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Quasiparticle random phase approximation with finite rank approximation
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A finite rank separable approximation for particle-hole random phase approximation~RPA! calculations with
Skyrme interactions is extended to take into account the pairing. As an illustration of the method energies and
transition probabilities for the quadrupole and octupole excitations in some O, Ar, Sn, and Pb isotopes are
calculated. The values obtained within our approach are very close to those that were calculated within
quasiparticle RPA~QRPA! with the full Skyrme interaction. They are in reasonable agreement with experi-
mental data.
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I. INTRODUCTION

Many properties of the nuclear states can be descr
within the random phase approximation~RPA! @1–4#.
Among many microscopic nuclear models aiming at a
scription of the properties of nuclear excitations the m
consistent model employs an effective interaction which
describe, throughout the Periodic Table, the ground state
the framework of the Hartree-Fock~HF! approximation and
the excited states in the small amplitude limit of the tim
dependent HF, or the RPA. Gogny’s interaction@5# and the
Skyrme-type interactions@6# are very popular now. Such
models are quite successful not only for predicting ac
rately nuclear ground state properties@7,8# but also for cal-
culating the main features of giant resonances in closed-s
nuclei @9,10# and single-particle strengths near closed sh
@11#. Taking into account the pairing effects enables one
reproduce also many properties of collective states in op
shell nuclei@12–15#.

It is well known that due to the anharmonicity of vibra
tions there is a coupling between one-phonon and more c
plex states@2,4#. The main difficulty is that the complexity o
calculations beyond the standard RPA~e.g., for studying
damping mechanisms of collective excitations! increases
rapidly with the size of the configuration space and one
to work within limited spaces. From another point of vie
more phenomenological models that assume some sim
separable form for the residual nucleon-nucleon interac
while the mean field is modelized by an empirical poten
well allow one to calculate nuclear excitations in very lar
configuration spaces since there is no need to diagona
matrices whose dimensions grow with the size of configu
tion space. The well-known quasiparticle-phonon mo
~QPM! of Soloviev @4# belongs to such a model. Very de
0556-2813/2002/66~3!/034304~7!/$20.00 66 0343
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tailed predictions can be made by QPM for nuclei away fro
closed shells@16#.

The possibility to solve easily the RPA problem in a lar
configuration space when the residual particle-hole (p-h) in-
teraction is separable was the motivation for proposing in
previous work@17# a finite rank approximation for thep-h
interaction resulting from Skyrme-type forces. Thus the se
consistent mean field can be calculated in the standard
with the original Skyrme interaction, whereas the RPA so
tions would be obtained with the finite rank approximation
the p-h matrix elements. It was found that the finite ran
approximation reproduces reasonably well the dipole a
quadrupole strength distributions in Ar isotopes.

In the present work, we extend the finite rank RPA calc
lations to take into account pairing effects. As an applicat
we present results of calculations for low-lying 21 and 32

states in some O, Ar, Sn, and Pb isotopes. This pape
organized as follows: in Sec. II we sketch our method
constructing a finite rank interaction for the quasipartic
RPA ~QRPA! case. In Sec. III we discuss details of calcu
tions and show how this approach can be applied to t
different multipole states in wide excitation energy region
Results of calculations for characteristics of the quadrup
and octupole states in some nuclei are given in Sec. IV. C
clusions are drawn in Sec. V.

II. HAMILTONIAN OF THE MODEL AND QRPA

We start from the effective Skyrme interaction@6# and use
the notation of Ref.@18# containing explicit density depen
dence and all spin-exchange terms rather than the orig
form of Ref. @6# where density dependence at the HF lev
was introduced by a three-body contact force and wh
some spin-exchange terms were dropped. The exactp-h re-
©2002 The American Physical Society04-1
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sidual interactionṼres corresponding to the Skyrme forc
and including both direct and exchange terms can be
tained as the second derivative of the energy density fu
tional with respect to the density@19#. Following our previ-
ous paper@17# we simplify Ṽres by approximating it by its
Migdal-Landau form in the momentum space,

