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Finite rank approximation for random phase approximation calculations
with Skyrme interactions: An application to Ar isotopes
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Starting from an effective interaction of Skyrme type, a finite rank separable approximation is proposed for
the residual particle-hole interaction with the aim to allow one to perform structure calculations in very large
particle-hole spaces. The approximation is checked on a specific example by calculating isoscalar quadrupole
and isovector dipole modes in a finite nucleus using the random phase approximation. It is found that the finite
rank approximation is very accurate in the isoscalar channel and it reproduces reasonably well the isovector
channel. The use of the finite rank interaction is illustrated by calculating the evolution of the dipole strength
distribution along the Ar isotope chain, fromA532 to A552. @S0556-2813~98!02003-2#

PACS number~s!: 21.60.Jz, 24.30.Cz, 27.30.1t, 27.40.1z
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I. INTRODUCTION

Among the great variety of microscopic nuclear mod
aiming at a description of the properties of nuclear exc
tions one can distinguish essentially two types of approac
In one approach the emphasis is put on the consistency o
picture by employing an effective interaction which mu
describe, throughout the periodic table, the ground state
the framework of the Hartree-Fock~HF! approximation and
the excited states in time-dependent HF, or random ph
approximation~RPA!, or approximations beyond. To thi
class belong the Gogny’s interaction@1# and the Skyrme-
type interactions@2#. This approach is quite successful n
only for predicting accurately nuclear ground state proper
@3,4# but also for calculating the main features of giant re
nances in closed-shell nuclei@5,6# and single-particle
strengths near closed shells@7#. The main difficulty is that
the complexity of giant resonance calculations beyond s
dard RPA~e.g., for studying damping mechanisms of colle
tive excitations! increases rapidly with the size of the co
figuration space and one has to work within limited spac
The other approach is more phenomenological and assu
some simple separable form for the residual nucleon-nuc
interaction while the mean field is modelized by an empiri
potential well. These are the basic ingredients of the w
known quasiparticle-phonon model~QPM! of Solovievet al.
@8#. The practical advantage of this approach is that it allo
one to calculate nuclear excitations in very large configu
tion spaces since there is no need to diagonalize matr
whose dimensions grow with the size of configuration spa
Very detailed predictions can be made for nuclei away fr
closed shells@9#.

When the residual particle-hole (p-h) interaction is sepa-
rable, the RPA problem can be easily solved no matter h
manyp-h configurations are involved. The RPA eigenvalu
are obtained as the roots of a single secular equation and
570556-2813/98/57~3!/1204~6!/$15.00
s
-
s.
he
t
in

se

s
-

n-
-

s.
es
n
l
l-

s
-
es
e.

w
s
en

the corresponding RPA amplitudes can be calculated by
forming only summations. If thep-h interaction is a sum of
N separable terms~finite rank separable interaction! the roots
of the secular equation are those of aN3N determinant.
SinceN is considerably smaller than the dimensionD of the
p-h space, one still gains over the case of a nonsepar
interaction where solving the RPA problem would requ
diagonalizing a two-dimensional 2D32D matrix. This is the
motivation for proposing in this work a finite rank approx
mation for thep-h interaction resulting from Skyrme-typ
forces. Thus, the self-consistent mean field can be calcul
in the standard way with the original Skyrme interacti
whereas the RPA solutions would be obtained with the fin
rank approximation to thep-h matrix elements. This would
eventually allow one to use consistently Skyrme-type for
to study complicated situations~effects of two- and three-
phonon configurations! where only the QPM model is avail
able at present@9#.

In the present work, we build a finite rank approximatio
for p-h interactions of Skyrme type. We check this appro
mation by comparing RPA results calculated with the ori
nal and approximate interactions. As a first application
present the evolution of the collective isovector dipole a
isoscalar quadrupole states along the isotopic chain of
nuclei calculated in RPA. This paper is organized as follow
In Sec. II we sketch our method for constructing a finite ra
interaction. Detailed expressions are gathered in Appen
A, whereas the solution of RPA equations with a finite ra
interaction is explained in Appendix B. In Sec. III we app
this interaction to the study of Ar isotopes. A comparison
results obtained with the original and approximate inter
tion is done in Sec. III A whereas Secs. III B and III C a
devoted to a discussion of the calculated isovector dipole
isoscalar quadrupole states, respectively. Conclusions
drawn in Sec. IV.
1204 © 1998 The American Physical Society
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II. FINITE RANK APPROXIMATION
FOR PARTICLE-HOLE MATRIX ELEMENTS

