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Effects of the particle-particle channel on properties of low-lying vibrational states
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Making use of the finite rank separable approach for the quasiparticle random phase approximation enables
one to perform nuclear structure calculations in very large two-quasiparticle spaces. The approach is extended
to take into account the residual particle-particle interaction. The calculations are performed by using Skyrme
interactions in the particle-hole channel and density-dependent zero-range interactions in the particle-particle
channel. To illustrate our approach, we study the properties of the lowest quadrupole states in the even-even
nuclei 128Pd, 130Cd, 124−134Sn, 128−136Te, and 136Xe.
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I. INTRODUCTION

The low-energy spectrum is a key character of excitations
of nuclei in the presence of pairing correlations. The new
spectroscopic studies of exotic nuclei stimulate a development
of the nuclear models [1–3] to describe properties of nuclei
away from the stability line. One of the standard tools for
nuclear structure studies is the quasiparticle random phase
approximation (QRPA) with the self-consistent mean-field
derived by making use of effective nucleon-nucleon interac-
tions that are taken whether as nonrelativistic two-body forces
[4,5] or derived from relativistic Lagrangians [6]. Because
these QRPA calculations are performed with the same energy
functional as that determining the mean-field the introduction
of new parameters is not required. Such an approach describes
the properties of the low-lying states less accurately than more
phenomenological ones, but the results are in a reasonable
agreement with experimental data [7–11].

When the residual interaction is separable [12], the QRPA
equations can be easily solved no matter how many two-
quasiparticle configurations are involved. Starting from an
effective interaction of the Skyrme type, a finite rank separable
approximation was proposed [13] for the particle-hole (p-h)
residual interaction. Such an approach allows one to perform
structure calculations in very large particle-hole spaces. Thus,
the self-consistent mean-field can be calculated within the
Hartree-Fock (HF) method with the original Skyrme inter-
actions, whereas the RPA solutions are obtained with the
finite rank approximation for the p-h matrix elements. This
approach can be extended to include the pairing correlations
within the BCS approximation [14]. Alternative schemes to
factorize the p-h interaction have also been considered in
Refs. [15–17].

Due to the anharmonicity of vibrations there is a cou-
pling between one-phonon and more complex states [2] and
the complexity of calculations beyond the standard QRPA
increases rapidly with the size of the configuration space.
We have generalized our approach to take into account a
coupling between the one- and two-phonon components of
wave functions in Ref. [18], where we follow the basic ideas
of the quasiparticle-phonon model (QPM) [12]. However,
the single-quasiparticle spectrum and the parameters of the

residual interaction are calculated with Skyrme forces. Note
that the QPM [12] can achieve very detailed predictions for
nuclei away from closed shells [19], but it is difficult to
extrapolate the phenomenological parameters of the model
Hamiltonian to new regions of nuclei.

In the present work, we propose an extension of our
approach by taking into account the particle-particle (p-p)
residual interaction. As an application we present the evolution
of lowest quadrupole states in even-even nuclei around the
132Sn region. Using the neutron-rich radioactive ion beams, the
recent B(E2) measurements through Coulomb excitation in
inverse kinematics give an opportunity to compare our results
and the experimental data [20,21].

This article is organized as follows: in Sec. II we sketch
our method, where the residual interaction is obtained by the
finite rank approximation. The Hamiltonian is constructed in
Sec. II A whereas detailed expressions for the residual inter-
action are given in Appendixes A and B. We consider the
QRPA equations in the case of separable residual interactions
in Sec. II B, and the solving of these equations is explained in
Appendix C. In Sec. III we show how this approach can be
applied to treat the low-lying states. Results of calculations for
characteristics of the 2+

1 states in the Sn and Te isotopes and
the N = 82 isotones are discussed in Sec. IV. Conclusions are
drawn in Sec. V.

