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Proton-neutron symmetry in 92Zr, 94Mo with Skyrme interactions in a separable approximation
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Starting from a Skyrme interaction we study the properties of the low-energy spectrum of quadrupole excitations
in 90,92Zr and 92,94Mo. The coupling between one- and two-phonon terms in the wave functions of excited states
are taken into account. We use the finite-rank separable approximation which enables one to perform the QRPA
calculations in very large two-quasiparticle spaces. Our results from the SGII Skyrme interaction in connection
with the volume pairing interaction are in reasonable agreement with experimental data. In particular, we present
the successful description of the M1 transition between low-energy quadrupole excitations.
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I. INTRODUCTION

Properties of the quadrupole-collective isovector excita-
tions of the valence shell of heavy nuclei reflect three main
aspects: collectivity, shell structure, and the isospin degree of
freedom. The balance between these aspects has been studied
within a series of experiments on so-called mixed-symmetry
(MS) states. A rather complete list of references on that subject
is given in Ref. [1]. These isovector excitations were predicted
in the proton-neutron version of the interacting boson model
(IBM-2) [2], where the proton-neutron symmetry of the wave
functions is quantified by the bosonic analog of the isospin, F
spin [3–5]. In particular, there are the symmetric states with
maximum F spin (F = Fmax) and the MS ones with F < Fmax.
One of the well-known examples is the MS quadrupole state
with F = Fmax − 1 in the nucleus 94Mo which was identified
by the measured strong M1 transitions and weakly collective
E2 transitions to low-lying symmetric states [6–8]. In contrast
to the case for 94Mo, the next-lighter even-even N = 52
isotone 92Zr has the proton subshell closure Z = 40 and the
collectivity of the 2+

1 state decreases. As a result, the collective
MS structure and the structures showing considerable F -spin
breaking have been observed experimentally [9–11]. This
sensitivity makes the MS states highly appealing objects for
studies in microscopic approaches.

The results of the conventional shell-model (SM) calcula-
tions in strongly restricted spaces [9,12,13] and of large-scale
SM calculations [14–16] have indicated the occurrence of MS
quadrupole states in nuclei of the A ≈ 130 and A ≈ 90 mass
regions along with a substantial breaking of F -spin symmetry
in 92Zr. For the case of 94Mo, the wave functions and the M1
and E2 matrix elements support the MS assignments for the 2+

3
state, and the consistency with the IBM-2 predictions proves
the collective character of the observed low-lying levels. For
92Zr, the calculated 2+

1,2 states are predominantly the pure
neutron and isovector excitations, respectively. This means
that the single-particle and collective degrees of freedom are
present in the low-energy spectrum.

An alternative powerful microscopic approach is the
quasiparticle-phonon model (QPM) [17]. Its ability to describe
low-energy nuclear spectroscopy has recently been reviewed
in Ref. [18]. The model Hamiltonian is diagonalized in a

space spanned by states composed of one, two, and three
phonons which are generated in the quasiparticle random-
phase approximation (QRPA). The separable form of the
residual interaction is the practical advantage of the QPM
which allows one to perform the structure calculations in
large configurational spaces. For 94Mo, the QPM confirms
the IBM-2 level scheme, selection rules, and, in particular, the
dominant one-phonon structure of the transitions to the first
and third 2+ states [8,19]. Also, the QPM gives a satisfactory
and comprehensive description of the large variety of data
measured for 92Zr [11,20,21]. The QPM wave functions of the
two lowest 2+ states are dominated by the lowest neutron and
proton two-quasiparticle components and the structures are
very similar to results of the shell-model calculations. Thus, the
QPM can provide microscopic support to the IBM-2 scheme.
However, it is difficult to extrapolate the model parameters to
new regions of nuclei.

The properties of MS states are particularly sensitive to
the proton-neutron interaction [22,23]. On the other hand, the
dominance of the proton-neutron attraction is one of the main
characteristics of the effective nucleon-nucleon interaction. It
can be traced back to the cooperation of its T = 0 and T = 1
channels. This is a good possibility for examining microscopic
approaches using effective nucleon-nucleon interactions. One
of the successful tools for nuclear structure studies is the QRPA
with the Skyrme interaction [24,25]. These QRPA calculations
allow one to relate the properties of the ground states and
excited states through the same energy density functional.
Although such an approach describes the properties of the
low-lying states less accurately than more phenomenological
ones, the results are still in a reasonable agreement with
experimental data, in particular, with respect to qualitative
features of the properties of the 2+

1 states of predominantly
one-phonon excitations, see for example Refs. [26–29].