Vres~k1 ,k2!5N0
21(

l 50

1

@Fl1Gls1s2

1~Fl81Gl8s1s2!t1t2#PlS k1k2

kF
2 D , ~1!

wherek i , si , andt i are the nucleon momentum, spin an
isospin operators, andN052kFm* /p2\2 with kF and m*
standing for the Fermi momentum and nucleon effect
mass. For Skyrme interactions all Landau parameters wl
.1 are zero. Here we keep only thel 50 terms inVres , and
in the coordinate representation one can write it in the
lowing form:

Vres~r1 ,r2!5N0
21$F0~r 1!1G0~r 1!s1s2

1@F08~r 1!1G08~r 1!s1s2#t1•t2%d~r12r2!.

~2!

The expressions forF0 ,G0 ,F08 ,G08 in terms of the
Skyrme force parameters can be found in Ref.@18#. Because
of the density dependence of the interaction the Landau
rameters of Eq.~2! are functions of the coordinater . In what
follows we use the second quantized representation andVres
can be written as

V̂res5
1

2 (
1234

V1234:a1
1a2

1a4a3 :, ~3!

wherea1
1 (a1) is the particle creation~annihilation! operator

and 1 denotes the quantum numbers (n1l 1 j 1m1),

V12345E f1* ~r1!f2* ~r2!Vres~r1 ,r2!f3~r1!f4~r2!dr1dr2, ,

~4!

V12345(
JM

Ĵ22~2 !K^ j 1m1 j 32m3uJ2M &

3^ j 2m2 j 42m4uJM&V1234
J , ~5!

whereK5J1 j 31 j 42M2m32m4 and

V1234
J 5^ j 1uuYJuu j 3&^ j 2uuYJuu j 4&I M~ j 1 j 2 j 3 j 4!

2 (
L5J,J61

^ j 1uuTJLuu j 3&^ j 2uuTJLuu j 4&I S~ j 1 j 2 j 3 j 4!.

~6!
03430
b-
c-

e
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In the above equation,^ j 1uuYJuu j 3& is the reduced matrix el-
ement of the spherical harmonicsYJm , Ĵ5A2J11,
TJL

M ( r̂ ,s)5@YL3s#J
M and I M( j 1 j 2 j 3 j 4), and I S( j 1 j 2 j 3 j 4)

are the radial integrals:

I M~ j 1 j 2 j 3 j 4!5N0
21E

0

`

~F0~r !

1F08~r !t1•t2!uj 1
~r !uj 2

~r !uj 3
~r !uj 4

~r !
dr

r 2
,

~7!

I S~ j 1 j 2 j 3 j 4!5N0
21E

0

`

~G0~r !

1G08~r !t1•t2!uj 1
~r !uj 2

~r !uj 3
~r !uj 4

~r !
dr

r 2
,

~8!

where the radial wave functionsu(r ) are related to the HF
single-particle wave functions:

f i ,m~1!5
ui~r 1!

r 1
Yl i , j i

m ~r 1̂,s1!. ~9!

As shown in Ref.@17#, the radial integrals can be calculate
accurately by choosing a large enough cutoff radiusR and
using anN-point integration Gauss formula with absciss
and weightsr k andwk . Thus the residual interaction can b
presented as a sum ofN separable terms.

So we employ the hamiltonian including an avera
nuclear HF field, pairing interactions, the isoscalar and
ovector particle-hole (p-h) residual forces in a finite rankN:

H5(
t

S (
jm

t

~Ej2lt!ajm
† ajm2

1

4
Vt

(0) :P0
†~t!P0~t!:

2
1

2 (
k51

N

(
q561

(
lm

F ~k0
(M ,k)

1qk1
(M ,k)!:Mlm

(k)1~t!Mlm
(k)~qt!:1 (

L5l,l61
~k0

(S,k)

1qk1
(S,k)!:SlLm

(k)1~t!SlLm
(k) ~qt!:G D , ~10!

