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First calculation of the γγ-decay width of a nuclear 2+
1 state: The case of 48Ca
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The competitive double-γ decay of the 21
+ state of an even-even spherical nucleus is studied for the first

time. The coupling of one-, two-, and three-phonon terms in the wave functions of excited states is taken into
account within the microscopic model based on the Skyrme energy density functional. The approach enables
one to perform the calculations in very large configurational spaces. We estimate the generalized electric
dipole polarizabilities involved in the γ γ /γ decay process and make a prediction for the branching ratio of
the competitive γ γ -decay relative to its single γ -decay calculated to be 3 × 10−8 for the case of 48Ca.
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I. INTRODUCTION

In Ref. [1], the γ γ decay of a nuclear transition in competi-
tion with an allowed γ decay has been discovered. This is the
observation of the γ γ decay of the first excited Jπ = 11/2−
state of 137Ba directly competing with an allowed γ decay
to the Jπ = 3/2+ ground state. The branching ratio of the
competitive γ γ decay of the 11/2− isomer of the odd-even
nucleus 137Ba to the ground state relative to its single γ decay
was determined to be (2.05 ± 0.37) × 10−6. This discovery
has very recently been confirmed and the data were made
more precise, in particular with respect to the contributing
multipolarities [2].

The γ γ -decay reactions are formally analogous to neutri-
noless double-β decay (0νββ-decay) processes where in the
latter two β particles and in the former two γ -quanta appear
in the final state and share the total transition energy. Indeed,
γ γ -decay processes have first theoretically been postulated
and studied by Maria Göppert in her Ph.D. thesis [3] with
Max Born in Göttingen, even before discussing ββ-decay pro-
cesses. While various predictions for the 0νββ-nuclear matrix
elements are on the market, e.g., from Refs. [4–6], there is no
way to test the accuracy of the theoretical calculations without
a firm measurement of the 0νββ-decay rate. The 2νββ-decay
rate is a useful tool for testing the accuracy of calculations
that try to predict the 0νββ rate, but it is certainly not enough
for making predictions for the 0νββ rates [5]. Although ββ-
decay processes are nuclear reactions of second order in the
electroweak interaction, it is surprising to find that even less
data exist for nuclear decay reactions that proceed in second
order in the electromagnetic interaction where two γ quanta
are simultaneously emitted in a single quantum transition
from one quantum state to another. Up to recently, γ γ -decay
reactions in the even-even nuclei were known only in three
particular cases, 16O [7,8] and 40Ca and 90Zr [9,10], where
the first excited states of these even-even nuclei have spin and

parity quantum numbers 0+ and a single-γ decay is strictly
forbidden by helicity conservation.

The E1E1 transition from the 2s to 1s level in the H atom
and low-Z H-like ions is a proverbial example for atomic
systems. It is the most probable decay mode and therefore
defines the lifetime of the 2s level. The first estimate was
obtained by Breit and Teller in Ref. [11]. However, the nuclear
γ γ decay dominated by E1E1 contribution has not yet been
found.

In this paper, we report on the more general situation, in
which the γ γ decay of the low-energy quadrupole state occurs
in a nuclear transition which could proceed by a single-γ
decay in competition.

Using h̄ = c = 1, the γ decay width of the 21
+ state of

even-even nuclei is related to its reduced electric quadrupole
transition strength, B(E2; 2+

1 → 0+
gs), via

�γ = 4π

75

(
E2+

1

)5
B(E2; 2+

1 → 0+
gs). (1)

To describe the γ γ decay between the 21
+ and 0gs

+ states,
we use a formalism that explicitly relates the electromagnetic
interaction up to second order in the electromagnetic operators
and two-quantum processes in atomic nuclei [12]. Thus, the
γ γ -decay width can be estimated as

�γγ ′ = 64π

42525
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with

αE1E1 =
∑

i
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gs||M(E1)||1−
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δ =
(αM1M1

αE1E1

)2
+ 3

11
10−4

(αE2E2

αE1E1

)2(
E2+

1

)4 + · · · . (4)

The γ γ -decay width is dominated by the E1E1 contribu-
tion, i.e., δ � 1. One may easily confirm this statement in
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a two-state scenario by using the M1 sum rule. The M1M1
component to the γ γ /γ decay of the 21

+ state of any nucleus
is much smaller than the αE1E1 component discussed here in
the case of 48Ca, taken as an example.

