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Afinite rank separable approximation for particle-hole random phase approxiniB&#9 calculations with
Skyrme interactions is extended to take into account the pairing. As an illustration of the method energies and
transition probabilities for the quadrupole and octupole excitations in some O, Ar, Sn, and Pb isotopes are
calculated. The values obtained within our approach are very close to those that were calculated within
quasiparticle RPAQRPA) with the full Skyrme interaction. They are in reasonable agreement with experi-

mental data.
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[. INTRODUCTION tailed predictions can be made by QPM for nuclei away from

closed shell$16].

Many properties of the nuclear states can be described The possibility to solve easily the RPA problem in a large
within the random phase approximatiofRPA) [1-4].  configuration space when the residual particle-hgkhy in-
Among many microscopic nuclear models aiming at a deleraction is separable was the motivation for proposing in our
scription of the properties of nuclear excitations the mostprevious work[17] a finite rank approximation for thp-h
consistent model employs an effective interaction which carinteraction resulting from Skyrme-type forces. Thus the self-
describe, throughout the Periodic Table, the ground states onsistent mean field can be calculated in the standard way
the framework of the Hartree-FodkF) approximation and Wwith the original Skyrme interaction, whereas the RPA solu-
the excited states in the small amplitude limit of the time-tions would be obtained with the finite rank approximation to
dependent HF, or the RPA. Gogny'’s interacti@) and the the p-h matrix elements. It was found that the finite rank
Skyrme-type interaction§6] are very popular now. Such approximation reproduces reasonably well the dipole and
models are quite successful not only for predicting accuquadrupole strength distributions in Ar isotopes.
rately nuclear ground state propert{gs8] but also for cal- In the present work, we extend the finite rank RPA calcu-
culating the main features of giant resonances in closed-shditions to take into account pairing effects. As an application
nuclei[9,10] and single-particle strengths near closed shellsve present results of calculations for low-lying znd 3
[11]. Taking into account the pairing effects enables one tcstates in some O, Ar, Sn, and Pb isotopes. This paper is
reproduce also many properties of collective states in operprganized as follows: in Sec. Il we sketch our method for
shell nuclei[12-15. constructing a finite rank interaction for the quasiparticle

It is well known that due to the anharmonicity of vibra- RPA (QRPA) case. In Sec. Il we discuss details of calcula-
tions there is a coupling between one-phonon and more contions and show how this approach can be applied to treat
plex state$2,4]. The main difficulty is that the complexity of different multipole states in wide excitation energy regions.
calculations beyond the standard RPAg., for studying Results of calculations for characteristics of the quadrupole
damping mechanisms of collective excitatipriacreases and octupole states in some nuclei are given in Sec. IV. Con-
rapidly with the size of the configuration space and one haslusions are drawn in Sec. V.
to work within limited spaces. From another point of view
more phenomenological models that assume some simple
separable form for the residual nucleon-nucleon interaction
while the mean field is modelized by an empirical potential We start from the effective Skyrme interacti] and use
well allow one to calculate nuclear excitations in very largethe notation of Ref[18] containing explicit density depen-
configuration spaces since there is no need to diagonalizdence and all spin-exchange terms rather than the original
matrices whose dimensions grow with the size of configuraform of Ref.[6] where density dependence at the HF level
tion space. The well-known quasiparticle-phonon modewas introduced by a three-body contact force and where
(QPM) of Soloviev[4] belongs to such a model. Very de- some spin-exchange terms were dropped. The gxdcte-

Il. HAMILTONIAN OF THE MODEL AND QRPA
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sidual interactionV,. corresponding to the Skyrme force In the above equatiorjy||Y,|[js) is the reduced matrix el-
and including both direct and exchange terms can be obement of the spherical harmonic¥;,, J=+2J+1
tained as the second derivative of the energy density funcr L(r,o)=[Y XV and ly(j1izisia), and ls(jijoisi 4)
tional with respect to the densifyt9]. Following our previ-  are the radial integrals:

ous papef17] we simplify V,s by approximating it by its
Migdal-Landau form in the momentum space, o [
Im(j1)2i3la)=Ng fo(Fo(r)
1