We sum over the proton~p! and neutron~n! indexes and the
notation $t5(n,p)% is used. A changet↔2t means a
changep↔n. The single-particle states are specified by t
quantum numbers (jm), Ej are the single-particle energie
and lt the chemical potentials.Vt

(0) is the interaction
strength in the particle-particle channel;k (Mk) (k (Sk)) are the
multipole ~spin-multipole! interaction strengths in thep-h
channel, and they can be expressed via the Landau pa
eters as
4-2
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S k0
(M ,k)

k1
(M ,k)

k0
(S,k)

k1
(S,k)

D 52N0
21 Rwk

2r k
2 S F0~r k!

F08~r k!

G0~r k!

G08~r k!

D . ~11!

The monopole pair creation and the multipole and sp
multipole operators entering the normal products in Eq.~10!
are defined as follows:

P0
1~t!5(

jm

t

~21! j 2majm
1 aj 2m

1 , ~12!

Mlm
(k)1~t!5l̂21 (

j j 8mm8

t

~21! j 1m

3^ jm j82m8ulm& f j 8 j
(lk)

~t!ajm
1 aj 8m8 , ~13!

SlLm
(k)1~t!5l̂21 (

j j 8mm8

t

~21! j 1m

3^ jm j82m8ulm& f j 8 j
(lLk)

~t!ajm
1 aj 8m8 , ~14!

where f j 8 j are the single particle radial matrix elements
the multipole and spin-multipole operators:

f j 1 j 2

(lk)5uj 1
~r k!uj 2

~r k!i
l^ j 1uuYluu j 2&, ~15!

f j 1 j 2

(lLk)5uj 1
~r k!uj 2

~r k!i
L^ j 1uuTlLuu j 2&. ~16!

One can see that Hamiltonian~10! has the same form as th
QPM Hamiltonian withN separable terms, but in contrast
the QPM all parameters of this Hamiltonian are expres
through parameters of the Skyrme forces.

In what follows we work in the quasiparticle represen
tion defined by the canonical Bogoliubov transformation:

ajm
1 5uja jm

1 1~21! j 2mv ja j 2m . ~17!

Hamiltonian ~10! can be represented in terms of bifermio
quasiparticle operators and their conjugates@4#:

B~ j j 8;lm!5 (
mm8

~21! j 81m8^ jm j8m8ulm&a jm
1 a j 82m8 ,

~18!

A1~ j j 8;lm!5 (
mm8

^ jm j8m8ulm&a jm
1 a j 8m8

1 . ~19!

We introduce the phonon creation operators

Qlm i
1 5

1

2 (
j j 8

@Xj j 8
l i A1~ j j 8;lm!

2~21!l2mYj j 8
l i A~ j j 8;l2m!#, ~20!

where the indexl denotes total angular momentum andm is
its z projection in the laboratory system. One assumes
03430
-

f

d
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the ground state is the QRPA phonon vacuumu0&, i.e.,
Qlm i u0&50. We define the excited states for this approxim
tion by Qlm i

1 u0&. For the QRPA the following relation is
valid:

^0u@Qlm,i ,Ql8m8,i 8
1

#u0&

5dll8dmm8

1

2 (
j j 8

~Xj j 8
l i Xj j 8

l i 82Yj j 8
l i Yj j 8

l i 8!. ~21!

The quasiparticle energies (« j ), the chemical potentials
(lt), the energy gap and the coefficientsu and v of the
Bogoliubov transformations@Eq. ~17!# are determined from
the BCS equations with the single-particle spectrum tha
calculated within the HF method with the effective Skyrm
interaction. Making use of the linearized equation-of-moti
approach@1#,

^0u@dQlm i ,@H,Qlm i
1 ##u0&5vl i^0u@dQlm i ,Qlm i

1 #u0&,
~22!

with the condition.

^0u@Qlm i ,Qlm i 8
1

#u0&5d i i 8 , ~23!

one can derive the QRPA equations@3,4#

S A B
2B 2AD S X

YD 5wS X

YD . ~24!