The complexity of calculations taking into account the
coupling between one-phonon and more complex states
increases rapidly with the size of the configurational space.
Making use of the finite rank separable approximation (FRSA)
[30,31] for the residual interaction enables one to perform
QRPA calculations in very large two-quasiparticle spaces.
Taking into account the basic QPM ideas, the approach has
been generalized to take into account the coupling between
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one- and two-phonon components of the wave functions [32].
The FRSA has been used to study the electric low-lying states
and giant resonances within the QRPA and beyond [30–34].
Alternative schemes to factorize the residual interaction have
also been considered in Refs. [35–37]. A trial to describe
MS states on the basis of a Skyrme mean field is given in
Ref. [38] where approximations are made with respect to the
simplified separable forces. Using the FRSA we will avoid
those approximations in our study.

Before investigating the occurrence of MS states in neutron-
rich nuclei one needs to be sure that the approach is sufficiently
good to reproduce characteristics of the low-energy spectrum
of quadrupole excitations of nuclei in the mass range A ≈ 90,
in particular, the M1 transitions between the excitations. This
initial paper gives an illustration of our approach for 92Zr and
94Mo in comparison to the N = 50 isotones 90Zr and 92Mo
with closed neutron shell. Preliminary results of our studies
for 94Mo are reported already in Ref. [39].

This paper is organized as follows. In Sec. II, we sketch
the method that allows us to consider the phonon-phonon
coupling. In particular, the QRPA equations in the case of
the finite-rank separable form of the residual interaction
are discussed in Sec. II A. The coupling between one- and
two-phonon terms in the wave functions of excited states are
taken into account in Sec. II B. In Sec. III, we discuss the
details of our calculations and show how this approach can be
applied to treating the proton-neutron mixed-symmetry states.
Results of our calculations for properties of the quadrupole
states in 90,92Zr and 92,94Mo are given in Sec. IV. Section IV A
is devoted to a QRPA analysis, while the effects of the phonon-
phonon coupling are discussed in Sec. IV B. Conclusions are
finally drawn in Sec. V.

II. METHOD

This method has already been introduced in Refs. [30–33];
hence, let us briefly summarize the different steps. For the
present study, the anharmonicity of the low-energy vibrations
is constrained by the coupling between one- and two-phonon
terms in the wave functions of excited states.

A. Implementation of QRPA

The starting point of the method is the Hartree-Fock
(HF)-BCS calculation [40] of the ground state, where spherical
symmetry is imposed on the quasiparticle wave functions. The
continuous part of the single-particle spectrum is discretized
by diagonalizing the Skyrme HF Hamiltonian on a harmonic
oscillator basis. As effective interactions, Skyrme interactions
are used in the particle-hole (p-h) channel, and the pairing
correlations are generated by a density-dependent zero-range
force

Vpair(r1, r2) = V0

[
1 − η

(
ρ(r1)

ρ0

)α]
δ(r1 − r2), (1)

where ρ(r1) is the particle density in coordinate space; ρ0

is equal to the nuclear saturation density; α, η, and V0 are
model parameters. We use α = 1; η = 0, η = 0.5, and η = 1

are the cases of a volume interaction, a mixed interaction, and
a surface-peaked interaction, respectively. The strength V0 is
fitted to reproduce the odd-even mass difference in the region
of nuclei considered here. To limit the pairing single-particle
space, we have used the smooth cutoff at 10 MeV above the
Fermi energies [31,41,42].

The residual interaction in the p-h channel V
ph

res and in
the particle-particle (p-p) channel V

pp
res can be obtained as the

second derivative of the energy density functional with respect
to the particle density and the pair density, accordingly. As
proposed in Ref. [30], we simplify V

ph
res by approximating it

by its Landau-Migdal form. All Landau parameters with l > 1
are equal to zero in the case of Skyrme interactions. We keep
only the l = 0 terms in V

ph
res . In this work we study only normal

parity states and one can neglect the spin-spin terms since they
play a minor role [26,33]. Also, the two-body Coulomb and
spin-orbit residual interactions are dropped. Therefore we can
write the residual interaction as

V a
res(r1, r2) = N−1

0

[
Fa

0 (r1) + F
′a
0 (r1)τ 1 · τ 2

]
δ(r1 − r2), (2)

where a is the channel index a = {ph, pp}; τ i are the isospin
operators, and N0 = 2kF m∗/π2h̄2 with kF and m∗ standing
for the Fermi momentum and nucleon effective mass.

The expressions for F
ph
0 , F

′ph
0 and F

pp
0 , F

′pp
0 can be found

in Refs. [43] and [31], respectively. Since the definition
of the pairing force (1) involves the energy cutoff of the
single-particle space to restrict the active pairing space within
the mean-field approximation, this cutoff is still required to
eliminate the p-p matrix elements of the residual interaction in
the case of the subshells that are far from the Fermi energies,
as in Ref. [31].