II. METHOD OF CALCULATION

A. The model Hamiltonian

The starting point of the method is the HF-BCS calculation
[3] of the ground states. We restrict the present discussion to
the case of spherical symmetry. The continuous part of the
single-particle spectrum is discretized by diagonalizing the
HF Hamiltonian on a harmonic oscillator basis [22]. We work
in the quasiparticle representation defined by the canonical
Bogoliubov transformation

a+
jm = ujα

+
jm + (−1)j−mvjαj−m, (1)

where jm denote the quantum numbers nljm. We use the
Skyrme interaction [23] in the p-h channel, while the pairing
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correlations are generated by a surface peaked density-
dependent zero-range force

Vpair(r1, r2) = V0

(
1 − ρ(r1)

ρc

)
δ(r1 − r2). (2)

In definition (2), ρ(r1) is the particle density in coordinate
space, ρc is equal to the nuclear saturation density, and the
strength V0 is a parameter fixed to reproduce the odd-even
mass difference of nuclei in the studied region. In Sec. III,
we discuss how to make the choice of the parameter V0. To
avoid divergences, it is necessary to introduce a cutoff in the
single-particle space. This cutoff limits the active pairing space
above the Fermi level. As proposed in Refs. [24,25], we have
used the smooth cutoff by multiplying the p-p matrix elements
with cutoff factors ηj taken as

η2
j =

(
1 + exp

(
Ej − λ − �E

µ

))−1

. (3)

Ej are the single-particle energies, and λn,p is the chemical
potential. In our calculations we have set the energy cutoff �E

equal to 10 MeV above the Fermi level, the width parameter
µ being 0.5 MeV.

The residual interaction V
ph

res in the p-h channel and V
pp

res in
the p-p channel can be obtained as the second derivatives of the
energy density functional with respect to the particle density
ρ and the pair density ρ̃, respectively. Following the method
introduced in Ref. [13] we simplify V

ph
res by approximating

it by its Landau-Migdal form. For Skyrme interactions the
Landau parameters are functions of the coordinate r and all
parameters with l > 1 vanish. We keep only the l = 0 terms in
V

ph
res and the expressions for F

ph
0 ,G

ph
0 , F

′ph
0 , and G

′ph
0 in terms

of the Skyrme force parameters can be found in Ref. [26].
In this work we study only normal parity states and one can
neglect the spin-spin terms because they play a minor role. The
Coulomb and spin-orbit residual interactions are also dropped.
Therefore we can write the residual interaction in the following
form:

V a
res(r1, r2) = N−1

0

[
Fa

0 (r1) + F ′a
0 (r1)τ1 · τ2

]
δ(r1 − r2), (4)

where a is the channel index a = {ph, pp}, τi is the isospin
operator, and N0 = 2kF m∗/π2h̄2, with kF and m∗ standing for
the Fermi momentum and nucleon effective mass. For the p-p
channel the expressions for F

pp
0 and F

′pp
0 have the following

forms:

F
pp
0 (r) = 1

4
N0V0

(
1 − ρ(r)

ρc

)
, (5)

F
′pp
0 (r) = F

pp
0 (r). (6)

As a matter of fact, the definition of the pairing force (2)
involves the energy cutoff of the single-particle space to restrict
the active pairing space within the mean-field approximation.
This energy cutoff is still required to eliminate the p-p matrix
elements of the residual interaction in the case of the subshells
that are far from the Fermi level. The region of influence of
the residual p-p interaction is confined to the BCS subspace

V
pp

1234 = Ṽ
pp

1234η1η2η3η4, (7)

where all subshells below the energy cutoff are included.

The two-body matrix elements

V1234 =
∫

φ∗
1 (r1)φ∗

2 (r2)Vres(r1, r2)φ3(r1)φ4(r2)dr1dr2 (8)

can be written as

V
ph
j1m1j2m2j3m3j4m4

= Ĵ−2
∑
JM

(−1)j−M+j3−m3+j4−m4

×〈j1m1j3 − m3|J − M〉〈j2m2j4 − m4|JM〉
× 〈j1‖iJ YJ ‖j3〉〈j2‖iJ YJ ‖j4〉I ph(j1j2j3j4), (9)

V
pp
j1m1j2m2j3m3j4m4

=
∑
JM

〈j1m1j2m2|JM〉〈j3m3j4m4|JM〉

× ηj1ηj2ηj3ηj4

∑
λ

{
j4 j3 J

j1 j2 λ

}

× (−1)j2+j3+λ+J 〈j1‖iλYλ‖j3〉
× 〈j2‖iλYλ‖j4〉I pp(j1j2j3j4) (10)

in the p-h and p-p channels, respectively. In the above ex-
pressions, Ĵ = √

2J + 1, 〈j1||iJ YJ ||j3〉 is the reduced matrix
element of the spherical harmonics YJµ [27], I a(j1j2j3j4) is
the radial integral:

