index λ denotes total angular momentum
and µ is its z projection in the laboratory system. One
assumes that the ground state is the QRPA phonon
vacuum |0〉. We define the excited states as Q+

λµi|0〉
with the normalization condition

〈0|[Qλµi, Q
+
λµi′ ]|0〉 = δii′ . (7)

Making use of the linearized equation-of-motion
approach one can get the QRPA equations [27]⎛

⎝ A B

−B −A

⎞
⎠

⎛
⎝X

Y

⎞
⎠ = E

⎛
⎝X

Y

⎞
⎠ . (8)

In QRPA problems there appear two types of in-

teraction matrix elements, the A(λ)
(j1j′1)(j2j′2)

matrix

related to forward-going graphs and the B(λ)
(j1j′1)(j2j′2)

matrix related to backward-going graphs. Solutions
of this set of linear equations yield the eigen energies
and the amplitudes X, Y of the excited states. The
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Table 1. Energies, B(E2) values for up transitions to the
first 2+ states

Nucleus
Energy, MeV B(E2↑), e2 fm4

Exp. Theory Exp. Theory
124Cd 0.61 1.28 2240
126Cd 0.65 1.35 1790
128Cd 0.65 1.45 1310
130Cd 1.33 1.58 810
132Cd 1.46 1040
126Sn 1.14 2.74 1000 ± 300 1570
128Sn 1.17 2.83 730± 60 1240
130Sn 1.22 2.97 230± 50 790
132Sn 4.04 4.46 1100 ± 300 1360
134Sn 0.73 2.05 290± 50 190
128Te 0.74 1.09 3830 ± 60 4660
130Te 0.84 1.27 2950 ± 70 3560
132Te 0.97 1.49 1720 ± 170 2440
134Te 1.28 1.72 960± 120 1280
136Te 0.61 1.46 1030 ± 150 1830

dimension of the matrices A, B is the space size of
the two-quasiparticle configurations. One can find a
prescription how the finite-rank approximation can
simplify the solution of the QRPA equations in [23].
The QRPA equations (8) can be reduced to the
secular equation and the matrix dimensions never
exceed 6N × 6N independently of the configuration
space size. If we omit terms of the residual interaction
in the p–p channel, then the matrix dimension is
reduced by a factor 3 [18, 22]. So this approach en-
ables one to reduce remarkably the dimensions of the
matrices that must be inverted to perform structure
calculations in very large configuration spaces.

3. RESULTS

We apply our approach to study characteristics
of the low-lying 2+ states in the even–even nuclei
around 132Sn. We use the Skyrme interaction SLy4
in the p–h channel [29] together with the isospin-
invariant surface-peaked pairing force (2). The pair-
ing strength is equal to −940 MeV fm3. Besides that
we use the soft cutoff at 10 MeV above the Fermi
energies as introduced in [23]. Note also that the
Landau parameters F ph

0 , F
′ph
0 expressed in terms of

the Skyrme force parameters [30] depend on kF. As
it is pointed out in our previous works [18, 22], one

Table 2. Structure of the 2+
1,4 states in 130Te (the largest

components are given)

State {n1l1j1, n2l2j2}τ X Y Structure, %

2+
1 {2d5/2, 2d5/2}p 0.77 0.18 28

{1g7/2, 2d5/2}p 0.28 0.07 7

{1g7/2, 1g7/2}p 0.76 0.21 27

{1h11/2, 1h11/2}n 0.69 0.31 19

2+
4 {2d5/2, 2d5/2}p –0.40 0.07 8

{1g7/2, 2d5/2}p –0.18 0.03 3

{1g7/2, 1g7/2}p –0.74 0.09 27

{1h11/2, 1h11/2}n 0.99 0.05 48

needs to adopt some effective value for kF to give an
accurate representation of the original p–h Skyrme
interaction. For the present calculations we use the
nuclear matter value for kF.