The p-h matrix elements and the antisymmetrized p-p
matrix elements can be written as the separable form in the
angular coordinates [30,31]. After integrating over the angular
variables we use an N -point integration Gauss formula for the
radial integrals. Thus, the residual interaction can be expressed
as the sum of N terms in FRSA for the Skyrme residual
interaction [30,31].

We introduce the phonon creation operators

Q+
λμi = 1

2

∑
jj ′

[
Xλi

jj ′ A
+(jj ′; λμ)

− (−1)λ−μY λi
jj ′ A(jj ′; λ − μ)

]
, (3)

A+(jj ′; λμ) =
∑
mm′

〈jmj ′m′ | λμ〉α+
jmα+

j ′m′ , (4)

where λ denotes the total angular momentum and μ is
its z projection in the laboratory system. α+

jm (αjm) is the
quasiparticle creation (annihilation) operator and jm denote
the quantum numbers nljm. One assumes that the ground state
is the QRPA phonon vacuum | 0〉 and the one-phonon excited
states are Q+

λμi | 0〉 with the normalization condition

〈0|QλμiQ
+
λ′μ′i ′ |0〉

= δλλ′δμμ′
1

2

∑
jj

′

(
Xλi

jj ′X
λi ′
jj ′ − Yλi

jj ′Y
λi ′
jj ′

) = δii ′ . (5)
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Making use of the linearized equation-of-motion approach,
one can get the QRPA equations [40]. Solutions of this
set of linear equations yield the one-phonon energies ωλi

and the amplitudes Xλi
jj ′ , Yλi

jj ′ of the excited states. There

are two types of QRPA matrix elements: the A
(λ)
(j1j

′
1)(j2j

′
2)

matrix related to forward-going graphs and the B
(λ)
(j1j

′
1)(j2j

′
2)

matrix related to backward-going graphs, and the dimension
of these matrices is the space size of the two-quasiparticle
configurations. Using the FRSA for the residual interaction,
the eigenvalues of the QRPA equations can be obtained as
the roots of a relatively simple secular equation, where the
matrix dimensions never exceed 6N × 6N independently of
the two-quasiparticle configuration space size [30,31]. The
studies [31–33] enable us to conclude that N = 45 for the
rank of our separable approximation is enough for the electric
excitations (J � 6) in nuclei with A � 208.

B. Phonon-phonon coupling

In the next stage, we construct the wave functions from a
linear combination of one-phonon and two-phonon configura-
tions

	ν(λμ) =
(∑

i

Ri(λν)Q+
λμi +

∑
λ1i1λ2i2

P
λ1i1
λ2i2

(λν)

× [
Q+

λ1μ1i1
Q+

λ2μ2i2

]
λμ

)
|0〉. (6)

with the normalization condition∑
i

R2
i (λν) + 2

∑
λ1i1λ2i2

[
P

λ1i1
λ2i2

(λν)
]2 = 1. (7)

Because of the completeness and orthogonality conditions for
the phonon operators, the bifermion operators A+(jj ′; λμ)
and A(jj ′; λμ) can be expressed by the phonon ones. The
Hamiltonian can be rewritten in terms of quasiparticle and
phonon operators [17,32].

The amplitudes Ri(λν) and P
λ1i1
λ2i2

(λν) are determined from
the variational principle

δ(〈	ν(λμ) |H |	ν(λμ)〉 − Eν(〈	ν(λμ)|	ν(λμ)〉 − 1)) = 0,

(8)

which leads to a set of linear equations [17,32]

(ωλi − Eν)Ri(λν) +
∑

λ1i1λ2i2

U
λ1i1
λ2i2

(λi)P λ1i1
λ2i2

(λν) = 0, (9)

2
(
ωλ1i1 + ωλ2i2 − Eν

)
P

λ1i1
λ2i2

(λν) +
∑

i

U
λ1i1
λ2i2

(λi)Ri(λν) = 0.

(10)

The Pauli principle corrections are dropped here since the
effect on the lowest excited states is small [17].

The rank of the set of linear equations (9) and (10) is equal
to the number of one- and two-phonon configurations included
in the wave function (6). Its solution requires us to compute the
matrix elements coupling one- and two-phonon configurations

U
λ1i1
λ2i2

(λi) = 〈0|QλiH
[
Q+

λ1i1
Q+

λ2i2

]
λ
|0〉. (11)

Equations (9) and (10) have the same form as the QPM
equations [17], but the single-particle spectrum and the
parameters of the residual interaction are calculated with the
Skyrme forces.