Vies(ki ko) =No ' 2 [Fi+Gjo0, dr
=0 +F6(V)Tl'Tz)Ujl(r)UjZ(r)Uja(r)Uj4(r)r—z,

Kok,
+(F/ +Gy 0102)7'172]P( 2 ), ) (7)
F

wherek;, o, and 7, are the nucleon momentum, spin and !s(j1i2js 4)=N61f (Go(r)

isospin operators, anblo=2kem*/ 7242 with ke and m* 0

standing for the Fermi momentum and nucleon effective dr
mass. For Skyrme interactions all Landau parameters lwith +Gg(r) 7y T2)Uj, (MU, (MU (N, (1) —,
>1 are zero. Here we keep only the 0 terms inV,s, and

in the coordinate representation one can write it in the fol- (8)
lowing form:

where the radial wave functiong(r) are related to the HF
Vies(r1,r2)=Ng {Fo(r1) +Go(r1) o0, single-particle wave functions:

+[F6(rl)+G6(rl)0'10'2]7'1‘7'2}5(r1—l’2)_ I( )
2 dim(1)= Jf“ (rl,al) )

The expressions forFq,Gg,Fy,Gy in terms of the As shown in Ref[17], the radial integrals can be calculated
Skyrme force parameters can be found in R&8]. Because accurately by choosing a large enough cutoff radfuand
of the density dependence of the interaction the Landau paising anN-point integration Gauss formula with abscissas
rameters of Eq(2) are functions of the coordinate In what  and weights', andw, . Thus the residual interaction can be
follows we use the second quantized representatiorvapid  presented as a sum bff separable terms.

can be written as So we employ the hamiltonian including an average
nuclear HF field, pairing interactions, the isoscalar and is-
. 1 L ovector particle-holed-h) residual forces in a finite rank:
Vreszz %4 Vi234:81 @5 84331, 3

i 1
H=>, (2 (Ej—Npalmaim— = VO :Pi(7)Py(7):
wherea; (a,) is the particle creatiofannihilation) operator T\ . Jmeme 4 ° °

jm
and 1 denotes the quantum numbangl {j;m,), L N
53 3 S g
. . 2145210 0
V1234:f P71 (r1) @5 (r2)Vies(r1,r2) da(ra) da(rp)dradry,
(4) +ak™ MO (HMEqr): + (k9
L=AAE1
=N 320 \Kfi m i _
V1234—% I7H(=)(j1mej3—mg[I— M) +quiSHy: Sxk)Jr(T)S)\ L(a7): (10)

X (] oMaj 4= My IMYV 34, 5
(T2Ma 4= Mg IM)Vizss ® We sum over the proto(p) and neutror(n) indexes and the

T o M e notation {7=(n,p)} is used. A changer— — 7 means a
whereK=J+js+j4—M—ms—m, and changep<{—>n The }single particle states are specified by the
quantum numbersj(n), E; are the single-particle energies
and \, the chemical potentlalsv(o) is the interaction
strength in the particle-particle channefM¥ («(5¥) are the
_L—%ﬂ GallTaullis) il Toullia) s(ivi2i sia)- multipole (spin-multipol® interaction strengths in the-h

e channel, and they can be expressed via the Landau param-
(6) eters as

Vioa= Gl Yallia) ol Yallia) (i siisia)
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kM) Fo(ry) the ground state is the QRPA phonon vacul@), i.e.,
(M.K) , QM,|O> 0. We define the excited states for this approxima-
! _ 4% Fo(ri) (11) tion by QA i|0). For the QRPA the following relation is
Kk§H O 2r2| Go(ry) | valid:

K(ls’k) Go(ri)

(O[[Qupui \Qyr v 110)
The monopole pair creation and the multipole and spin-

1
multipole operators entering the normal products in E6) =S Sunr 5 - 2 (X)" XM —YM YM ). (21)
are defined as follows:

4 The quasiparticle energieg;), the chemical potentials
NEEDS (-1 Majal (12)  (\,), the energy gap and the coefficienisand v of the

im Bogoliubov transformationfEg. (17)] are determined from
the BCS equations with the single-particle spectrum that is