We study the 2+
1 -state energies and transition

probabilities in 126−130Pd, 124−132Cd, 124−134Sn,
128−136Te, 134−138Xe. Results of our calculations for
energies and the B(E2) values and the available
experimental data [1, 2, 4, 6, 31] are shown in Table 1
and the figure. One can see that there is the correct
description of the isotopic and isotonic dependences
of the properties of the first quadrupole states. The
2+
1 energies have a maximal value at N = 82 and at

Z = 50. Such a behavior corresponds to a standard
evolution of the energies near closed shells. On the
other hand, the structure peculiarities are reflected in
the B(E2) evolutions. The B(E2) value at N = 82
(Z = 50) is either a maximal value in the Sn isotopes
(the N = 82 isotones), or a minimal value in the Pd,
Cd, Te, Xe isotopes (the N = 80, 84 isotones).

In 124−132Cd the proton phonon amplitudes are
dominant ones and the contribution of the main
proton configuration {1g9/2, 1g9/2} increases from
79% in 124Cd to 89% in 128Cd, while themain neutron
configuration {1h11/2, 1h11/2} exhausts about 13,
11, and 7% of the wave function normalization in
124Cd, 126Cd, and 128Cd, respectively. The closure
of the neutron subshell 1h11/2 in 130Cd leads to
the vanishing the neutron pairing and as a result
the energy of the first neutron two-quasiparticle
pole {2f7/2, 1h11/2} in 130Cd is larger than energies
of the first neutron poles in 128,132Cd. This yields
that in 130Cd the leading contribution (about 97%)
comes from proton configuration {1g9/2, 1g9/2} and
the B(E2) value is reduced.
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(a, b) The 2+
1 -state energies and (c, d) B(E2; 0+

g.s → 2+
1 )

values in the N = 80 (�), 82 (•), 84 (�) isotones.

The structure of the 2+
1 in 126,128,130Pd is similar to

that in 128,130,132Cd. We get the noncollective struc-
ture with the domination of the proton configuration
{1g9/2, 1g9/2}. In 128Pd, as is discussed for 130Cd, the
contribution of the proton {1g9/2, 1g9/2} increases to
96%. This results in the B(E2)-value reduction.

Such the B(E2) behavior in Sn isotopes was ex-
plained in more detail in [23, 26]. The reason is related
with the proportion between the phonon amplitudes
for neutrons and protons. The neutron amplitudes are
dominant and the lowest two-quasiparticle poles are
neutron ones. In 130Sn the main neutron (proton)
configuration is {1h11/2, 1h11/2} ({2d5/2, 1g9/2})
and it exhaust 86% (7%) of the wave function nor-
malization. Due to the closure of the neutron subshell
1h11/2 in 132Sn, the energy of the first neutron two-
quasiparticle pole {2f7/2, 1h11/2} in 132Sn is greater
than energies of the first poles in 130,134Sn and the
contribution of the {2f7/2, 1h11/2} configuration in
the doubly magic 132Sn is about 61%. Since the first
pole in 132Sn is closer to the proton poles, the contri-

bution of the proton two-quasiparticle configurations
is greater than those in the neighboring isotopes.
In 134Sn we get again the noncollective structure
of the 2+

1 and the contribution of the main neutron
configuration {2f7/2, 2f7/2} is about 96%.

Let us discuss the effect of the closure of the
neutron subshell 1h11/2 in the Te and Xe isotopes.
There is a rather detailed discussion of the properties
of the 2+

1 states in 128−136Te in [23]. In the present
analysis, one can compare the tendencies in the Te
and Xe isotopes. In general, the behavior of the 2+

1

energies and the B(E2) values of 134,136,138Xe is
similar to that of 132,134,136Te and such a behavior
reflects the shell structure in this region. The lowest
two-quasiparticle poles are proton ones. For the 2+

1
states, the proton phonon amplitudes are dominant.
All neutron configurations exhaust about 17% (20%)
and 28% (26%) of the wave function normalization
in 132Te (134Xe) and 136Te (138Xe), respectively. In
134Te and 136Xe, the contribution of the neutron
configurations is less than 5%, i.e., the contribution
of the proton configurations is greater than those in
the neighboring isotopes. However, the contribution
of the dominant proton configuration {1g7/2, 1g7/2}
(65% of 134Te and 49% of 136Xe) is more than in one
and a half time than in the neighboring isotopes and
as a result the B(E2) value is reduced. It is worth
to mention that the first prediction of the anomalous
behavior of 2+ excitations around 132Sn based on
the QRPA calculations with a separable quadrupole-
plus-pairing hamiltonian has been done in [32].