III. DETAILS OF CALCULATIONS

We apply the approach to the study of the low-energy
spectrum of 2+ excitations in the nuclei 90,92Zr and 92,94Mo. In
our calculations the single-particle continuum is discretized by
diagonalizing the HF Hamiltonian on a basis of 12 harmonic
oscillator shells and cutting off the single-particle spectra
at the energy of 100 MeV. This is sufficient to exhaust
practically all the energy-weighted sum rule. Because of the
large configurational space, we do not use effective charges.

The single-particle structure around the Fermi level is a key
ingredient in the microscopic analysis. For the investigation,
we adopt five Skyrme interactions, namely, SGII [43], SLy4
[44], SLy5 [44], SLy5 + T [45], and T44 [46]. The SGII
parametrization is the successful attempt to describe the
spin-dependent properties from a standard Skyrme force. In
particular, one obtains a good description of experimental
energies of the Gamow-Teller resonance of 90Zr [43]. The
parameters of the forces SLy4 and SLy5 have been adjusted to
reproduce nuclear matter properties, as well as nuclear charge
radii and binding energies of doubly magic nuclei. The forces
SLy5 + T and T44 involve the tensor terms added with (T44)
and without (SLy5 + T) refitting the parameters of the central
interaction. These five parametrizations describe correctly the
subshell order near the Fermi level of 90,92Zr and 92,94Mo.
To see this, the calculated neutron and proton single-particle
energies for the case of 92Zr and the experimental data [47] are
plotted in Fig. 1. The calculations with SGII reproduce well
the experimental data, and other choices of the Skyrme forces
do not improve the agreement.

We employ the isospin-invariant pairing force (1), with
the value ρ0 = 0.16 fm−3 of the nuclear saturation density
corresponding to the SGII force. The strength V0 is fitted to
get a reasonable description of the experimental neutron and
proton pairing energies of 90,92Zr and 92,94Mo,

PN = 1
2 [B(N,Z) + B(N − 2, Z) − 2B(N − 1, Z)], (12)

for neutrons, and similarly for protons. Thus, the strength V0

is taken equal to −270, −420, and −870 MeV fm3 for the
cases of the volume, mixed, and surface-peaked interaction,
respectively. To make the choice of the pairing interaction, it
is very useful to analyze the three lowest two-quasiparticle
states in 92Zr. Since the 2d5/2 neutron subshell is partially
filled and the 2p1/2 proton subshell is filled, one can expect
that the first level is the {2d5/2, 2d5/2} neutron state while the
second level is the {1g9/2, 1g9/2} proton one; see, for example,
Refs. [1,20,21]. As seen in Fig. 2 the different choices
have a strong impact on the unperturbed two-quasiparticle
excitations. Only the volume pairing interaction gives the
{1g9/2, 1g9/2} proton state as the second level. Thus, hereafter
we use the Skyrme interaction SGII in the particle-hole
channel together with the volume zero-range force acting in
the particle-particle channel.
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FIG. 1. Neutron (top) and proton (bottom) single-particle energies (in MeV) near the Fermi energies for 92Zr calculated with SGII, SLy4,
SLy5, SLy5 + T, and T44. The experimental spectra are taken from Ref. [47].

The Landau parameters F
ph
0 , F ph′

0 expressed in terms of the
Skyrme force parameters [43] depend on kF . As pointed out in
our previous works [30,33] one needs to adopt some effective
value for kF to give an accurate representation of the original
p-h Skyrme interaction. For the present calculations we use
the value kF = 1.45 fm−1 adjusted so as to have the spurious
center-of-mass state at zero energy.

It is worth mentioning the effect of the residual p-p
interaction within the QRPA. Figure 3 shows the effect on
the 2+

1,2 energies and the B(E2) values of 92Zr. Including the
quadrupole p-p interaction results in a decrease of the 2+

1,2
energies (about 0.1 MeV), and the B(E2) values do not change
practically.

Finally, we discuss the extension of the space for one- and
two-phonon configurations. To construct the wave functions
(6) of the low-lying 2+ states up to 4 MeV we use only the
2+ phonons for computational convenience. This restriction
can be justified by the result of the recent QPM calculations
with large configurational space [20,21], which demonstrate a

dominance (�90%) of the 2+ phonons in the wave functions
of the 2+

1 and 2+
ms states that are at our focus. It is worth

mentioning that all one- and two-phonon configurations with
energies up to 8 MeV are included. We have checked that the
inclusion of the high-energy configurations plays a minor role
in our calculations.