T

(k)+ L-1 2 _q)i+m calculated within the HF method with the effective Skyrme
(r)= [T (=1) interaction. Making use of the linearized equation-of-motion
) approacH1],
x(jmj =m' Nyt (Daga i, (19 . .
<0|[6Q)\/Li 7[H’Q}\/.Li]]|0>: w)\i<o|[5Q)\,ui !Q)\,u.i]|0>'( )
T 22
N, (=R 2 (-
> ij'mm’ with the condition.
. (ALK) + 4
X{qmj’ —m’ |\ ) £ (D amaym, (14) <0|[Q}‘Mi'Q;Mi']|O>:5“” (23)

wheref;,; are the sirlgle pa_lrticle radial matrix elements of | - qerive the QRPA equatidi8s4]
the multipole and spin-multipole operators:
X )
=w . 4
Y 4

A B (X
fl()l\lk) Ull(rk)ulz(rk)l)\<11||Y>\||JZ> 19 (‘B _A)( Y

(\LK) _
faiz = Ui, (T, (il Talli2)- (16 In QRPA problems there appear two types of interaction

) .
One can see that Hamiltonid@hO) has the same form as the matrix elements, thA(Jlll) (Jsz)q, matrix related to forward-

QPM Hamiltonian withN separable terms, but in contrast to going graphs, and thea®™ matrix related to
(Jlll) (lzlz)qT
the QPM all parameters of this Hamiltonian are expresse% kward hs. F t obtain the fol
through parameters of the Skyrme forces. | ackwar —gomg gra}p S. For our case we get obtain the fol-
In what follows we work in the quasiparticle representa- owing expressions.
tion defined by the canonical Bogoliubov transformation: ()
(112112210 gr

arm=ujaj+m+(—1)j_mvjaj,m. (17 .
— . . . =8j,j10),j,0)j10q1~ (1+5121)
Hamiltonian (10) can be represented in terms of bifermion 1 12l
guasiparticle operators and their conjugdtéls N (+) " )00
x 2 L™+ au{™ ) ui SRR (U o ar)
B(ji ") =2 (=11 (i m N amatis
, K k)Y (— (Mk) (M\k)
mm 18 GO R U S O T A C ]
(25)
ATG] Nw) = 2 (Imj'm' N ey (19 "
mm'’ \) -2 1 (M.K)
: : (=101 N (I, k; [(x
We introduce the phonon creation operators
(M,K)y,,(+) ¢ (NK) (+) ¢ (AK)
a1, Jlfl 11( )ulglzfl i ,(a7)

QW.—— 2 [X AT G )
— (k9 + qi(S9)
— (=1} #YN A 2
(“DVEAG @), 20 XU UG, o)
where the indexx denotes total angular momentum giads
its z projection in the laboratory system. One assumes thathereej;,=¢;+¢;, and ufji,)zujvj,tvjuj,.
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One can find a prescription how to solve this system and 1 self
to find the eigen-energies and phonon amplitudes in the Ap- > > 5; =Ng '(Fo+Fp), 27
pendix (also also Ref[17]). The matrix dimensions never T T
exceed NX4N independently of the configuration space 1 suself
size. The derived equations have the same form as the QRPA — 2 T _— Nal(Fo— Fo). (28)
equations in the QPNH,20], but the single-particle spectrum 255 pr

and parameters of the p-h residual interaction are calculated _ . . .
making use of the Skyrme forces. one can get obtain the average field potential corresponding

to such a choice of the residual interaction:

Il. DETAILS OF CALCULATIONS use'=plt,

2
Xo| Kg
1+ ?) + Z[t1(2+x1)+t2(2+x2)]

In this work we use generally the standard parametriza-
tion Sl [21] of the Skyrme force. Some examples of calcu- —p]t
lations with other parameter sets are presented in Sec. IV. i