I a(j1j2j3j4) = N−1
0

∫ ∞

0

(
Fa

0 (r) + F ′a
0 (r)τ 1 · τ 2

)
× uj1 (r)uj2 (r)uj3 (r)uj4 (r)

dr

r2
, (11)

where the radial wave functions u(r) are related to the single-
particle wave functions,

φi,m(1) = ui(r1)

r1
Ym

li ,ji
(r̂1, σ1). (12)

We see that the p-h matrix elements are in the separable
form in the angular coordinates. The separability of the
antisymmetrized p-p matrix elements is proved in Appendix A.
The radial integrals (11) can be calculated accurately by
choosing a large enough cutoff radius R and using an N -point
integration Gauss formula with abscissas rk and weights wk .
Thus, the residual interaction can be reduced to a finite rank
separable form:

V̂res = 1

4

∑
a

∑
1234

(
V a

1234 − V a
1243

)
: a+

1 a+
2 a4a3 :

= −1

2

∑
aλµ

N∑
k=1

∑
τq=±1

(
κ

(a,k)
0 + qκ

(a,k)
1

)
×: M̂ (a,k)+

λµ (τ )M̂ (a,k)
λµ (qτ ) : . (13)

We sum over the proton (p) and neutron (n) indexes and
the notation {τ = (n, p)} is used. A change τ ↔ −τ means
a change p ↔ n. κ (ph,k) (κpp,k)) are the multipole interac-
tion strengths in the p-h (p-p) channel and they can be
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expressed as


κ
(ph,k)
0

κ
(ph,k)
1

κ
(pp,k)
0

κ
(pp,k)
1


 = −N−1

0

Rwk

2r2
k




F
ph
0 (rk)

F
′ph
0 (rk)

1
2F

pp
0 (rk)

1
2F

′pp
0 (rk)


 . (14)

The multipole operators entering the normal products in
Eq. (13) are defined as follows:

M̂
(ph,k)+
λµ (τ ) = λ̂−1

τ∑
jj ′mm′

(−1)j+m

×〈jmj ′ − m′|λµ〉f (λk)
j ′j a+

jmaj ′m′ , (15)

M̂
(pp,k)+
λµ (τ ) = (−1)λ−µλ̂−1

×
τ∑

jj
′
mm′

〈jmj ′m′|λµ〉f (λk)
jj ′ ηjηj ′a+

jma+
j

′
m′ ,

(16)

where f
(λk)
j1j2

are the single-particle matrix elements of the
multipole operators,

f
(λk)
j1j2

= uj1 (rk)uj2 (rk)〈j1||iλYλ||j2〉. (17)

Technical details of the proof of Eq. (13) for particle-hole
channel are given in Appendix B.

The residual interaction (13) is represented in terms of bi-
fermion quasiparticle operators and their conjugates:

B(jj ′; λµ) =
∑
mm′

(−1)j
′+m′ 〈jmj ′m′|λµ〉α+

jmαj ′−m′ , (18)

A+(jj ′; λµ) =
∑
mm′

〈jmj ′m′|λµ〉α+
jmα+

j ′m′ . (19)

Thus, the Hamiltonian of our method has the same form as
the Hamiltonian of the QPM [12], but the single-quasiparticle
spectrum and the parameters of the residual interaction are
calculated with the Skyrme forces.

B. QRPA equations for separable residual interactions

We introduce the phonon creation operators

Q+
λµi = 1

2

∑
jj ′

(
Xλi

jj ′ A
+(jj ′; λµ)

− (−1)λ−µY λi
jj ′ A(jj

′
; λ − µ)

)
, (20)

where the index λ denotes total angular momentum and µ is
its z projection in the laboratory system. One assumes that the
ground state is the QRPA phonon vacuum |0〉. We define the
excited states as Q+

λµi |0〉 with the normalization condition

〈0|[Qλµi,Q
+
λµi ′]|0〉 = δii ′ . (21)

Making use of the linearized equation-of-motion approach [1]
one can get the QRPA equations [3]( A B

−B −A

) (
X

Y

)
= ω

(
X

Y

)
, (22)

where the A(λ)
(j1j

′
1)(j2j

′
2) matrix is related to forward-going graphs

and the B(λ)
(j1j

′
1)(j2j

′
2) matrix is related to backward-going graphs.