IV. RESULTS

A. QRPA analysis

First, properties of the low-lying quadrupole states are
studied within the one-phonon approximation. Results of our
calculations for the 2+

1,2 states in 90,92Zr and 92,94Mo for the
energies, the B(E2) and B(M1) values, and the contributions
greater than 10% to the normalization conditions (5) are given
in Table I. Note that the B(M1) values have been calculated
with the g factors of free protons and neutrons.

One can see that we find a satisfactory description of the
isotopic dependence of the 2+

1 energies near closed shells.

FIG. 2. Energies (in MeV) of lowest two-quasiparticle states in 92Zr. The results of calculations with the volume, mixed, and surface-peaked
pairing interactions are shown.
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FIG. 3. Energies and B(E2) values of the lowest quadrupole
states in 92Zr. The QRPA calculations are performed without (dashed
line) and with (solid line) the residual p-p interaction.

The closure of the neutron subshell 1g9/2 in 90Zr and 92Mo
leads to the vanishing of the neutron pairing, and as a result,
the energies of the first two-quasiparticle poles {1g9/2, 1g9/2}π
in 90Zr and 92Mo are larger than energies of the first poles
{2d5/2, 2d5/2}ν in 92Zr and 94Mo. This yields that the 2+

1 state
has collective (noncollective) structure with the domination
of the proton configuration {1g9/2, 1g9/2} for the case of
90Zr (92Mo). On the other hand, in 92Zr the leading neutron
configuration {2d5/2, 2d5/2} gives a contribution of 79% that
is almost twice larger than in 94Mo. The structure peculiarities
are reflected in the B(E2; 0+

g.s. → 2+
1 ) values, as is shown in

Table I. The dominant neutron and proton phonon amplitudes
X, Y of the 2+

1 states of 92Zr and 94Mo are in phase. This
resembles an analogy to the full-symmetry states of the

interacting boson model, although for 92Zr we observe a
dominance of neutron components due to the proton subshell
closure at Z = 40.

There are the second 2+ states in 92Zr and 94Mo below
3 MeV within the one-phonon approximation. The dominant
neutron and proton amplitudes of the fairly collective 2+

2 state
are out of phase. As a consequence, the isovector character
of the 2+

2 states are reflected in the remarkable values of
B(M1; 2+

2 → 2+
1 ), as given in Table I. The first calculations

of the isovector behavior of 2+
2 QRPA excitations in 92Zr and

94Mo based on the analysis of the phonon amplitudes within
the QPM have been done in Refs. [19–21].

We turn now to the structures of the 2+
2 states of 90Zr

and 92Mo. The proton configurations exhaust about 99% and
56% of the wave function normalization in 90Zr and 92Mo,
respectively. It means that the second pole {2p1/2, 2p3/2}π
in 92Mo is closer to the neutron poles than that in 90Zr. As
expected, the negligible size of the B(M1; 2+

2 → 2+
1 ) value of

90Zr is obtained. The 2+
2 state in 92Mo has the main neutron and

proton phonon amplitudes in phase (Table I) and this results
in the comparable B(M1) value of the M1 transitions between
the noncollective 2+

1 state and the isoscalar 2+
2 state.

This analysis within the one-phonon approximation can
help us to identify the MS state, but it is only a rough estimate.
Some overestimate of the experimental energies (Table II)
indicates that there is room for two-phonon effects.

B. Effects of phonon-phonon coupling

Let us now discuss the extension of the space to one- and
two-phonon configurations. The calculated 2+ state energies,
the largest contributions of the wave function normalization

TABLE I. Energies, transition probabilities, and structures of the QRPA quadrupole states in 90,92Zr and 92,94Mo. Phonon amplitude
contributions greater than 10% are given.

State Energy B(M1; 2+
i → 2+

1 ) B(E2; 0+
g.s. → 2+

i ) {n1l1j1, n2l2j2}τ X Y %
(MeV) (μ2

N ) (e2fm4)

90Zr 2+
1 2.8 630 {2d5/2, 1g9/2}ν −0.37 −0.11 13

{1g9/2, 1g9/2}π 1.03 0.06 53
{2p1/2, 2p3/2}π −0.52 −0.03 26

2+
2 3.4 0.00 10 {2p1/2, 2p3/2}π 0.79 0.00 63

{1g9/2, 1g9/2}π 0.85 0.00 36
92Zr 2+

1 1.7 410 {2d5/2, 2d5/2}ν 1.26 0.12 79
2+

2 2.9 0.53 310 {2d5/2, 2d5/2}ν −0.63 0.09 20
{3s1/2, 2d5/2}ν −0.45 −0.04 20
{1g9/2, 1g9/2}π 0.85 0.04 36
{2p1/2, 2p3/2}π −0.36 −0.02 13