In QRPA problems there appear two types of interact
matrix elements, theA( j 1 j

18)t( j 2 j
28)qt

(l)
matrix related to forward-

going graphs, and theB( j 1 j
18)t( j 2 j

28)qt

(l)
matrix related to

backward-going graphs. For our case we get obtain the
lowing expressions:

A( j 1> j
18)t( j 2> j

28)qt

(l)

5« j 1 j
18
d j 2 j 1

d j
28 j

18
dq12l̂22~11d j 2 j

28
!21

3 (
k51

N

@~k0
(M ,k)1qk1

(M ,k)!uj 1 j
18

(1)
f j 1 j

18
(lk)

~t!uj 2 j
28

(1)
f j 2 j

28
(lk)

~qt!

1~k0
(S,k)1qk1

(S,k)!uj 1 j
18

(2)
f j 1 j

18
(llk)

~t!uj 2 j
28

(2)
f j 2 j

28
(llk)

~qt!#,

~25!

B( j 1> j
18)t( j 2> j

28)qt

(l)
52l̂22~11d j 2 j

28
!21(

k51

N

@~k0
(M ,k)

1qk1
(M ,k)!uj 1 j

18
(1)

f j 1 j
18

(lk)
~t!uj 2 j

28
(1)

f j 2 j
28

(lk)
~qt!

2~k0
(S,k)1qk1

(S,k)!

3uj 1 j
18

(2)
f j 1 j

18
(llk)

~t!uj 2 j
28

(2)
f j 2 j

28
(llk)

~qt!#, ~26!

where« j j 85« j1« j 8 anduj j 8
(6)

5ujv j 86v juj 8 .
4-3
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One can find a prescription how to solve this system a
to find the eigen-energies and phonon amplitudes in the
pendix ~also also Ref.@17#!. The matrix dimensions neve
exceed 4N34N independently of the configuration spa
size. The derived equations have the same form as the Q
equations in the QPM@4,20#, but the single-particle spectrum
and parameters of the p-h residual interaction are calcul
making use of the Skyrme forces.

III. DETAILS OF CALCULATIONS

In this work we use generally the standard parametr
tion SIII @21# of the Skyrme force. Some examples of calc
lations with other parameter sets are presented in Sec
Spherical symmetry is assumed for the HF ground sta
The pairing constantsVt

0 are fixed to reproduce the odd-eve
mass difference of neighboring nuclei. As a result const
pairing gaps have values that are very close toD
512.0A21/2 besides a case of semimagic nuclei. It is w
known @12,14# that the constant gap approximation leads
an overestimation of occupation probabilities for subsh
that are far from the Fermi level and it is necessary to int
duce a cutoff in the single-particle space. Above this cu
subshells do not participate in the pairing effect. In our c
culations we choose the BCS subspace to include all s
shells lying below 5 MeV. In order to perform RPA calcul
tions, the single-particle continuum is discretized@22# by
diagonalizing the HF Hamiltonian on a basis of 12 harmon
oscillator shells and cutting off the single-particle spectra
the energy of 190 MeV. This is sufficient to exhaust prac
cally all the energy-weighted sum rule. As shown in o
previous calculations@17# we have adopted the valueN
524 for the finite rank approximation for the dipole an
quadrupole excitations in Ar isotopes. Increasing the m
number and the multipolarity of excitations demands an
crease of the rank to keep the calculations accurate.
investigations enable us to conclude thatN545 is enough
for multipolaritiesl<3 in nuclei with A<208. Increasing
N, for example, up toN560 in 208Pb changes results fo
energies and transition probabilities not more than by 1%
all calculations in what follows have been done withN
545. Our calculations show that, for normal parity stat
one can neglect the spin-multipole interactions as a rule
this reduces by a factor of 2 the total matrix dimension. F
example, for the octupole excitations in206Pb we need to
invert a matrix having a dimension 2N590 instead of diago-
nalizing a 137631376 matrix as it would be without th
finite rank approximation. For light nuclei the reduction
matrix dimensions due to the finite rank approximation is
or 4. So, for heavy nuclei our approach gives a large gain
comparison with an exact diagonalization.