1 k2

Spherical symmetry is assumed for the HF ground states.
The pairing constantg? are fixed to reproduce the odd-even + £t3{p“+ L2+ a)(2+X3) — (14 2x3)
mass difference of neighboring nuclei. As a result constant 24

airin aps have values that are very close 4o a a-1,,.2, 2
Ii12.((‘3A*(\i’zij)besides a case of semimagic nﬁclei. It is well X[2p%ptap® pntpp)l}- 29
known[12,14 that the constant gap approximation leads toThjs potential can be compared tm{/m)UHF(r) which is
an overestimation of occupation probabilities for subshellshe |eader term of a local equivalent potential in the
that are far from the Fermi level and it is necessary to intro-gyyrme-HF approach. It is possible to evaluate the effective
duce a cutoff in the single-particle space. Above this cutoffyaye k. for every nucleus. One can show that this value is
subshells do not participate in the pairing effect. In our calyarger than the nuclear matter value in order to compensate
culations we choose the BCS subspace to include all suly the effects of the neglected terffig andG;. To calculate
shells lying below 5 MeV. In order to perform RPA calcula- o dipole strength distributions we chooke so that the

tions, the single-particle continuum is discretizE2] by gpyrious isoscalar dipole mode appears at zero excitation en-
diagonalizing the HF Hamiltonian on a basis of 12 harmomc—ergy_ The strongest renormalization of tkevalues in com-

oscillator shells and cutting off the single-particle spectra abarison with the nuclear matter value takes place in light

the energy of 190 Me\/._This is sufficient to exhaust _practi-nudeL For2%%h the effective valuk. becomes rather close
cally all the energy-weighted sum rule. As shown in oUrys the nuclear matter one.

previous calculation§17] we have adopted the valud
=24 for the finite rank approximation for the dipole and
guadrupole excitations in Ar isotopes. Increasing the mass
number and the multipolarity of excitations demands an in- As a first example we examine the multipole strength dis-
crease of the rank to keep the calculations accurate. Ouributions in *®Ar. The calculated strength distributions are
investigations enable us to conclude tiNt45 is enough displayed in Fig. 1. For the giant dipole resonanGbR)
for multipolaritiesA <3 in nuclei with A<208. Increasing and giant quadrupole resonan@QR) QRPA gives results
N, for example, up taN=60 in 2°®Pb changes results for that are very similar to our previous calculations with the
energies and transition probabilities not more than by 1%, sparticle-hole RPA17], because the influence of pairing on
all calculations in what follows have been done with the giant resonance properties is weak. This is not the case
=45. Our calculations show that, for normal parity statesfor the first 2" and 3~ states that will be discussed later. For
one can neglect the spin-multipole interactions as a rule anthe GDR energy centroid we obtdify=19.9 MeV, and this
this reduces by a factor of 2 the total matrix dimension. Fowalue is rather close to the empirical systemafi24] E.
example, for the octupole excitations f%Pb we need to =(31.2A~3+20.6A~ %) MeV. The isoscalar GQR energy
invert a matrix having a dimensior\2=90 instead of diago- centroid is equal tdE.=18.8 MeV, that can be compared
nalizing a 137& 1376 matrix as it would be without the with the empirical valueE.=63A*3=19.1 MeV. For the
finite rank approximation. For light nuclei the reduction of isovector GQR our calculation givés.=30.5 MeV, that is
matrix dimensions due to the finite rank approximation is 3about 10% less than predicted by the empirical systematics.
or 4. So, for heavy nuclei our approach gives a large gain int is worth mentioning that experimental data for the giant
comparison with an exact diagonalization. resonances in light nuclei are very scarce.

The Landau parameteFs, Gg, F(, andG, expressed in Results of our calculations and experimental dat for
terms of the Skyrme force parametgt§] depend orke. As  the 2] state energies and transition probabilitB€E2) in
it is pointed out in our previous woifld 7] one needs to adopt several nuclei are shown in Table I. One can see that there is
some effective value fokg to give an accurate representa- a satisfactory agreement with experimental data. Results of
tion of the originalp-h Skyrme interaction. To fix the effec- our calculations for O and Ar isotopes are close to those of
tive values ofkg for the Landau parameters we use the self-the QRPA with Skyrme forcegl12,26 and all calculations
consistency relatiof23]. From the set of equations, fail to reproduce th&(E2) value in'80. Making use of the