92Mo 2+
1 1.9 1170 {2d5/2, 1g9/2}ν −0.35 −0.16 10

{1g9/2, 1g9/2}π 1.32 0.19 86
2+

2 4.4 0.25 230 {2d5/2, 1g9/2}ν −0.65 −0.07 42
{2p1/2, 2p3/2}π −0.63 −0.02 40
{1g9/2, 1g9/2}π −0.49 0.10 11

94Mo 2+
1 1.2 1730 {2d5/2, 2d5/2}ν 0.92 0.27 39

{1g9/2, 1g9/2}π 0.99 0.37 42
2+

2 2.4 1.23 160 {2d5/2, 2d5/2}ν −1.08 0.07 58
{1g9/2, 1g9/2}π 0.89 0.02 40
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TABLE II. Energies, transition probabilities, and dominant components of phonon structures of the low-lying quadrupole states in 90,92Zr
and 92,94Mo. Experimental data are taken from Refs. [6,7,10,48,49].

λπ
i = 2+

i Energy Structure B(E2; 0+
g.s. → 2+

i ) B(E2; 2+
i → 2+

1 ) B(M1; 2+
i → 2+

1 )
(MeV) (e2fm4) (e2fm4) (μ2

N )

Expt. Theory Expt. Theory Expt. Theory Expt. Theory

90Zr 2+
1 2.186 2.6 93%[2+

1 ]QRPA 643 ± 22 600
2+

2 3.308 3.2 95%[2+
2 ]QRPA 53 ± 14 1 65 ± 17 1 0.088 ± 0.025 0.00

92Zr 2+
1 0.934 1.6 96%[2+

1 ]QRPA 790 ± 62 420
2+

2 1.847 2.7 87%[2+
2 ]QRPA 419 ± 49 230 10+12

−7 4 0.37 ± 0.04 0.41
2+

3 2.067 2.6 45%[2+
4 ]QRPA+ < 0.62 50 <395 160 <0.024 0.17

37%[2+
1 ⊗ 2+

1 ]QRPA

92Mo 2+
1 1.509 1.9 99%[2+

1 ]QRPA 1036 ± 62 1160
2+

2 3.091 3.8 91%[2+
1 ⊗ 2+

1 ]QRPA 254 ± 20 50 96 ± 27 420 0.043 ± 0.007 0.03
94Mo 2+

1 0.871 0.5 73%[2+
1 ]QRPA 2031 ± 25 1280

2+
2 1.864 1.8 53%[2+

1 ⊗ 2+
1 ]QRPA+ 32 ± 7 170 720 ± 260 190 0.06 ± 0.02 0.07

21%[2+
3 ]QRPA

2+
3 2.067 2.3 87%[2+

2 ]QRPA 279 ± 25 310 124+76
−58 10 0.56 ± 0.05 0.68

(7), the B(E2) and B(M1) values, and the experimental data
[6,7,10,48,49] are shown in Table II. It is worth pointing out
that we get the wrong energy order of the second and third
2+ states in the case of 92Zr. On the other hand, the energy
difference equal to 0.1 MeV is close to the expected accuracy
of our calculations.

One can see that the inclusion of the two-phonon terms
results in a decrease of the 2+

1 energies and in a reduction of
the B(E2; 0+

g.s. → 2+
1 ) values, except for 92Zr. Our calculations

reproduce well a general behavior for energies and transition
probabilities. There is some underestimation of the B(E2)
values of the N = 52 isotones in comparison with the
experimental data; this probably points to a particular problem
due to the effective interaction rather than to a deficiency of our
variational space. In all four nuclei, the crucial contribution in
the wave function structure of the first 2+ state comes from
the [2+

1 ]QRPA configuration, but the two-phonon contributions
are appreciable. This means that the structures of the first
2+ states do not change practically due to the effects of the
phonon-phonon coupling. As a result, we get the isoscalar
collective structure of the 2+

1 state in 94Mo and the neutron
dominated 2+

1 excitation of 92Zr which indicates the F -spin
breaking.

The second 2+ state contains a dominant two-phonon
configuration [2+

1 ⊗ 2+
1 ]QRPA in 92,94Mo and such contribution

leads to the small B(E2; 0+
g.s. → 2+

2 ) values and the noticeable
B(E2; 2+

2 → 2+
1 ) values. Moreover, the calculated B(M1)

value is sensitive to the phonon composition: the two-phonon
configuration composed of the isoscalar collective phonons
in the case 94Mo and the noncollective phonons of 92Mo.
In 90,92Zr, the wave function of the 2+

2 state is dominated
by the [2+

2 ]QRPA configuration and we can follow the QRPA
estimate discussed in Sec. IV A. In addition, the dominance of
the one-phonon configurations plays a key role in explaining
the negligible size of the B(E2; 2+

2 → 2+
1 ) values. For the

case of 92Zr we obtain the isovector collective 2+
2 state and the

dominant one-phonon structure of the M1 transition between

the first and second 2+ states in 92Zr. The results are close
to those that were previously calculated in the shell model
[9,10,13] and in the QPM [11,20,21].