The dimension of the matrices A,B is the space size of the
two-quasiparticle configurations. In our case, we obtain

A(λ)
(j1 � j ′

1)τ (j2 � j ′
2)qτ

= εj1j
′
1
δj2j1δj ′

2j
′
1
δq1 − λ̂−2

(
1 + δj2j

′
2

)−1

×
N∑

k=1

f
(λk)
j1j

′
1
f

(λk)
j2j

′
2

[(
κ

(ph,k)
0 + qκ

(ph,k)
1

)
× u

(+)
j1j

′
1
u

(+)
j2j

′
2
+ (

κ
(pp,k)
0 + qκ

(pp,k)
1

)
× ηj1j

′
1
ηj2j

′
2

(
v

(+)
j1j

′
1
v

(+)
j2j

′
2
+ v

(−)
j1j

′
1
v

(−)
j2j

′
2

)]
,

(23)

B(λ)
(j1 � j ′

1)τ (j2 � j ′
2)qτ

= −λ̂−2
(
1 + δj2j

′
2

)−1

×
N∑

k=1

f
(λk)
j1j

′
1
f

(λk)
j2j

′
2

[(
κ

(ph,k)
0 + qκ

(ph,k)
1

)
× u

(+)
j1j

′
1
u

(+)
j2j

′
2
− (

κ
(pp,k)
0 + qκ

(pp,k)
1

)
× ηj1j

′
1
ηj2j

′
2

(
v

(+)
j1j

′
1
v

(+)
j2j

′
2
− v

(−)
j1j

′
1
v

(−)
j2j

′
2

)]
,

(24)

where εjj ′ = εj + εj ′ , ηjj ′ = ηj + ηj ′ , u
(+)
jj ′ = ujvj ′ + vjuj ′ ,

and v
(±)
jj ′ = ujuj ′ ± vjvj ′ . The explicit solution of the corre-

sponding QRPA equations is given in Appendix C. Thus, this
approach enables one to reduce remarkably the dimensions
of the matrices that must be inverted to perform structure
calculations in very large configuration spaces. It is shown that
the matrix dimensions never exceed 6N × 6N independently
of the configuration space size. If we omit the residual
interaction in the p-p channel then the matrix dimension is
reduced by a factor 3 [13,14].

III. DETAILS OF CALCULATIONS

We apply our approach to study characteristics of the
lowest vibrational states in the nuclei around the 132Sn region.
In this work we use the parametrization SLy4 [23] of the
Skyrme interaction. One peculiarity is that the parameters
of the force have been adjusted to describe the pure neutron
matter. It follows that this parametrization is a good candidate
to describe isotopic properties of nuclei from the β-stability
line to the neutron drip line. In our calculations the single-
particle continuum is discretized [22] by diagonalizing the HF
Hamiltonian on a basis of 12 harmonic oscillator shells and
cutting off the single-particle spectra at the energy of 100 MeV.
This is sufficient to exhaust practically all the energy-weighted
sum rule within the QRPA. We use the isospin-invariant
surface-peaked pairing force (2). The value ρc = 0.16 fm−3 is
the nuclear saturation density for the SLy4 force. The pairing
strength V0 is fitted to reproduce the pairing energies given by

PN = 1
2 (B(N,Z) + B(N − 2, Z) − 2B(N − 1, Z)) (25)

for neutrons, and similarly for protons. The strength V0 is
taken equal to −940 MeV fm3 to get a reasonable description
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TABLE I. Properties of the 2+
1 state in 130Te as an illustrative

example to demonstrate the effect of the residual p-p interaction.

Residual interaction E (MeV) B(E2 ↑)(e2 fm4)

ph 1.49 3400
ph+pp 1.15 4000
ph+pp (cutoff) 1.27 3600

of the energies (25) for both protons and neutrons. The
Landau parameters F

ph
0 , F

ph′
0 ,G

ph
0 , and G

ph′
0 expressed in

terms of the Skyrme force parameters [26] depend on kF .
As it is pointed out in our previous works [13,14] one needs
to adopt some effective value for kF to give an accurate
representation of the original p-h Skyrme interaction. For the
present calculations we use the nuclear matter value for kF .
Our previous investigations [14,18] enable us to conclude that
N = 45 for the rank of our separable approximation is enough
for multipolarities λ � 6 in nuclei with A � 208. For example,
the calculation with N = 60 changes results of energies and
transition probabilities by no more than 1%.