We start from the effective Skyrme interaction@2# which
is often used in consistent HF-RPA calculations of nucl
excitations. We adopt the notation of Ref.@10# containing
explicit density dependence and all spin-exchange te
rather than the original form of Ref.@2#, where density de-
pendence at the HF level was introduced by a three-b
contact force and where some spin-exchange terms w
dropped. The exactp-h residual interactionṼph correspond-
ing to the Skyrme force and including both direct and e
change terms can be obtained as the second derivative o
energy density functional with respect to the density@11#.
Thus, Ṽph has some velocity dependence which makes
cumbersome to use in finite systems but it also has a g
advantage, namely, it contains ad function in coordinate
space. First, we shall simplifyṼph by approximating it by its
Landau–Migdal form

Vph5N0
21(

l
@Fl1Gls1•s21~Fl81Gl8s1•s2!t1•t2#

3d~r12r2!, ~1!

wheres i andt i are the nucleon spin and isospin operato
and N052kFm* /p2\2 with kF and m* standing for the
Fermi momentum and nucleon effective mass. For Skyr
interactions all Landau parameters withl .1 are zero. Here
we keep only thel 50 terms inVph . The expressions for the
parametersF0 , G0 , F08 , G08 in terms of the Skyrme force
parameters can be found in Ref.@10#. Because of the densit
dependence of the interaction the Landau parameters of
~1! are functions of the coordinater .

In what follows the indicesp andh will refer respectively
to unoccupied and occupied single-particle states in the
spectrum calculated with the original Skyrme interaction.
RPA problems there appear two types of interaction ma
elements, theAph,p8h8

(J) matrix related to forward-going

graphs and theBph,p8h8
(J) matrix related to backward-goin

graphs. Because of the zero range ofVph both matrices can
be obtained from the following quantity:

HJ~ph8p8h![ (
m,M

~21! j p2mp1 j p82mp8S j p j h J

mp 2mh 2M D
3S j p8 j h8 J

mp8 2mh8 2M D
3^fp,mp

~1!fh8,mh8
~2!uVph~1,2!ufh,mh

~1!

3fp8,mp8
~2!&, ~2!

where the uncoupled matrix element calculated with the
single-particle wave functions

f i ,m~1!5
ui~r 1!

r 1
Y l i , j i

m ~r 1̂,s1! ~3!
r
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appears on the right-hand side. TheA(J) and B(J) matrices
are given by

Aph,p8h8
~J!

5HJ~ph8p8h!,

Bph,p8h8
~J!

5~21! j p81 j h8HJ~pp8h8h!. ~4!

Let us explain the procedure for making a finite rank a
proximation by examining only the contribution of the ter
F0(r ) of Eq. ~1!. The complete expressions can be found
Appendix A. The coupledp-h matrix element correspondin
to F0 is

HJ~ph8p8h!5 Ĵ22I F~ph8p8h!^puuYJuuh&^p8uuYJuuh8&,
~5!

where ^puuYJuuh& is the reduced matrix element of th
spherical harmonicsYJM , Ĵ5A2J11, andI F is the radial
integral

I F~ph8p8h!5N0
21E

0

`

F0~r !up~r !uh~r !up8~r !uh8~r !
dr

r 2
.

~6!

In practice,I F can be calculated accurately by choosing
large enough cutoff radiusR and using an-point integration
Gauss formula with abscissas and weights$r k ,wk%:

I F~ph8p8h!

.N0
21R(

k51

n

wk

F0~r k!

r k
2

up~r k!uh~r k!up8~r k!uh8~r k!. ~7!

This suggests the introduction of the coefficients

x~k!52N0
21RĴ21wk

F0~r k!

r k
2

, ~8!

and thep-h matrix elements

D ~k!~ph!5up~r k!uh~r k!^puuYJuuh&, ~9!

so thatHJ is just a sum of separable terms:

HJ~ph8p8h!52 (
k51

n

x~k!D ~k!~ph!D ~k!~p8h8!. ~10!

This can be easily extended to all four terms of Eq.~1! and
the angular-momentum coupled matrix elementHJ(ph8p8h)
is finally expressed as a sum ofN54n separable terms:

HJ~ph8p8h!52 (
a51

N

x~a!D ~a!~ph!D ~a!~p8h8!. ~11!

The expressions for the quantitiesx (a) and D (a)(ph) are
given in Appendix A. The explicit solution of the corre
sponding RPA equations can be found in Appendix B wh
it is shown that the matrix problems never exceed the dim
sionsN3N.
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III. APPLICATION TO Ar ISOTOPES

As a first application of the finite rank approximation w
study the evolution of the giant quadrupole resonance~GQR!
and giant dipole resonance~GDR! in the chain of Ar isotopes
from the neutron-poor to the neutron-rich side. The stren
distributions are calculated in RPA, starting from the H
mean fields computed in coordinate space with an effec
Skyrme interaction. Note that no approximation is made
the interaction at the level of HF calculations. In this wo
we use the standard parametrizationSIII @12#. Spherical
symmetry is assumed for all HF ground states. For nonclo
subshell nuclei we use the filling approximation@12#.