The doubly magic nucleus 48Ca has provided a crucial
testing ground for nuclear theories (see, e.g., Refs. [13,14]).
In this connection, the electric dipole polarizability,

αD = 8π

9

∑
i

〈0+
gs||M(E1)||1−

i 〉〈1−
i ||M(E1)||0+

gs〉
E1−

i

, (5)

is playing an important role; in particular, its value has strong
implications in constraining the symmetry energy J including
its density dependence and slope parameter L of the nuclear
equation of state [15]. The symmetry energy also plays an im-
portant role in nuclei, where it contributes to the formation of
neutron skins in the presence of a neutron excess. Calculations
based on energy density functionals (EDFs) pointed out that
J and L can be correlated with isovector collective excitations
of the nucleus, such as pygmy dipole resonances (PDRs) [16]
and giant dipole resonances (GDRs) [17], thus suggesting that
the neutron skin thickness [18], the difference of the neutron
and proton root-mean-square radii, could be constrained by
studying properties of collective isovector observables at low
energy. Since αD and αE1E1 are challenging but in principle
accessible observables, it is useful to compare their values.
We provide here first information on their relation.

II. FORMALISM

Our tool is the random phase approximation (RPA) with
Skyrme EDF. The residual particle-hole interaction is ob-
tained as the second derivative of the energy density functional
with respect to the particle density. By means of the standard
procedure [19], we obtain the familiar equations of the RPA
in the one particle–one hole (1p-1h) configuration space. The
eigenvalues of the RPA equations are found numerically as
the roots of a relatively simple secular equation within the
finite-rank separable approximation (FRSA) [20,21] which
allows one to perform the calculations in large configurational
spaces. In particular, the cutoff of the discretized continuous
part of the single-particle spectra is at the energy of 100
MeV. This is sufficient to exhaust practically all the energy-
weighted sum rule within the RPA [21]. Further technical
details of the calculations are provided in Appendix A.

Being a linear combination of 1p-1h states, the RPA so-
lutions are treated as quasibosons with quantum numbers
λπ : Q+

λμi|0〉. The value μ denotes the z projection of the
total angular momentum in the laboratory system. Among
these solutions, there are one-phonon states corresponding to
collective GDRs and pure 1p-1h states. The configurations
with various degrees of complexity can be built by com-
bining different one-phonon configurations of fixed quantum
number Jπ = 1−. Taking into account the basic ideas of the
quasiparticle-phonon model (QPM) [22], the Hamiltonian is
then diagonalized in a space spanned by states composed of
one, two, and three RPA phonons. This implies that the rank
of the set of linear equations is equal to the number of one-,
two-, and three-phonon configurations included in the wave

function,


ν (JM ) =
(∑

i

Ri(Jν)Q+
JMi +

∑
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Pλ1i1
λ2i2
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[
Q+
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T λ1i1 λ2i2
J ′ λ3i3

(Jν)
[[

Q+
λ1i1

Q+
λ2i2

]
J ′Q
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]
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)
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(6)

Its solution requires computation of the matrix el-
ements of the quasiparticle-phonon interaction [23],
〈0|QJiH[Q+

λ1i1
Q+

λ2i2
]J |0〉. The equations of the phonon-phonon

coupling (PPC) have the same form as the QPM equations
[24,25], but the single-particle spectrum and the parameters of
the residual interaction are calculated with the chosen Skyrme
EDF without any further adjustments [23]. We consider
widely used SLy5 EDF [26], which is adjusted to reproduce
the enhancement factor of the Thomas-Reiche-Kuhn (TRK)
sum rule κ = 0.25 and the nuclear matter properties, as
well as nuclear charge radii and binding energies of
doubly magic nuclei [27]. Also the excitation energy
Ex = 3.832 MeV and the decay transition strength
B(E2; 2+