Finally, we examine the occurrence at low energy (below 3
MeV) of the third 2+ states. One can see that the collective state
in 94Mo is dominated by the isovector one-phonon [2+

2 ]QRPA

structure. The calculated values of the 2+
3 energy and the

transition probabilities are in reasonable agreement with the
experimental data. In other words, we reproduce the IBM-2
level scheme, and the calculated B(M1; 2+

3 → 2+
1 ) value

supports the MS assignments observed experimentally and the-
oretically for the first time in Ref. [6]. It is noteworthy that this
conclusion for 94Mo remains valid for the SLy5+T parameter
set [39]. For the 2+

3 state of 92Zr, one of the main components
of the wave function is the [2+

1 ⊗ 2+
1 ]QRPA configuration. As

can be seen from Table II, the two-phonon contribution is
reflected in the B(E2) and B(M1) values, but there is some
overestimation in comparison with the experimental data. One
can expect an improvement if the variational space is enlarged
by the phonon composition with hexadecapole multipolarity
and the three-phonon configurations are taken into account.
Such calculations are now in progress.

We have examined the amount of the spin contribution to
the M1 transition strength between the MS and first 2+ states.
In fact, we find orbital contributions M1(gs = 0)/M1full of
31% for 92Zr and of 50% for 94Mo to the total M1 matrix
elements, respectively. These numbers would result in pure
orbital (spin) M1 strengths of 0.04 (0.19) μ2

N out of 0.41 μ2
N

in total for 92Zr and of 0.17 (0.17) μ2
N out of 0.68 μ2

N in
total for 94Mo. This observation agrees qualitatively with the
situation reported previously on the orbital contribution to the
B(M1; 2+

ms → 2+
1 ) value from the QPM calculations [19–21].

Thus the microscopic approach [30–32] describes the
properties of the low-lying states in 92Zr and 94Mo less
accurately than more phenomenological ones [8,19–21], but
the results are still in a reasonable agreement with the
experimental data [6,7,10,48,49].
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V. CONCLUSIONS

Starting from the Skyrme mean-field calculations, we have
studied the effects of the phonon-phonon coupling on the
properties of the low-energy spectrum of 2+ excitations and,
in particular, on the M1 transitions between the excited states
of nuclei in the mass range A ≈ 90. The finite-rank separable
approach for the QRPA enables one to perform the calculations
in very large configurational spaces.

The parametrization SGII of the Skyrme interaction is used
for all calculations in connection with the volume zero-range
pairing interaction. Using the same set of parameters we have
studied the behavior of the energies and the B(E2; 0+

g.s. → 2+
i ),

B(E2; 2+
i → 2+

1 ), and B(M1; 2+
i → 2+

1 ) values of the lowest
2+ states in 90,92Zr and 92,94Mo. Part of our initial motivation
was the search for MS states in 92Zr and 94Mo in comparison
to the N = 50 isotones 90Zr and 92Mo with closed neutron
shell. Our results indicate indeed the occurrence of MS states
in our calculation for the nuclei 92Zr and 94Mo that were
successfully predicted within the IBM-2 before. Our results
from the Skyrme interaction are in reasonable agreement
with experimental data. We stress that they represent the first
successful comparison between experimental M1 transition
values and those calculated with the Skyrme interaction. The
coupling between one- and two-phonon terms in the wave
functions of excited states is essential. The QRPA results

tend to overestimate the 2+
1 energies and the inclusion of

the two-phonon configurations results in a decrease of the
energies. There is a clear influence on the structure of the 2+

2,3
states. The structures of the low-lying 2+ states calculated in
our approach are close to those that were calculated within
the QPM before. We conclude that the present approach may
provide a valuable globally applicable microscopic analysis of
the properties of the lowest quadrupole excitations.

Our model would probably be improved by enlarging
the variational space for the 2+ states with the inclusion
of the two-phonon configurations constructed from phonons
with hexadecapole multipolarity and taking into account
the three-phonon configurations. The computational develop-
ments that would allow us to conclude on this point are still
underway.