The Landau parametersF0 , G0 , F08 , andG08 expressed in
terms of the Skyrme force parameters@18# depend onkF . As
it is pointed out in our previous work@17# one needs to adop
some effective value forkF to give an accurate represent
tion of the originalp-h Skyrme interaction. To fix the effec
tive values ofkF for the Landau parameters we use the se
consistency relation@23#. From the set of equations,
03430
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t
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sel f

drt
5N0

21~F01F08!, ~27!

1

2 (
t

dUt
sel f

dr2t
5N0

21~F02F08!, ~28!

one can get obtain the average field potential correspon
to such a choice of the residual interaction:

Ut
sel f5rF t0S 11

x0

2 D1
kF

2

4
@ t1~21x1!1t2~21x2!#G

2rtF t0S 1

2
1x0D2

kF
2

4
@ t2~112x2!2t1~112x1!#G

1
1

24
t3$r

a11~21a!~21x3!2~112x3!

3@2rart1ara21~rn
21rp

2!#%. ~29!

This potential can be compared to (m* /m)UHF(r ) which is
the leader term of a local equivalent potential in t
Skyrme-HF approach. It is possible to evaluate the effec
valuekF for every nucleus. One can show that this value
larger than the nuclear matter value in order to compen
for the effects of the neglected termsF1 andG1. To calculate
the dipole strength distributions we choosekF so that the
spurious isoscalar dipole mode appears at zero excitation
ergy. The strongest renormalization of thekF values in com-
parison with the nuclear matter value takes place in li
nuclei. For208Pb the effective valuekF becomes rather clos
to the nuclear matter one.

IV. RESULTS OF CALCULATIONS

As a first example we examine the multipole strength d
tributions in 36Ar. The calculated strength distributions a
displayed in Fig. 1. For the giant dipole resonance~GDR!
and giant quadrupole resonance~GQR! QRPA gives results
that are very similar to our previous calculations with t
particle-hole RPA@17#, because the influence of pairing o
the giant resonance properties is weak. This is not the c
for the first 21 and 32 states that will be discussed later. F
the GDR energy centroid we obtainEc519.9 MeV, and this
value is rather close to the empirical systematics@24# Ec
5(31.2A21/3120.6A21/6) MeV. The isoscalar GQR energ
centroid is equal toEc518.8 MeV, that can be compare
with the empirical valueEc563A21/3519.1 MeV. For the
isovector GQR our calculation givesEc530.5 MeV, that is
about 10% less than predicted by the empirical systema
It is worth mentioning that experimental data for the gia
resonances in light nuclei are very scarce.

Results of our calculations and experimental data@25# for
the 21

1 state energies and transition probabilitiesB(E2) in
several nuclei are shown in Table I. One can see that the
a satisfactory agreement with experimental data. Result
our calculations for O and Ar isotopes are close to those
the QRPA with Skyrme forces@12,26# and all calculations
fail to reproduce theB(E2) value in 18O. Making use of the
4-4



-
iso
u

Th

tio
tio

on
in

s

dy
ies
ss

-
nt

dru-
not

st
of

on-
r

ar-
-

The
ntal

c-

e

QUASIPARTICLE RANDOM PHASE APPROXIMATION . . . PHYSICAL REVIEW C66, 034304 ~2002!
SGII interaction@18# improves the description for the O iso
topes and gives practically the same results for the Ar
topes, but for Sn and Pb isotopes the results become m
worse. Calculations with the SkI4 force@27# do not change
the above conclusions. The evolution of theB(E2) values in
the Ar isotopes demonstrates clearly the pairing effects.
experimental and calculatedB(E2) values in38Ar are three
times less than those in36,40Ar. The neutron shell closure
leads to the vanishing of the neutron pairing and a reduc
of the proton gap. As a result there is a remarkable reduc

FIG. 1. The multipole strength distributions in36Ar.

TABLE I. Energies andB(E2) values for up-transitions to th
first 21 states.