It is worth mentioning the significance of the energy cutoff
of the single-particle space to confine the active space of the
residual p-p interaction. Our choice for the cutoff eliminates
matrix elements (10) coupling single-particle states inside and
outside of the BCS subspace. As can be seen from Table I,
omitting the energy cutoff would lead to an overestimation of
the effect of the residual p-p interaction on the 2+

1 energy and
B(E2 ↑) in 130Te, for example.

IV. RESULTS

A. Sn isotopes

As the first application of the method we investigate the
p-p channel effects on energies and transition probabilities
of 2+

1 states in 124−134Sn. Results of our calculations for the
2+

1 energies and B(E2) transition probabilities are compared
with experimental data [20,21,28] in Fig. 1. As can be
seen from Fig. 1, there is a remarkable increase of the 2+

1
energy and B(E2 ↑) in 132Sn in comparison with those in
130,134Sn. As it was explained in our previous paper [18] such
a behavior of B(E2 ↑) is related with the proportion between
the QRPA amplitudes for neutrons and protons in Sn isotopes.
Including the p-p channel changes contributions of the main
configurations only slightly, but the general structure of the
2+

1 remains the same. The neutron amplitudes are dominant
in all Sn isotopes and the contribution of the main neutron
configuration {1h11/2, 1h11/2} increases from 58% (61% in the
case of the inclusion the p-h interaction only) in 124Sn to 85.6%
(85.3% for the p-h case) in 130Sn when neutrons fill the subshell
1h11/2. At the same time the contribution of the main proton
configuration {2d5/2, 1g9/2} is decreasing from 15% in 124Sn
to 7% in 130Sn. The closure of the neutron subshell 1h11/2 in
132Sn leads to the vanishing of the neutron pairing. The energy
of the first neutron two-quasiparticle pole {2f7/2, 1h11/2} in
132Sn is larger than energies of the first poles in 130,134Sn

FIG. 1. Energies and B(E2) values for up-transitions to the first
2+ states in 124−134Sn.

and the contribution of the {2f7/2, 1h11/2} configuration in the
doubly magic 132Sn is about 61%. Furthermore, the first pole
in 132Sn is closer to the proton poles. This means that the
contribution of the proton two-quasiparticle configurations is
larger than those in the neighboring isotopes and as a result
the main proton configuration {2d5/2, 1g9/2} in 132Sn exhausts
about 33%. In 134Sn the leading contribution (about 96%)
comes from the neutron configuration {2f7/2, 2f7/2} and as
consequently the B(E2) value is reduced. Such a behavior
of the 2+

1 energies and B(E2) values in the neutron-rich
Sn isotopes reflects the shell structure in this region. As
one can see from Fig. 1 the inclusion of the p-p channel
results in a reduction of energies and transition probabilities.
The calculations reproduce very well a general behavior
for energies and transition probabilities, but there is some
overestimation in comparison with the experimental data.
One can expect an improvement if the coupling with the
two-phonon components of the wave functions [18] is taken
into account. Such calculations are now in progress. It is worth
mentioning that the first prediction of the anomalous behavior
of 2+ excitations around 132Sn based on the QRPA calculations
with a separable quadrupole-plus-pairing Hamiltonian has
been done in Ref. [29].

Other QRPA calculations with Skyrme [10,30] and Gogny
[31] forces give similar tendencies for the energies and
the transition probabilities of 2+

1 states in 124−134Sn. Let us
compare our results with the ones in Ref. [30]. In both cases,
the same effective interactions, the Skyrme SLy4 [23] in the
particle-hole channel and the density-dependent zero-range
force (2) in the particle-particle channel, are used. For 132Sn,
E = 5.13 MeV and B(E2 ↑) = 1370 e2fm4 are represented
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in Ref. [30]. Our calculated B(E2) value is in good agreement
but our 2+

1 energy is somewhat smaller. This discrepancy
may be related with an approximate treatment of the velocity-
dependent terms of Skyrme interactions in our approach. The
calculation [30] does not employ this approximation. One can
see agreement between the results for the doubly magic 132Sn,
but there is a disagreement for the open-shell nuclei. The
2+