In order to perform RPA calculations, the single-partic
continuum is discretized by diagonalizing the HF Ham
tonian on a basis of ten harmonic oscillator shells and tr
cating the single-particle space to three unoccupied levels
each (l , j ) value. This is sufficient to exhaust practically a
the energy-weighted sum rule. For the sake of presenta
the calculated transition strength distributions are smoot
out by folding them with a Lorentzian distribution of widt
D 5 2 MeV. In the present calculations we have adopted
valuen524 for the finite rank approximation@see Eq.~10!#
and we have checked that variations ofn around this value
do not change significantly the results.

A. Comparison with exact interaction results

First, we check how the RPA results calculated with t
finite rank approximation~11! can reproduce the strengt
distributions obtained with the originalp-h interactionṼph .
We select32Ar as an illustrative case. The exact and appro
mate strength distributions are compared in Fig. 1 for
isoscalar GQR and in Fig. 2 for the isovector GDR. In t
isoscalar channel the Landau–Migdal form~1! with the F0
andG0 calculated according to Ref.@10# can give an accu-
rate representation of the originalp-h Skyrme interaction if
we adopt the effective valuekF51.8 fm21. This value is
larger than the nuclear matter value in order to compen
for the effects of the neglected termsF1 andG1. From Fig. 1
it can be seen that the original interaction and its appro

FIG. 1. Comparison of isoscalar quadrupole strengths calcul
with the full SIII force ~solid curve! and the finite rank approxima
tion ~dotted curve!. The strengths are in fm4 MeV21.
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mate form give practically the same results, with a stron
collective GQR around 18 MeV and a low-lying 21 state at
3 MeV. On the other hand, the isovector dipole results sh
that the approximate interaction~1! restricted tol 50 terms is
slightly less repulsive than the originalp-h interaction in the
isovector channel. The results of Fig. 2 and all GDR resu
in the rest of this work have been calculated using the va
kF51.3 fm21 for the Landau parametersF08 and G08 . The
use of a smaller value ofkF for F08 andG08 would probably
improve the agreement. From Fig. 2 it can be seen that
approximate interaction reproduces the main features of
dipole strength distribution with a shift of 1–1.5 MeV in th
position of the GDR. This shift remains of the same order
the other Ar isotopes. Thus, the finite rank approximation
the isovectorp-h interaction is slightly weaker than th
original interaction but it leads to strength distributio
which present the same essential features as the exact o

B. Isoscalar quadrupole states

In Figs. 3 and 4 are shown isoscalar quadrupole stren
functions calculated in Ar isotopes fromA532 to A552.

ed
FIG. 2. Comparison of isovector dipole strengths calcula

with the full SIII force ~solid curve! and the finite rank approxima
tion ~dotted curve!. The strengths are in fm2 MeV21.

FIG. 3. Isoscalar quadrupole strength distributions~in fm4

MeV21) in even isotopes32Ar to 40Ar.
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The general evolution when the mass number increases i
existence of a strongly collective giant resonance whose
ergy is fairly stable~around 17 MeV! and some smaller con
centrations of transition strength at lower energies. Th
low-energy excitations are of noncollective nature as
shall see now.

In theseZ518 nuclei the HF reference states correspo
to a partly occupied 1d3/2 subshell for the protons with a
well-marked separation to the first unoccupied 1f 7/2 level.
For the neutrons the subshell closures occur atA532 (1d5/2
filled!, A534 (2s1/2 filled!, A538 (1d3/2 filled!, A546
(1 f 7/2 filled!, A550 (2p3/2 filled!, andA552 (2p1/2 filled!.
The protonp-h excitations withJp521 correspond to a
change of major shell and cannot contribute to low-lyi
excitations. The only possibilities of having low-energy 21

states are provided by a small number of neutronp-h con-
figurations within the same major shell. Thus, the struct
of the states below 5 MeV can easily be identified. In32Ar it
is a 2s1/2(1d5/2)

21 configuration while in 34,36Ar it is a
1d3/2(2s1/2)

21 configuration. In 38Ar the 2s-1d neutron
shell is closed and therefore such low-lying excitation can
take place. From40Ar to 46Ar the 2p3/2(1 f 7/2)

21 configura-
tion is involved, whereas in48,50Ar one is dealing with
2p1/2(2p3/2)

21. Finally, the very low energy state in52Ar is
due to a 1f 5/2(2p1/2)

21 transition. One can also notice in th
nuclei 48,50,52Ar an additional bump in the 10 MeV energ
region. This bump can be attributed to a 1f 5/2(1 f 7/2)

21 tran-
sition which does not appear in lighter nuclei because
1 f 5/2 orbital is yet unbound.