1 → 0+
gs) = 1.71 ± 0.09 W.u. of the 21

+ state
of 48Ca [28] are reasonably well described in the RPA with
the same set of parameters, yielding Ex = 3.19 MeV and
B(E2) = 1.3 W.u. [29]. The inclusion of the phonon-phonon
coupling plays a minor role in the 21

+ state’s description.
The crucial contribution to the wave function comes from the
neutron configuration {1 f −1

7/2, 2p3/2}.
In the actual calculations (PPC3), we have included in

our model space different multipoles λπ = 1−, 2+, 3−, and
4+. Tentative estimates for the position of the resonance cen-
troid Ec and the spreading width � are defined by means of
the energy-weighted moments mk = ∑

B(E1) Ek : (i) Ec =
m1/m0 and (ii) � =

√
m2/m0 − (m1/m0)2, taking 92% of the

TRK sum rule, i.e., (1 + κ )14.8NZ/A e2 fm2 MeV. The E1
transitions are corrected for the center-of-mass motion; see
Appendix B. All one-, two-, and three-phonon configurations
with energies up to E = 27 MeV are included. The inclusion
of high-energy configurations plays a minor role in our calcu-
lations. At the same time, the extension of the configurational
space to the two- and three-phonon configurations has a strong
effect on the low-energy 1− spectrum, shown in Fig. 1. If
we omit the three-phonon configurations, then this calcula-
tion is hereafter called PPC2. Further, the PPC2 calculation
taking into account the coupling with [21

+]RPA phonon only
is named PPC2-21

+.

III. RESULTS

The photoabsorption cross section in 48Ca(p, p′) is mea-
sured in the range from 10 to 25 MeV [32]. The general
shape of the E1 strength distribution obtained in the PPC3
calculation is rather close to that observed in experiment;
see Fig. 2(a). The calculated integral characteristics of
the GDR (Ec = 19.1 MeV and � = 3.1 MeV) are in
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FIG. 1. The phonon-phonon coupling effect on the B(E1)
strength distribution. Experimental data are taken from Ref. [30].

satisfactory agreement with the experimental data on 48Ca
[32]. The inclusion of the PPC effects yields a noticeable re-
distribution of the GDR strength in comparison with the RPA
results. In Ref. [29], the role of the coupling of the one- and

FIG. 2. (a) The B(E1) strength distribution. The smoothing pa-
rameter 1 MeV is used for the strength distribution described by the
Lorentzian function. Experimental data are taken from Refs. [31,32].
The dashed, dotted, and solid lines correspond to the PPC2-21

+,
PPC2, and PPC3 calculations, respectively. (b) Running sum of the
polarizability αD. The shaded area indicates experimental upper and
lower limits [32]. (c) Running sum of the generalized polarizability
αE1E1 and the value ME1E1/Esc (the dash-dotted line).

two-phonon configurations on the E1 strength-distribution
calculations with the SLy5 EDF has been examined.

The electric dipole polarizability of αD = 1.73 ± 0.18 fm3

has been measured in the range from 10 to 25 MeV in
Ref. [32]. Running sums of the αD value for 48Ca in the
energy region below 27 MeV are given in Fig. 2(b). The steep
rise in the theoretical band around 19 MeV indicates that the
position of the GDR peak is consistent with the experimental
centroid. The fact that the slope is well reproduced indicates
that the spreading is well described. Inclusion of PPC does
not change the value of αD obtained by integrating the E1
strength up to 25 MeV: αD = 2.16 fm3 in the case of the PPC2
and αD = 2.17 fm3 in the PPC3. The contribution [0.0101 ±
0.0006 fm3] found experimentally below 10 MeV is negligi-
ble. Our calculations predict, below 10 MeV, αD = 0.015 fm3

and 0.017 fm3 within PPC2 and PPC3, respectively. These
values are indeed negligible, as for the experimental case. A
similar conclusion was made in Ref. [33], where the EDFs
SGII and SLy4 were used. Thus, the main contribution to the
αD polarizability comes from the one-phonon configurations.