1 energies and B(E2) values are larger in our calculation
than those in Ref. [30]. The origin of that cannot be expected
to be unique. A possible source of this discrepancy can be
the choice of the strength V0 of the pairing force (2). We
fix the V0 to reproduce the neutron pairing energies (25)
for 124−134Sn, 128−136Te, and 136Xe and the proton pairing
energies for 128−136Te and 136Xe. If the pairing strength is
fitted to describe the Sn isotopes pairing energies only, then
our 2+

1 energies (for example, see Ref. [18]) are in reasonable
agreement with the results [30]. However, the B(E2) values
are in worse agreement than the excitation energy. A possible
reason is a treatment of velocity-dependent terms of the
residual interaction (4) in our method. Besides, in both cases
the single-particle continuum is treated approximately. The
different schemes of the discretization of the continuum are
used in our calculation and in Ref. [30], where the HF
Hamiltonian is diagonalized in the coordinate space with the
box boundary condition. It is worth mentioning that the B(E2)
values are very sensitive to the details of calculations.

B. Te isotopes

Let us now discuss the Te isotopes. The calculated 2+
1 state

energies and transition probabilities B(E2) in the 128−136Te
isotopes and experimental data [20,21,28] are shown in Fig. 2.

FIG. 2. Energies and B(E2) values for up-transitions to the first
2+ states in 128−136Te.

The general behavior of energies of the Te isotopes is similar
to that of the Sn isotopes. They have a maximal value at
N = 82, but the behavior of the B(E2) values is different
and corresponds to a standard evolution of the B(E2) near
closed shells. As can be seen from Fig. 2, there is a decrease of
the 2+

1 energies due to the inclusion of the p-p channel. At the
same time the B(E2) values do not change practically. It means
that the collectivity of the 2+

1 states is reduced. The neutron
configurations exhaust about 17 and 28% of the wave function
normalization in 132Te and 136Te, respectively. In 134Te the
contribution of the neutron configurations is less than 3%
and the dominant proton configuration {1g7/2, 1g7/2} gives a
contribution of about 65% that is almost twice larger than that
in the neighboring Te isotopes. As far as a contribution of
this configuration into the transition probability is less than
contributions of other proton configurations, the B(E2) values
have such a behavior near N = 82. The structure of the 2+

1 in
132Te is similar to that in 136Te and as a result the B(E2) values
differ slightly.

Our calculations describe correctly the isotopic dependence
of energies and transition probabilities and they are in a
reasonable agreement with the available experimental data. It
is worth mentioning that the anharmonicity effects are strong
for the light Te isotopes and the QRPA is not very good in such
a case. The B(E2) value in the neutron-rich isotope 136Te is
only slightly larger than that of 134Te, in contrast to the trend of
Ce, Ba, and Xe isotopes [20,21,28]. As is shown in Ref. [29],
such a behavior of B(E2) is related with the shell structure
in this region and an interplay between the QRPA amplitudes
for neutrons and protons in Te isotopes. The difference in
the neutron pairing gaps of 132,136Te plays the key role in

FIG. 3. Energies and B(E2) values for up-transitions to the first
2+ states in the N = 82 isotones.
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TABLE II. (Mn/Mp)/(N/Z) ratios for the first 2+
1 states.

Nucleus 128Pd 130Cd 132Sn 134Te 136Xe

Theory 0.47 0.49 0.81 0.54 0.55

explaining this peculiarity. Our calculations give the similar
asymmetry around N = 82; the average neutron pairing gap is
equal to 1.1 MeV for 132Te and 0.9 MeV for 136Te. As a result, it
is shown above that the contribution of neutron configurations
in 132Te is less than that of those in 136Te.

C. N = 82 isotones

It is interesting to study a change of the structure of the
2+

1 states along the N = 82 isotones chain. The N = 82
isotones below the doubly magic nucleus 132Sn are crucial for
stellar nucleosynthesis [32]. Results of our calculations and
existing experimental data [21,28,32,33] are shown in Fig. 3.
It can be seen that the inclusion of the p-p channel does not
change energies and transition probabilities along this chain.
Going along the N = 82 isotones chain one can find that 2+

1
states in 128Pd and 130Cd have a noncollective structure with
a domination of the proton configuration {1g9/2, 1g9/2}. In
132Sn, as is discussed above, the main configurations are the
neutron {2f7/2, 1h11/2} (61%) and the proton {2d5/2, 1g9/2}
(33%) ones. In 134Te and 136Xe the 2+