C. Isovector dipole states

In the long chain of Ar isotopes one evolves from a si
ation where the neutron and proton distributions in
ground state are similar, to a situation where there is a
tinct neutron skin in the nuclei having a large neutron exce
In a fluid dynamical picture of the isovector dipole mo
where the neutron and proton fluids would oscillate aga
each other, one would expect a slow lowering down of
giant resonance energy as well as the appearance in
neutron-rich isotopes of a weaker excitation at lower ene
due to the oscillations of the neutron skin against the proto
This qualitative general behavior is indeed observed in

FIG. 4. Isoscalar quadrupole strength distributions~in fm4

MeV21! in even isotopes42Ar to 52Ar.
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calculated isovector dipole strength distributions which
shown in Figs. 5 and 6. In the lighter isotopes up toA536
the dipole strength shows less collectivity than in heav
isotopes. The peak energy of the GDR goes slowly do
from about 18 MeV in32Ar to 16 MeV in 52Ar. As discussed
above, these peak energies are probably underestimate
about 1 MeV as compared to those of RPA calculations d
with the original interactionSIII. In the three heaviest iso-
topes 48,50,52Ar one can observe the appearance of sma
bumps around 7.5 MeV. They correspond to neutronp-h
configurations where the hole is in the 2p subshell while the
particle is in al 52 low-lying single-particle resonance~in
the present discretized calculation such a single-particle r
nance appears as a discrete state at positive energy w
position does not depend sensitively on the discretiza
method adopted!.

In a recent work@13# the isovector dipole strengths in A
isotopes were calculated using a relativistic RPA model. T
GDR peak energies thus obtained are very close to
present results. Moreover, it was found that in the three
topes48,50,52Ar there are smaller bumps around 6 MeV exc
tation energy whereas these bumps do not exist in ligh
isotopes. It would be interesting to explore experimenta

FIG. 5. Isovector dipole strength distributions~in fm2 MeV21)
in even isotopes32Ar to 40Ar.

FIG. 6. Isovector dipole strength distributions~in fm2 MeV21)
in even isotopes42Ar to 52Ar.
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the low energy tail of the dipole strength in the heavy
isotopes since such pigmy-type resonances would have
portant consequences on photoabsorption cross sections

IV. CONCLUSION

We have shown that by approximating the originalp-h
interaction derived from a Skyrme force by its Landa
Migdal expansion truncated at thel 50 terms it is possible to
calculate accurately the isoscalar RPA modes and als
reproduce reasonably well the isovector RPA modes.
benefit of having a Landau-Migdal form is that it allows o
to construct a finite rankp-h interaction and thus to combin
the advantages of consistency~the mean field and the re
sidual interaction of RPA are determined from the same
fective interaction! and simplicity~the size of the RPA prob
lem does not increase with increasing configuration space!. It
would be possible to improve the finite rank interaction
the isovector channel by using an effective value of
Fermi momentumkF smaller than that adopted here, in ord
to account for the extra repulsion due to the neglectedF18 and
G18 Landau parameters. Thus, future large scale RPA ca
lations with Skyrme type interactions can be envisaged.

As an illustration of the method we have used the fin
rank p-h interaction derived from the Skyrme forceSIII to
calculate the evolution of dipole strength distribution alo
the chain of Ar isotopes. It is found that, with increasi
mass numberA the giant dipole resonance becomes m
collective but its peak energy varies little fromA538 to
A552. In addition, a low-lying component around 7 Me
appears in theA548– 52 isotopes due to single-particle tra
sitions.
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APPENDIX A

Here we generalize the expressions ofx (k) andD (k) given
in Sec. II to the case where thep-h interaction containss1
•s2 and/ort1•t2 terms. In addition to the spherical harmo
ics YLM there will appear also operators of the type

TJ,L
M ~ r̂ ,s!5@YL3s#J

M . ~A1!