The dominance of the neutron–proton attraction
is one of the main characteristics of the effective
nucleon–nucleon interaction. On the other hand,
the collective-quadrupole isovector valence-shell ex-
citations, so-called mixed-symmetry states [8, 33],
are sensitive to the proton–neutron interaction. That
is why it is interesting to study the characteristics
of the lowest isovector-collective states in nuclei
discussed above. As an example we consider 130Te.
Our calculation shows that the 2+

1 is the collective
state, which has a typical isoscalar character. Table 2
shows the dominant phonon amplitudes X,Y of the
2+
1 state, the neutron and proton amplitudes are in

phase. The next fairly collective state is the 2+
4 state.

The 2+
4 energy is equal to 3.1 MeV, B(E2; 0+

g.s →
→ 2+

4 ) = 340 e2 fm4. One can see that the dominant
neutron and proton amplitudes of the 2+

4 state are
in the phase opposition and it corresponds to an
isovector excitation. Let us remark that the 2+

4 state
is only the best candidate for the mixed-symmetry
state in 130Te. To make a final conclusion about the
mixed-symmetry state one needs to calculate the
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B(M1; 2+
4 → 2+

1 ) value and such a calculation is in
progress.

4. CONCLUSIONS

The QRPA calculations with the finite rank sepa-
rable approximation for the Skyrme-type interactions
in the particle–hole and particle–particle channels
are presented. The suggested approach enables one
to reduce remarkably the dimensions of the matrices
that must be inverted to perform structure calcula-
tions in very large configuration spaces. Using the
same set of parameters we have investigated the
evolution of the 2+

1 state energies and the B(E2)
values in 126−130Pd, 124−132Cd, 124−134Sn, 128−136Te,
134−138Xe. The results of our calculations for the
energies and the B(E2) values describe correctly the
isotopic and isotonic dependences. We give predic-
tions for the structure of the 2+

1 state in 126−130Pd,
124−132Cd. As an illustration of the method we study
the lowest isovector collective quadrupole state in
130Te. It is found that the 2+

4 state is the best candi-
date for the mixed-symmetry state, but one needs to
calculate the M1 transition probability between the
2+
4 and 2+

1 states.
The present analysis have been made within the

one-phonon approximation. A systematic study tak-
ing into account the coupling between the one- and
two-phonon terms is still underway.
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ОПИСАНИЕ СТРУКТУРЫНИЗКОЛЕЖАЩИХ СОСТОЯНИЙ
С ПОМОЩЬЮВЗАИМОДЕЙСТВИЯ СКИРМА

А. П. Северюхин, В. В. Воронов, Нгуен Ван Джай

Свойства низколежащих состояний 2+ в четно-четных ядрах вблизи 132Sn изучены в приближении
случайных фаз. Расчеты выполнены с силами Скирма в канале частица–дырка и зависящим от плот-
ности дельта-функциональным взаимодействием в канале частица–частица на основе сепарабельного
приближения для остаточного взаимодействия.
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Abstract—We use the quasiparticle random phase approximation to study properties of the low-lying 2+
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1. INTRODUCTION

New experiments [1–8] give spectroscopic obser-
vations in nuclei near 132Sn and this is a good pos-
sibility to test theoretical approaches. An evolution
of the low-energy spectrum in nuclei around 132Sn
is an increasingly important point of study in nu-
clear structure physics and nuclear astrophysics. To
investigate this region, one can comprehend features
of evolution of the shell closures in the neutron-rich
nuclei since the shell structure is reflected in the low-
energy spectrum behavior. Note also that there is a
relation between the N = 82 shell closure and the
A ≈ 130 peak of the solar r-process abundance distri-
bution, i.e., the structure peculiarities of the N = 82
isotones below 132Sn are important for stellar nucle-
osynthesis.