1 states are very collective
and many proton configurations contribute in their structure.
The structure peculiarities are reflected in the B(E2) behavior
in this chain. Higher collectivity results in an increase of
the transition probability. Additional information about the
structure of the first 2+ states can be extracted from the
proton scattering experiments (for example, see Ref. [34]) by
looking at the ratio of the multipole transition matrix elements
Mn/Mp that depends on the relative contributions of the proton
and neutron configurations. Results of our calculations are
given in Table II, where the Mn/Mp ratio for 128Pd, 130Cd is
less than half of N/Z value, indicating a very strong proton
contribution. According to our calculations there is a sharp
increase of Mn/Mp at Z = 50, N = 82. Such a behavior of the
multipole transition matrix elements Mn/Mp in other nuclei
can indicate a shell closure.

FIG. 4. Neutron (solid line) and proton (dashed line) transition
densities of the 2+

1 state of 130Cd.

Another quantity that characterizes the 2+
1 state is the

transition density. As an example the neutron and proton
transition densities of the 2+

1 state of 130Cd are displayed in
Fig. 4. The neutron transition density is shifted outward as
compared to the proton transition density due to the presence
of the neutron skin. We get a similar tendency in the case of
the other isotones but this effect becomes weak in 136Xe.

V. CONCLUSIONS

A finite rank separable approximation for the QRPA
calculations with Skyrme interactions that was proposed in
our previous work is extended to take into account the residual
particle-particle interaction. This approximation enables one
to reduce considerably the dimensions of the matrices that
must be inverted to perform structure calculations in very
large configuration spaces. As an illustration of the method
we have studied the energies and transition probabilities of
the 2+

1 states around the 132Sn region. Using the same set
of parameters we describe available experimental data and
give predictions for the N = 82 isotones that are important
for stellar nucleosynthesis. Including the quadrupole p-p
interaction results in a reduction of the collectivity and this
may be more important for nuclei far from closed shells. Such
calculations that take into account the two-phonon terms in
wave functions are in progress now.
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APPENDIX A

In this appendix, we derive the formulas that help us to
represent the antisymmetrized p-p matrix elements in the
separable form in the angular coordinates.

In Eq. (10) the sum over λ can be transformed into

∑
λ

(−1)j2+j3+J+λ

{
j4 j3 J

j1 j2 λ

}
〈j1‖iλYλ‖j3〉〈j2‖iλYλ‖j4〉

= ĵ1ĵ2ĵ3ĵ4 (16π )−1 il3+l4−l1−l2

×
(

(1 + (−1)l1+l2+l3+l4 )

(
j3 j4 J

− 1
2 − 1

2 1

)

×
(

j1 j2 J

− 1
2 − 1

2 1

)
− (

(−1)l1+l3 + (−1)l2+l4
)
(−1)j1+j3

×
(

j3 J j4

− 1
2 0 1

2

) (
j1 J j2

− 1
2 0 1

2

))
. (A1)
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Then, the antisymmetrized p-p matrix elements take the form

V
pp

1234 − V
pp

1243 = Ĵ−2
∑
JM

〈j1m1j2m2|JM〉

×〈j3m3j4m4|JM〉〈j1‖iJ YJ ‖j2〉〈j3‖iJ YJ ‖j4〉
×I pp(j1j2j3j4)ηj1ηj2ηj3ηj4 . (A2)

APPENDIX B

For the sake of completeness we consider how to get the
finite rank separable form (13) for the p-h residual interaction
(4). In Eq. (9) the p-h matrix elements are written as the the sum
of the term represented in the separable form in the angular
coordinates. Using an N -point integration Gauss formula, the
nonseparable radial term (11) is replaced by the separable
ansatz. Thus we can get the direct terms in the following
separable form:

1

2

∑
1234

V
ph

1234 : a+
1 a+

2 a4a3 :

= −1

2

∑
λµ

N∑
k=1

∑
τq=±1

(
κ

(ph,k)
0 + qκ

(ph,k)
1

)
×: M̂ (ph,k)+

λµ (τ )M̂ (ph,k)
λµ (qτ ) : . (B1)