Nucleus Energy B(E2↑)
~MeV! (e2fm4)

Expt. Theory Expt. Theory

18O 1.98 4.75 4562 14
20O 1.67 4.17 2862 20
36Ar 1.97 1.91 300630 310
38Ar 2.17 2.51 130610 110
40Ar 1.46 2.17 330640 290
112Sn 1.26 1.49 24006140 2600
114Sn 1.30 1.51 24006500 2100
206Pb 0.80 0.96 1000620 1700
208Pb 4.09 5.36 30006300 2000
03430
-
ch

e

n
n

of the E2 transition probability in38Ar. Some overestimate
of the energies indicates that there is room for two-phon
effects. Indeed, it was found in calculations performed with
the QPM for 208Pb @28# that the two-phonon configuration
can shift down the 21

1 energy by more than 1 MeV. The
B(E2) value reduction is about 10% in this case. The stu
of the influence of two-phonon configurations on propert
of the low-lying states within our approach is in progre
now.

Results of our calculations for the 31
2 energies and the

transition probabilitiesB(E3) are compared with experimen
tal data@29# in Table II. Generally there is a better agreeme
between theory and experiment than in the case of qua
pole excitations. Other choices of the Skyrme forces do
improve the agreement obtained with SIII.

An additional information about the structure of the fir
21 and 32 states can be extracted by looking at the ratio
the multipole transition matrix elementsMn /M p that depend
on the relative contributions of the proton and neutron c
figurations. In the framework of the collective model fo
isoscalar excitations this ratio is equal toMn /M p5N/Z and
any deviation from this value can indicate an isovector ch
acter of the state. TheMn /M p ratio can be determined ex
perimentally by using different external probes@30–32#. Re-
cently @13,26#, QRPA calculations of theMn /M p ratios for
the 21

1 states in some O and Ar isotopes have been done.
predicted results are in good agreement with experime
data@26#. Our calculated values of theMn /M p ratios for the
21

1 and 31
2 states are shown in Tables III and IV, respe

TABLE II. Energies andB(E3) values for up transitions to the
first 32 states.

Nucleus Energy B(E3↑)
~MeV! (e2fm6)

Expt. Theory Expt. Theory

18O 5.10 6.15 1250650 1200
20O 5.61 7.28 5306180 1000
36Ar 4.18 4.26 11 10061100 16 000
38Ar 3.81 3.21 10 00063000 15 000
40Ar 3.68 4.85 870061000 12 000
112Sn 2.36 2.73 87 000612 000 97 000
114Sn 2.28 2.31 100 000612 000 97 000
206Pb 2.65 2.92 650 000640 000 750 000
208Pb 2.62 2.66 611 00069000 860 000

TABLE III. ( Mn /M p)/(N/Z) ratios for the first 21 states.

Nucleus 18O 20O 36Ar 38Ar 40Ar

Theory 2.1 2.1 0.9 0.5 0.9
Expt. 0.8860.19a 2.1760.53a 1.4160.50b – 0.6860.21b

1.6260.02c 1.960.3c

aReference@13#.
bReference@26#.
cReference@32#.
4-5
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tively. Our results support the conclusions of Refs.@13,26#
about the isovector character of the 21

1 states in18,20O and
38Ar. As one can see from Table IV, our calculations pred
that theMn /M p ratios for the 31

2 states are rather close t
N/Z, thus indicating their isoscalar character. This conc
sion remains valid for the SGII and SkI4 parameter sets.

V. CONCLUSION

A finite rank separable approximation for the particle-ho
RPA calculations with Skyrme interactions that was propo
in our previous work is extended to take into account
pairing correlations. The QRPA equations are derived for
case. These equations are used to study the evolutio
quadrupole and octupole excitations in nuclei away from s
bility. It is shown that the suggested approach enables on
reduce remarkably the dimensions of the matrices that m
be inverted to perform structure calculations in very lar
configuration spaces.