By means of an effective nucleon–nucleon in-
teraction which is taken whether as the nonrela-
tivistic two-body force [9–11] or derived from the
relativistic lagrangian [12], the quasiparticle ran-
dom phase approximation (QRPA) with the self-
consistent mean field is nowadays one of the suc-
cessful tools to perform the nuclear structure cal-
culations [13–17]. Such the QRPA calculations do
not require to introduce new parameters since the
residual interaction is derived from the same energy
density functional as that determining the mean field.
Among developments for nuclear structure studies,
a finite-rank separable approximation for the residual
interaction is particularly promising. The separable

∗The text was submitted by the authors in English.
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residual interaction can simplify the solution of the
QRPA equations since there is no need to diag-
onalize matrices whose dimensions grow with the
size of configuration space. Starting from a Skyrme
interaction, the finite-rank separable approximation
was proposed [18] for the particle–hole (p–h) resid-
ual interaction. This means that the self-consistent
mean field can be calculated by the Hartree–Fock
(HF) method with the original Skyrme interactions,
whereas the RPA equations are solved with the finite
rank approximation for the p–h matrix elements.
Alternative schemes to factorize the p–h interaction
have also been considered in [19–21]. This approach
was extended to include the pairing correlations
within the BCS approach with the constant gap
approximation [22]. Recently, we generalized our
method to take into account the particle–particle (p–
p) residual interaction [23].

A complexity of calculations taking into account
a coupling between one-phonon and more complex
states increases rapidly with the size of the configu-
ration space. The separable form of the residual inter-
action is the practical advantage of the quasiparticle
phonon model (QPM) [24] which allows one to per-
form structure calculations in very large configuration
spaces. The QPM can do the detailed predictions for
nuclei away from closed shells [25], but it is very diffi-
cult to extrapolate the phenomenological parameters
of the model to new regions of nuclei. Recently, we
have generalized our approach to take into account a
coupling between the one- and two-phonon compo-
nents of wave functions in [26], where we follow the
basic QPM ideas. However, the single-quasiparticle
spectrum and the parameters of the residual interac-
tion are calculated with Skyrme forces.

In the present paper we describe our method
for the one-phonon case [23]. As an application
we present results of calculations for the low-lying
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quadrupole states in the N = 80, 82, 84 isotones and
the Z = 48, 50, 52 isotopes around 132Sn.

2. THE METHOD

This method has already been presented in de-
tail [18, 22, 23]. Let us briefly describe this approach.
The starting point of the method is the HF–BCS
calculation [27] of the ground states, where spherical
symmetry is imposed on the quasiparticle wave func-
tions. The continuous part of the single-particle spec-
trum is discretized by diagonalizing the HF Hamilto-
nian on a harmonic-oscillator basis [28]. We work in
the quasiparticle representation defined by the canon-
ical Bogoliubov transformation:

a+
jm = ujα

+
jm + (−1)j−mvjαj−m, (1)

where jm denote the quantum numbers nljm. The
Hamiltonian includes the Skyrme interaction [29] in
the p–h channel and the surface peaked density-
dependent zero-range force

Vpair(r1, r2) = V0

(
1 − ρ (r1)

ρc

)
δ (r1 − r2) (2)

in the p–p channel. The strength V0 is a parameter
fixed to reproduce the odd–even mass difference of
nuclei in the studied region.

The residual interaction in the p–h channel V ph
res

and in the p–p channel V pp
res can be obtained as the

second derivative of the energy density functional with
respect to the particle density ρ and the pair den-
sity ρ̃, respectively. Following our previous paper [18]
we simplify V ph

res by approximating it by its Landau–
Migdal form. For Skyrme interactions all Landau pa-
rameters with l > 1 are zero. We keep only the l = 0
terms in V ph

res . In this work we study only normal parity
states and one can neglect the spin–spin terms since
they play a minor role [22]. The Coulomb and spin–
orbit residual interactions are also dropped. Therefore
we can write the residual interaction in the following
form:

V a
res(r1, r2) = N−1

0 [F a
0 (r1) (3)

+ F
′a
0 (r1)(τ1 · τ2)]δ(r1 − r2),

where a is the channel index a = {ph, pp}; σi and
τi are the spin and isospin operators, and N0 =
2kFm∗/π2