IV. RESULTS OF CALCULATIONS
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TABLE Il. Energies andB(E3) values for up transitions to the
first 37 states.
«E‘ 1 Nucleus Energy B(E37)
& (MeV) (e?*fmb)
= Expt. Theory Expt. Theory
=
& ] Mk 150 510 615 125050 1200
0 B 10 15 26 25 30 35 4p a5 20 5.61 7.28 53 180 1000
S6Ar 4.18 4.26 11 106 1100 16 000
3 38Ar 3.81 3.21 10 00€: 3000 15 000
"E 40ar 3.68 4.85 87061000 12 000
5 2 12sn 2.36 2.73 8700612000 97 000
© 145n 2.28 2.31 10008912 000 97 000
= 20%Ph 2.65 2.92 65000040000 750000
o 208pp 2.62 2.66 611 0609000 860 000
@ o
0 5 10 15 20 25 30 35 40 45
of the E2 transition probability in*®Ar. Some overestimate
&~ of the energies indicates that there is room for two-phonon
“.‘,E 1_‘ effects. Indeed, it was found in calculations performed within
L the QPM for 2°%Pb [28] that the two-phonon configurations
= can shift down the 2 energy by more than 1 MeV. The
P B(E2) value reduction is about 10% in this case. The study
w of the influence of two-phonon configurations on properties
e AR A AR L o L e R of the low-lying states within our approach is in progress

0 5 10 15 20 25 30 35 40 45 now.

© [MeV] Results of our calculations for the; 3energies and the
transition probabilitie8(E3) are compared with experimen-
tal data[29] in Table Il. Generally there is a better agreement
between theory and experiment than in the case of quadru-

SGll interaction 18] improves the description for the O iso- e excitations. Other choices of the Skyrme forces do not
topes and gives practically the same results for the Ar ISOjmprove the agreement obtained with SIII.

topes, but for Sn and Pb isotopes the results become much zp, aqditional information about the structure of the first
worse. Calculations with the Ski4 for¢@7] do not change 5+ anq 3~ states can be extracted by looking at the ratio of
the above conclusions. The evolution of B£2) values in _ e myltipole transition matrix elementis, /M , that depend
the Ar isotopes demonstrates clearly the pairing effects. Thgy, e relative contributions of the proton and neutron con-
experimental and calculatd#(E2) values in™Ar are three  fig rations. In the framework of the collective model for
times less than those if®*%Ar. The neutron shell closure isoscalar excitations this ratio is equalldy,/M,=N/Z and

'i"’}[ﬂs to tf:e vaniskjbi\ng of theltr:ﬁutro_n pairing ?(n?ala reglucii.or&ny deviation from this value can indicate an isovector char-
Ot the proton gap. As & result iere 1s a remarkable FedUCtioYeter of the state. Thil,/M, ratio can be determined ex-
perimentally by using different external prod&9-32. Re-
TABLE |. Energies andB(E2) values for up-transitions to the cently [13,26, QRPA calculations of thé,/M, ratios for

FIG. 1. The multipole strength distributions fAr.

first 2" states. the 2, states in some O and Ar isotopes have been done. The
predicted results are in good agreement with experimental

Nucleus Energy B(E21) data[26]. Our calculated values of thd ,/M , ratios for the

(MeV) (e*fm?) 2} and 3 states are shown in Tables Ill and IV, respec-
Expt. Theory Expt. Theory

80 1.98 475 452 14 TABLE lll. (M,/M)/(N/Z) ratios for the first 2 states.

20 1.67 4.17 282 20

36Ar 1.97 1.91 300:30 310 Nucleus  **0 %0 “Ar FAr *Ar

jiﬁ: i-i; ;% ;gg ‘118 ;Sl)g Theory 2.1 2.1 0.9 0.5 0.9

: : Expt.  0.88-0.1% 2.17+0.53 1.41+0.5¢ - 0.68-0.21

112sn 1.26 1.49 2400140 2600 162-00F 1.9+0.F

145 1.30 1.51 24068500 2100

206pp 0.80 0.96 100820 1700 “Referencq13].