As an illustration of the method we have used the fin
rank p-h interaction derived from the Skyrme force SIII t
calculate the energies and transition probabilities of the1

1

and 31
2 states in some O, Ar, Sn, and Pb isotopes. The va

calculated within our approach are very close to those
were calculated in the QRPA with the full Skyrme intera
tions. They are generally in a reasonable agreement
experimental data. A further development will be to take in
account the coupling between the one- and two-pho
terms, and such investigations are in progress now.
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APPENDIX

For the sake of completeness we show how the finite r
form of the residual forces~10! can simplify the solution of
the RPA equations~24!. In the 4N-dimensional space we

introduce a vector (DM(t)
DS(t) )by its components

Db
k ~t!5S Db

k ~t!

Db
k ~2t!

D , b5$M ,S%, ~A1!

where

DM
l ik~t!5(

j j 8

t

f j j 8
(lk)uj j 8

(1)
~Xj j 8

l i
1Yj j 8

l i
!,

DS
l ik~t!5(

j j 8

t

f j j 8
(llk)uj j 8

(2)
~Xj j 8

l i
2Yj j 8

l i
!.

The index k run over theN-dimensional space (k
51,2, . . . ,N). Solving the system of Eqs.~24! one can ob-
tain the following expressions for the phonon amplitudes

Xj j 8
l i

~t!5
1

~« j j 82vl i !
(
k51

N
1

A2Y t
lki

3@uj j 8
(1) f j j 8

(lk)
1uj j 8

(2) f j j 8
(llk)zl ik~t!#, ~A2!

Yj j 8
l i

~t!5
1

~« j j 81vl i !
(
k51

N
1

A2Y t
lki

3@uj j 8
(1) f j j 8

(lk)
2uj j 8

(2) f j j 8
(llk)zl ik~t!#, ~A3!

where
Y t
lki5

2~2l11!2

@DM
l ik~t!~k0

(M ,k)1k1
(M ,k)!1DM

l ik~2t!~k0
(M ,k)2k1

(M ,k)!#2
,

zl ik~t!5
DS

l ik~t!~k0
(S,k)1k1

(S,k)!1DS
l ik~2t!~k0

(S,k)2k1
(S,k)!

DM
l ik~t!~k0

(M ,k)1k1
(M ,k)!1DM

l ik~2t!~k0
(M ,k)2k1

(M ,k)!
.

Using Eqs.~A1! and Eqs.~A2! and ~A3! the RPA equations~24! can be reduced to the following system of equations:

S MMM~t!21 MMS~t!

MSM~t! MSS~t!21D SDM~t!

DS~t!
D 50, ~A4!

whereM is the 2N32N matrix:
4-6
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M bb8
kk8 ~t!5S ~k0

(b8,k8)1k1
(b8,k8)!Tbb8

kk8 ~t! ~k0
(b8,k8)2k1

(b8,k8)!Tbb8
kk8 ~t!

~k0
(b8,k8)2k1

(b8,k8)!Tbb8
kk8 ~2t! ~k0

(b8,k8)1k1
(b8,k8)!Tbb8

kk8 ~2t!
D , 1<k,k8<N. ~A5!
r

lue
The matrix elementsTkk8 have the following forms:

TMM
kk8 ~t!5(

j j 8

t f
j j 8
(lk)

f
j j 8
(lk8)

~uj j 8
(1)

!2« j j 8

l̂2~« j j 8
2

2vl i
2 !

,

TMS
kk8~t!5(

j j 8

t f j j 8
(lk) f j j 8

(llk8)uj j 8
(1)uj j 8

(2)vl i

l̂2~« j j 8
2

2vl i
2 !

,

y

d

.R

.

s.

s.

03430
TSM
kk8~t!5TMS

k8k~t!,

TSS
kk8~t!5(

j j 8

t f j j 8
(llk) f j j 8

(llk8)
~uj j 8

(2)
!2« j j 8

l̂2~« j j 8
2

2vl i
2 !

.

Thus the RPA eigenvaluesvl i are the roots of the secula
equation

detS MMM~t!21 MMS~t!

MSM~t! MSS~t!21D 50. ~A6!

The phonon amplitudes corresponding to the RPA eigenva
vl i are determined by Eqs.~A2! and ~A3!, taking into ac-
count the normalization condition~23!.
ev.
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