�
2 with kF and m∗ standing for the Fermi

momentum and nucleon effective mass. The expres-
sions for F ph

0 , F
′ph
0 and F pp

0 , F
′pp
0 can be found in [30]

and in [23], respectively.
The p–h matrix elements and the antisymmetrized

p–p matrix elements can be written as the separable
form in the angular coordinates [18, 22, 23]. After

integrating over the angular variables one needs to
calculate the radial integrals

Ia(j1j2j3j4) (4)

= N−1
0

∞∫
0

(
F a

0 (r) + F
′a
0 (r)τ1 · τ2

)

× uj1(r)uj2(r)uj3(r)uj4(r)
dr

r2
,

where uj(r) is the radial part of the single-particle
wave function. The radial integrals (4) can be cal-
culated accurately by choosing a large enough cut-
off radius R and using a N-point integration Gauss
formula with abscissas rk and weights wk:

Ia(j1j2j3j4) (5)

� N−1
0

R

2

N∑
k=1

wk

r2
k

(
F a

0 (rk) + F
′a
0 (rk)τ1 · τ2

)

× uj1(rk)uj2(rk)uj3(rk)uj4(rk).

Thus, the residual interaction can be expressed as a
sum of N separable terms. The Hamiltonian of our
method has the same form as the Hamiltonian of the
well-known quasiparticle-phonon model [24], but the
single-quasiparticle spectrum and the parameters of
the residual interaction are calculated by the Skyrme
forces.

We introduce the phonon creation operators

Q+
λµi =

1
2

∑
jj′

(Xλi
jj′

A+(jj
′
;λµ) (6)

− (−1)λ−µY λi
jj′

A(jj
′
;λ − µ)),

where the index λ denotes total angular momentum
and µ is its z projection in the laboratory system. One
assumes that the ground state is the QRPA phonon
vacuum |0〉. We define the excited states as Q+

λµi|0〉
with the normalization condition

〈0|[Qλµi, Q
+
λµi′ ]|0〉 = δii′ . (7)

Making use of the linearized equation-of-motion ap-
proach one can get the QRPA equations [27]⎛

⎝ A B

−B −A

⎞
⎠

⎛
⎝X

Y

⎞
⎠ = E

⎛
⎝X

Y

⎞
⎠ . (8)

In QRPA problems there appear two types of interac-

tion matrix elements, the A(λ)
(j1j′1)(j2j′2)

matrix related

to forward-going graphs and the B(λ)
(j1j′1)(j2j′2)

matrix

related to backward-going graphs. Solutions of this
set of linear equations yield the eigen energies and
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Table 1. Energies, B(E2) values for up transitions to the
first 2+ states

Nucleus
Energy, MeV B(E2↑), e2 fm4

Expt. Theory Expt. Theory
124Cd 0.61 1.28 2240
126Cd 0.65 1.35 1790
128Cd 0.65 1.45 1310
130Cd 1.33 1.58 810
132Cd 1.46 1040
126Sn 1.14 2.74 1000 ± 300 1570
128Sn 1.17 2.83 730 ± 60 1240
130Sn 1.22 2.97 230 ± 50 790
132Sn 4.04 4.46 1100 ± 300 1360
134Sn 0.73 2.05 290 ± 50 190
128Te 0.74 1.09 3830 ± 60 4660
130Te 0.84 1.27 2950 ± 70 3560
132Te 0.97 1.49 1720 ± 170 2440
134Te 1.28 1.72 960 ± 120 1280
136Te 0.61 1.46 1030 ± 150 1830

the amplitudes X, Y of the excited states. The di-
mension of the matrices A, B is the space size of
the two-quasiparticle configurations. One can find a
prescription how the finite-rank approximation can
simplify the solution of the QRPA equations in [23].
The QRPA equations (8) can be reduced to the secu-
lar equation and the matrix dimensions never exceed
6N × 6N independently of the configuration space
size. If we omit terms of the residual interaction in the
p–p channel, then the matrix dimension is reduced by
a factor 3 [18, 22]. So this approach enables one to re-
duce remarkably the dimensions of the matrices that
must be inverted to perform structure calculations in
very large configuration spaces.