To change 3 ↔ 4 indexes in Eq. (9) the exchange terms can be
expressed as the sum of compositions of the M̂+M̂ operators:

1

2

∑
1234

V
ph

1243 : a+
1 a+

2 a4a3 :

= 1

2

∑
λµ

N∑
k=1

∑
τq=±1

(
κ

(ph,k)
0 + qκ

(ph,k)
1

)
×: M̂ (ph,k)+

λµ (τ )M̂ (ph,k)
λµ (qτ ) : . (B2)

APPENDIX C

Taking into account the residual p-p interaction we show
how the finite rank separable form of the residual force (13)
can simplify the solution of the QRPA equations (22). In the
6N -dimensional space we introduce a vector


D0(τ )

D+(τ )

D−(τ )




by its components

Dk
β(τ ) =

(
Dk

β(τ )

Dk
β(−τ )

)
, β = {0,+,−}

Dλik
0 (τ ) =

τ∑
jj ′

f
(λk)
jj ′ u

(+)
jj ′

(
Xλi

jj ′ + Yλi
jj ′

)
, (C1)

Dλik
± (τ ) =

τ∑
jj ′

f
(λk)
jj ′ ηjj ′v

(±)
jj ′ (Xλi

jj ′ ∓ Yλi
jj ′)

The index k runs over the N -dimensional space (k =
1, 2, . . . , N). Following our previous paper [14] the QRPA
equations (22) can be reduced to the following set of equations:


M00(τ ) − 1 M0+(τ ) M0−(τ )

M+0(τ ) M++(τ ) − 1 M+−(τ )

M−0(τ ) M−+(τ ) M−−(τ ) − 1




×



D0(τ )

D+(τ )

D−(τ )


 = 0, (C2)

where M is the 2N × 2N matrix

Mkk′
ββ ′ (τ ) =

( (
κ

(β ′,k′)
0 + κ

(β ′,k′)
1

)
T kk′

ββ ′ (τ )
(
κ

(β ′,k′)
0 − κ

(β ′,k′)
1

)
T kk′

ββ ′ (τ )(
κ

(β ′,k′)
0 − κ

(β ′,k′)
1

)
T kk′

ββ ′ (−τ )
(
κ

(β ′,k′)
0 + κ

(β ′,k′)
1

)
T kk′

ββ′ (−τ )

)
, 1 � k, k′ � N. (C3)

In the definition (C3), κ (0,k′) = κ (ph,k′), κ (±,k′) = κ (pp,k′). The
matrix elements T kk′

have the following form:

T kk′
00 (τ ) =

τ∑
jj ′

χλkk′
jj ′

(
u

(+)
jj ′

)2
εjj ′ ,

T kk′
++(τ ) =

τ∑
jj ′

χλkk′
jj ′

(
v

(+)
jj ′ ηjj ′

)2
εjj ′ ,

T kk′
−−(τ ) =

τ∑
jj ′

χλkk′
jj ′

(
v

(−)
jj ′ ηjj ′

)2
εjj ′ ,

T kk′
0+ (τ ) = T kk′

+0 (τ ) =
τ∑

jj ′
χλkk′

jj ′ u
(+)
jj ′ v

(+)
jj ′ ηjj ′ωλi,

T kk′
0− (τ ) = T kk′

−0 (τ ) =
τ∑

jj ′
χλkk′

jj ′ u
(+)
jj ′ v

(−)
jj ′ ηjj ′εjj ′ ,

T kk′
+−(τ ) = T kk′

−+(τ ) =
τ∑

jj ′
χλkk′

jj ′ v
(+)
jj ′ v

(−)
jj ′ (ηjj ′)2ωλi,

where

χλkk′
jj ′ = f

(λk)
jj ′ f

(λk′)
jj ′

λ̂2
(
ε2
jj ′ − ω2

λi

) .

One can see that the matrix dimensions never exceed 6N × 6N

independently of the size of the two-quasiparticle configura-
tion. The excitation energies ωλi are the roots of the secular
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equation

det


M00(τ ) − 1 M0+(τ ) M0−(τ )

M+0(τ ) M++(τ ) − 1 M+−(τ )
M−0(τ ) M−+(τ ) M−−(τ ) − 1


 = 0. (C4)

The phonon amplitudes corresponding to the QRPA eigenvalue
ωλi are obtained by Eq. (22) and the normalization condition
(21).
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