ACKNOWLEDGMENTS

We are grateful to R.V. Jolos, Nguyen Van Giai, V. Yu.
Ponomarev, Ch. Stoyanov, and V. V. Voronov for useful
discussions. A.P.S. and N.N.A. thank the hospitality of Institut
für Kernphysik, Technische Universität Darmstadt, where a
part of this work was done. This work was partly supported
by the Heisenberg-Landau program, by the DFG under Grant
No. SFB634, and by the RFBR Grant No. 110291054.

[1] N. Pietralla, P. von Brentano, and A. F. Lisetskiy, Prog. Part.
Nucl. Phys. 60, 225 (2008).

[2] F. Iachello and A. Arima, The Interacting Boson Model
(Cambridge University, Cambridge, England, 1987).

[3] A. Arima, T. Otsuka, F. Iachello, and I. Talmi, Phys. Lett. B 66,
205 (1977).

[4] T. Otsuka, A. Arima, and F. Iachello, Nucl. Phys. A 309, 1
(1978).

[5] F. Iachello, Phys. Rev. Lett. 53, 1427 (1984).
[6] N. Pietralla, C. Fransen, D. Belic, P. von Brentano, C. Frießner,

U. Kneissl, A. Linnemann, A. Nord, H. H. Pitz, T. Otsuka,
I. Schneider, V. Werner, and I. Wiedenhöver, Phys. Rev. Lett.
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C. Fransen, H. Fujita, J. D. Holt, M. Kuhar, A. Lenhardt, P. von
Neumann-Cosel, R. Neveling, N. Pietralla, V. Yu. Ponomarev,
A. Richter, O. Scholten, E. Sideras-Haddad, F. D. Smit, and
J. Wambach, Phys. Rev. Lett. 99, 092503 (2007).

[9] V. Werner, D. Belic, P. von Brentano, C. Fransen, A. Gade,
H. von Garrel, J. Jolie, U. Kneissl, C. Kohstall, A. Linnemann,
A. F. Lisetskiy, N. Pietralla, H. H. Pitz, M. Scheck, K.-H. Speidel,
F. Stedil, and S. W. Yates, Phys. Lett. B 550, 140 (2002).

[10] C. Fransen, V. Werner, D. Bandyopadhyay, N. Boukharouba,
S. R. Lesher, M. T. McEllistrem, J. Jolie, N. Pietralla, P. von
Brentano, and S. W. Yates, Phys. Rev. C 71, 054304 (2005).

[11] C. Walz, H. Fujita, A. Krugmann, P. von Neumann-Cosel,
N. Pietralla, V. Yu. Ponomarev, A. Scheikh-Obeid, and
J. Wambach, Phys. Rev. Lett. 106, 062501 (2011).

[12] A. F. Lisetskiy, N. Pietralla, C. Fransen, R. V. Jolos, and P. von
Brentano, Nucl. Phys. A 677, 100 (2000).

[13] J. D. Holt, N. Pietralla, J. W. Holt, T. T. S. Kuo, and G. Rainovski,
Phys. Rev. C 76, 034325 (2007).

[14] K. Sieja, G. Martı́nez-Pinedo, L. Coquard, and N. Pietralla, Phys.
Rev. C 80, 054311 (2009).

[15] D. Bianco, F. Andreozzi, N. Lo Iudice, A. Porrino, and F. Knapp,
Phys. Rev. C 84, 024310 (2011).

[16] D. Bianco, F. Andreozzi, N. Lo Iudice, A. Porrino, and F. Knapp,
Phys. Rev. C 85, 034332 (2012).

[17] V. G. Soloviev, Theory of Atomic Nuclei: Quasiparticles and
Phonons (IOP Publishing, Bristol, UK, 1992).

[18] N. Lo Iudice, V. Yu. Ponomarev, Ch. Stoyanov, A. V. Sushkov,
and V. V. Voronov, J. Phys. G 39, 043101 (2012).

[19] N. Lo Iudice and Ch. Stoyanov, Phys. Rev. C 62, 047302 (2000).
[20] N. Lo Iudice and Ch. Stoyanov, Phys. Rev. C 69, 044312 (2004).
[21] N. Lo Iudice and Ch. Stoyanov, Phys. Rev. C 73, 037305 (2006).
[22] T. Ahn, L. Coquard, N. Pietralla, G. Rainovski, A. Costin,

R. V. F. Janssens, C. J. Lister, M. Carpenter, S. Zhu, and K.
Heyde, Phys. Lett. B 679, 19 (2009).

[23] L. Coquard, N. Pietralla, G. Rainovski, T. Ahn, L. Bettermann,
M. P. Carpenter, R. V. F. Janssens, J. Leske, C. J. Lister,
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