3. RESULTS

We apply our approach to study characteristics
of the low-lying 2+ states in the even–even nuclei
around 132Sn. We use the Skyrme interaction SLy4
in the p–h channel [29] together with the isospin-
invariant surface-peaked pairing force (2). The pair-
ing strength is equal to −940 MeV fm3. Besides that
we use the soft cutoff at 10 MeV above the Fermi
energies as introduced in [23]. Note also that the
Landau parameters F ph

0 , F
′ph
0 expressed in terms of

the Skyrme force parameters [30] depend on kF. As

Table 2. Structure of the 2+
1,4 states in 130Te (the largest

components are given)

State {n1l1j1, n2l2j2}τ X Y Structure, %

2+
1 {2d5/2, 2d5/2}p 0.77 0.18 28

{1g7/2, 2d5/2}p 0.28 0.07 7

{1g7/2, 1g7/2}p 0.76 0.21 27

{1h11/2, 1h11/2}n 0.69 0.31 19

2+
4 {2d5/2, 2d5/2}p –0.40 0.07 8

{1g7/2, 2d5/2}p –0.18 0.03 3

{1g7/2, 1g7/2}p –0.74 0.09 27

{1h11/2, 1h11/2}n 0.99 0.05 48

it is pointed out in our previous works [18, 22], one
needs to adopt some effective value for kF to give an
accurate representation of the original p–h Skyrme
interaction. For the present calculations we use the
nuclear matter value for kF.

We study the 2+
1 -state energies and transition

probabilities in 126−130Pd, 124−132Cd, 124−134Sn,
128−136Te, 134−138Xe. Results of our calculations for
energies and the B(E2) values and the available
experimental data [1, 2, 4, 6, 31] are shown in Table 1
and Fig. 1. One can see that there is the correct
description of the isotopic and isotonic dependences
of the properties of the first quadrupole states. The
2+
1 energies have a maximal value at N = 82 and at

Z = 50. Such a behavior corresponds to a standard
evolution of the energies near closed shells. On the
other hand, the structure peculiarities are reflected in
the B(E2) evolutions. The B(E2) value at N = 82
(Z = 50) is either a maximal value in the Sn isotopes
(the N = 82 isotones), or a minimal value in the Pd,
Cd, Te, Xe isotopes (the N = 80, 84 isotones).

In 124−132Cd the proton phonon amplitudes are
dominant ones and the contribution of the main
proton configuration {1g9/2, 1g9/2} increases from
79% in 124Cd to 89% in 128Cd, while the main neutron
configuration {1h11/2, 1h11/2} exhausts about 13,
11, and 7% of the wave function normalization in
124Cd, 126Cd, and 128Cd, respectively. The closure
of the neutron subshell 1h11/2 in 130Cd leads to the
vanishing the neutron pairing and as a result the
energy of the first neutron two-quasiparticle pole
{2f7/2, 1h11/2} in 130Cd is larger than energies of
the first neutron poles in 128,132Cd. This yields that
in 130Cd the leading contribution (about 97%) comes
from proton configuration {1g9/2, 1g9/2} and the
B(E2) value is reduced.
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Fig. 1. (a, b) The 2+
1 -state energies and (c, d)

B(E2; 0+
g.s → 2+

1 ) values in the N = (�) 80, (•) 82, and
(�) 84 isotones.

The structure of the 2+
1 in 126,128,130Pd is similar to

that in 128,130,132Cd. We get the noncollective struc-
ture with the domination of the proton configuration
{1g9/2, 1g9/2}. In 128Pd, as is discussed for 130Cd, the
contribution of the proton {1g9/2, 1g9/2} increases to
96%. This results in the B(E2) value reduction.