208pp 4.09 5.36 3006300 2000 *Reference 26].
‘Referencd 32].
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TABLE IV. (M,/M)/(N/Z) ratios for the first 3 states. partly supported by IN2P3-JINR agreement and by the Bul-
garian Science Foundatid@ontract No. Ph-801
Nucleus %o 20 Ar 3Bar “0ar
Theory 0.8 0.8 0.9 1.0 0.9 APPENDIX

For the sake of completeness we show how the finite rank
tively. Our results support the conclusions of Réf3,26] form of the resiQuaI force&l0) can si'mplify'the solution of
about the isovector character of th¢ atates in'820 and e RPA equations24). In the 4N-dimensional space we
38Ar. As one can see from Table IV, our calculations predictintroduce a vectorﬁS((TT)))by its components

that theM,/M, ratios for the 3 states are rather close to .

N/Z, thus indicating their isoscalar character. This conclu-

sion remains valid for the SGII and Skl4 parameter sets. 'DZ(T)z

)
i ) B=(M,S}, (A1)
7)

V. CONCLUSION
where

A finite rank separable approximation for the particle-hole
RPA calculations with Skyrme interactions that was proposed _ r , ,
in our previous work is extended to take into account the DNK(r) =2 ffj”,k)ufjf)(x?j',ﬂLY?j',),
pairing correlations. The QRPA equations are derived for this i’
case. These equations are used to study the evolution of
quadrupole and octupole excitations in nuclei away from sta- Nik _ ONK). (=), A N
bility. It is shown that the suggested approach enables one to Ds (T):E, fji’ Ujjr (Xii’_YJi )
reduce remarkably the dimensions of the matrices that must !
ggnlf?gfrgfigntosp%ecr;irm structure calculations in very IargeThe index k run over theN-dimensional space (k

: . ... =1,2,...N). Solving the system of Eq$24) one can ob-
As an illustration of the method we have used the finite, _. . . . .
rank p-h interaction derived from the Skyrme force SllI to tain the following expressions for the phonon amplitudes:

calculate the energies and transition probabilities of thie 2 N

and 3, states in some O, Ar, Sn, and Pb isotopes. The values X?\i,( )= ; ;
calculated within our approach are very close to those that I (&jjr—wyj) k=1 \/2y¢5'
were calculated in the QRPA with the full Skyrme interac- (H)e0K) (=) e (MK ik
tions. They are generally in a reasonable agreement with X[uy 7 oy B 2 (0] (A2)
experimental data. A further development will be to take into
account the coupling between the one- and two-phonon N 1 s 1
terms, and such investigations are in progress now. Yy (r)= ———
) (sjj,-i-w)\i) k=1 \/2:)))7\_ :
k - K) i
ACKNOWLEDGMENTS X[u](jf)f}jx )_uj(j,)fl(j)\,% )Z)"k(r)], (A3)

A.P.S. and V.V.V. thank the hospitality of IPN-Orsay
where the main part of this work was done. This work waswhere

Ak 2(20+1)2
T [D)’\\/:k(T)(KgM,k)_'_K(lM,k))+D)Mk(_T)(K(()M,k)_K(lM,k))]z’
iy DI 0) DA 7) (20— )

D7) (k9 + kM) 4 DMK = 7) (kM0 — M)
Using Eqgs.(Al) and Egs(A2) and(A3) the RPA equation$24) can be reduced to the following system of equations:

Muu(1)—1 Mys(7) )(DM(T)>:0, (A4)

Mgp(7) Msd7)—1)\ Dg(7)

whereM is the 2N X 2N matrix:
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[ ot kk, ’ ! [ kk,
e (kO P NTE () (k= kN T (1)

33/(7) Vo P , ,  1=sk,k’<N. (A5)
(kKO P KNTEL (=) (el O+ N TR (= )
|
The matrix element3*K" have the following forms: T () =T K(7),
(ANK) (M\k) (=)y2
T ()= 2 R TR ATE
000K )2 2(3"'_w)2\i)
TR ()= 2 i eii’ I
MM N (8,2,,_%,) ' Thus the RPA eigenvalues,; are the roots of the secular
1 I ' equation
Mum() =1 Mys(7)
( MM MS o, (A6)
f()\k)f()\xk) (+)u( . Msgu(7)  Mgd71)—1
[N
s( )= Z = 2 5 ' The phonon amplitudes corresponding to the RPA eigenvalue
A (e JJ “’M) w,; are determined by Eq$A2) and (A3), taking into ac-

count the normalization conditiof23).
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