To handle thet1•t2 terms we simply have to attach to ea
p-h pair $ph% an extra indexq561 which specifies if it is
a neutronp-h pair or a protonp-h pair. Then, the matrix
element oft1•t2 between a$ph;q% and a$p8h8;q8% con-
figuration is proportional toqq8, i.e.,11 if one connects two
neutron pairs or two proton pairs and21 otherwise.
r
-

-

to
e

f-

e
r

u-

e

-

-

We shall distinguish natural parity states (L5J) and un-
natural parity states (L5J61). For the natural parity case
the x (a) coefficients are

x~a!52N0
21RĴ21wkF0~r k!/r k

2 if a5k,

2N0
21RĴ21wkF08~r k!/r k

2 if a5n1k,

2N0
21RĴ21wkG0~r k!/r k

2 if a52n1k,

2N0
21RĴ21wkG08~r k!/r k

2 if a53n1k, ~A2!

where the indexk runs from 1 ton. The corresponding
D (a)(ph;q) factors are

D ~a!~ph;q!5up~r k!uh~r k!^puuYJuuh& if a5k,

qup~r k!uh~r k!^puuYJuuh& if a5n1k,

up~r k!uh~r k!^puuTJ,Juuh& if a52n1k,

qup~r k!uh~r k!^puuTJ,Juuh& if a53n1k.
~A3!

For the unnatural parity case, thex (a) coefficients are

x~a!52N0
21RĴ21wkG0~r k!/r k

2 if a5k,

2N0
21RĴ21wkG08~r k!/r k

2 if a5n1k,

2N0
21RĴ21wkG0~r k!/r k

2 if a52n1k,

2N0
21RĴ21wkG08~r k!/r k

2 if a53n1k,
~A4!

whereas theD (a)(ph;q) factors are given by

D ~a!~ph;q!5up~r k!uh~r k!^puuTJ,J11uuh& if a5k,

qup~r k!uh~r k!^puuTJ,J11uuh& if a5n1k,

up~r k!uh~r k!^puuTJ,J21uuh& if a52n1k,

qup~r k!uh~r k!^puuTJ,J21uuh& if a53n1k.

~A5!

The angular-momentum coupled matrix elements defined
Eq. ~2! take the general form

HJ~ph8p8h;qq8!52 (
a51

N

x~a!D ~a!~ph;q!D ~a!~p8h8;q8!,

~A6!

with N54n.

APPENDIX B

Here, we show for completeness how the finite rank fo
~11! of the p-h matrix elements can simplify the resolutio
of RPA equations. This is a simple generalization of t
well-known rank one case. Denoting by$Xph ,Yph% the RPA
amplitudes corresponding to an RPA eigenvaluev and by



r

i-
.
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Eph the unperturbedp-h energies, the RPA equations are

~Eph2v!Xph5 (
a51

N

x~a!D ~a!~ph! (
p8h8

D ~a!~p8h8!Xp8h8

1 (
a51

N

x~a!D ~a!~ph! (
p8h8

D ~a!~p8h8!Yp8h8,

~Eph1v!Yph5 (
a51

N

x~a!D ~a!~ph! (
p8h8

D ~a!~p8h8!Yp8h8

1 (
a51

N

x~a!D ~a!~ph! (
p8h8

D ~a!~p8h8!Xp8h8.

~B1!

In the N-dimensional space we can define a vectorT by its
components

Ta5 (
p8h8

D ~a!~p8h8!~Xp8h81Yp8h8!. ~B2!

The solution of Eq.~B1! can be expressed as

Xph5
1

Eph2v (
a51

N

x~a!D ~a!~ph!Ta,

Yph5
1

Eph1v (
a51

N

x~a!D ~a!~ph!Ta. ~B3!

Combining Eqs.~B2! and ~B3! we obtain the result

~W21!T50, ~B4!
, C

.

,

whereW is theN3N matrix

Wab5(
ph

D ~a!~ph!S 1

Eph2v
1

1

Eph1v DD ~b!~ph!x~b!.

~B5!

Thus, the RPA eigenvaluesv are the roots of the secula
equation

det~W21!50. ~B6!

Once an eigenvaluev is known the corresponding ampl
tudes$Xph ,Yph% can be determined in the following way
Using Eq.~B4! we can express$Ta ,a51,2, . . . ,N21% in
terms of TN . It is convenient to define the
(N21)-dimensional vectorst, s and the (N21)3(N21)
matrix ŵ by

ta5Ta ,

sa5WaN ,

ŵab5~W21!ab , ~B7!

where 1<a,b<N21. Then, the solution of Eq.~B4! is

t52ŵ21sTN , ~B8!

or, more explicitly,

Ta52TN (
b51

N21

ŵab
21sb a51,2, . . . ,N21. ~B9!

Thus, the RPA amplitudes are determined by Eqs.~B3! and
~B9! up to a factorTN which is fixed by the normalization
condition.
d
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