Such the B(E2) behavior in Sn isotopes was ex-
plained in more detail in [23, 26]. The reason is related
with the proportion between the phonon amplitudes
for neutrons and protons. The neutron amplitudes are
dominant and the lowest two-quasiparticle poles are
neutron ones. In 130Sn the main neutron (proton)
configuration is {1h11/2, 1h11/2} ({2d5/2, 1g9/2})
and it exhaust 86% (7%) of the wave function nor-
malization. Due to the closure of the neutron subshell
1h11/2 in 132Sn, the energy of the first neutron two-
quasiparticle pole {2f7/2, 1h11/2} in 132Sn is greater
than energies of the first poles in 130,134Sn and the
contribution of the {2f7/2, 1h11/2} configuration in
the doubly magic 132Sn is about 61%. Since the first
pole in 132Sn is closer to the proton poles, the contri-

bution of the proton two-quasiparticle configurations
is greater than those in the neighboring isotopes. In
134Sn we get again the noncollective structure of the
2+
1 and the contribution of the main neutron configu-

ration {2f7/2, 2f7/2} is about 96%.
Let us discuss the effect of the closure of the

neutron subshell 1h11/2 in the Te and Xe isotopes.
There is a rather detailed discussion of the properties
of the 2+

1 states in 128−136Te in [23]. In the present
analysis, one can compare the tendencies in the Te
and Xe isotopes. In general, the behavior of the 2+

1

energies and the B(E2) values of 134,136,138Xe is
similar to that of 132,134,136Te and such a behavior
reflects the shell structure in this region. The lowest
two-quasiparticle poles are proton ones. For the 2+

1
states, the proton phonon amplitudes are dominant.
All neutron configurations exhaust about 17% (20%)
and 28% (26%) of the wave function normalization
in 132Te (134Xe) and 136Te (138Xe), respectively. In
134Te and 136Xe, the contribution of the neutron con-
figurations is less than 5%, i.e., the contribution of
the proton configurations is greater than those in
the neighboring isotopes. However, the contribution
of the dominant proton configuration {1g7/2, 1g7/2}
(65% of 134Te and 49% of 136Xe) is more than in one
and a half time than in the neighboring isotopes and
as a result the B(E2) value is reduced. It is worth
to mention that the first prediction of the anomalous
behavior of 2+ excitations around 132Sn based on
the QRPA calculations with a separable quadrupole-
plus-pairing hamiltonian has been done in [32].

The dominance of the neutron–proton attraction
is one of the main characteristics of the effective
nucleon–nucleon interaction. On the other hand,
the collective-quadrupole isovector valence-shell ex-
citations, so-called mixed-symmetry states [8, 33],
are sensitive to the proton–neutron interaction. That
is why it is interesting to study the characteristics
of the lowest isovector-collective states in nuclei
discussed above. As an example we consider 130Te.
Our calculation shows that the 2+

1 is the collective
state, which has a typical isoscalar character. Table 2
shows the dominant phonon amplitudes X,Y of the
2+
1 state, the neutron and proton amplitudes are in

phase. The next fairly collective state is the 2+
4 state.

The 2+
4 energy is equal to 3.1 MeV, B(E2; 0+

g.s →
2+
4 ) = 340 e2 fm4. One can see that the dominant

neutron and proton amplitudes of the 2+
4 state are

in the phase opposition and it corresponds to an
isovector excitation. Let us remark that the 2+

4 state
is only the best candidate for the mixed-symmetry
state in 130Te. To make a final conclusion about the
mixed-symmetry state one needs to calculate the
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B(M1; 2+
4 → 2+

1 ) value and such a calculation is in
progress.

4. CONCLUSIONS

The QRPA calculations with the finite rank sepa-
rable approximation for the Skyrme-type interactions
in the particle–hole and particle–particle channels
are presented. The suggested approach enables one
to reduce remarkably the dimensions of the matri-
ces that must be inverted to perform structure cal-
culations in very large configuration spaces. Using
the same set of parameters we have investigated the
evolution of the 2+

1 state energies and the B(E2)-
values in 126−130Pd, 124−132Cd, 124−134Sn, 128−136Te,
134−138Xe. The results of our calculations for the en-
ergies and the B(E2) values describe correctly the
isotopic and isotonic dependences. We give predic-
tions for the structure of the 2+

1 state in 126−130Pd,
124−132Cd. As an illustration of the method we study
the lowest isovector collective quadrupole state in
130Te. It is found that the 2+

4 state is the best candi-
date for the mixed-symmetry state, but one needs to
calculate the M1 transition probability between the
2+
4 and 2+

1 states.
The present analysis have been made within the

one-phonon approximation. A systematic study tak-
ing into account the coupling between the one- and
two-phonon terms is still underway.
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