The calculated value for the αE1E1 matrix element for the
γ γ decay is 0.018 fm3 within the PPC2 and 0.019 fm3 in the
case of the PPC3 at 1− energies below 27 MeV. The running
sum of αE1E1 is very instructive with respect to various energy
regions of the 1− spectrum; see Fig. 2(c). We obtain two
regimes: a rapid rise in the energy region 16 < Ex < 20 MeV
and a steep decline in the energy region 22 < Ex < 25 MeV,
respectively. In the first energy region, the crucial component
to the αE1E1 value comes from a coherent contribution of 1−
states in the sum of product of E1 matrix elements

ME1E1 =
∑

i

〈0+
gs||M(E1)||1−

i 〉〈1−
i ||M(E1)||2+

1〉 (7)

belonging to the GDR; see Fig. 3(a). The running sum for
αE1E1 decreases at energies above 22 MeV due to a coherent
contribution with a negative sign in this energy range; see
Fig. 3(b). This implies that the calculated E1 matrix elements
represent two dominant substructures of the dipole strength
distribution; see the dash-dotted line of Fig. 2(c). We study
them first in a simple two-state mixing scenario taking into
account the GDR and the initial, 21

+, and final, 0+
gs, states

of the generalized polarizability.
We construct a two-state mixing scheme by considering the

GDR state, the coupled GDR ⊗ 21
+ state, and the interaction

V between them. The relative phases of amplitudes are oppo-
site in the perturbed states I and II, i.e.,

|1−
I 〉 = α|GDR〉 + β|GDR ⊗ 21

+〉, (8)

|1−
II 〉 = −β|GDR〉 + α|GDR ⊗ 21

+〉. (9)

The two-state mixing scheme provides the simple expression

αE1E1

αD
= 9

8π

αβ(EII − EI )

α2EII + β2EI
, (10)

in the typical situation where the energies EII and EI are
much large than Ex(21

+)/2. Notice that αE1E1/αD =0 if the
basis configurations do not mix. The amplitudes, α and β,
can be estimated in the two limiting cases of weak or strong
mixing, where either the interaction V is much smaller than

024310-3



SEVERYUKHIN, ARSENYEV, AND PIETRALLA PHYSICAL REVIEW C 104, 024310 (2021)

FIG. 3. Reduced matrix elements of E1 transitions in the follow-
ing energy interval: from 16 until 20 MeV (a) and from 22 until 25
MeV (b).

the difference of the unperturbed energies [�Eu = Ex(21
+)],

or the two unperturbed states are degenerate (�Eu = 0). For
these cases, we obtain

αE1E1

αD
= 9

8π

V

EGDR + 0.5�Eu
. (11)

Figure 2(c) shows that the running sum of αE1E1 remains
more or less unchanged when comparing the full result with
the calculation taking into account the PPC with the [21

+]RPA

phonon, only. Therefore, we can simulate the full diagonal-
ization reasonably well by using a two-state mixing [34]; see
Fig. 4. The GDR state built on the most collective RPA states,
the two-phonon GDR ⊗ 21

+ state, and the interaction

V = 1√
N1phN2ph

N1ph∑
i=1

N2ph∑
k=1

〈0|Q1iH[Q+
21Q+

1k]1|0〉, (12)

between them, have been calculated from the SLy5 EDF.
The two-state model can also help to estimate the value

αM1M1 of 0.05 μ2
N MeV−1; see Appendix C. The M1 tran-

sition matrix elements calculated without spin-gyromagnetic
quenching factor leads to an upper limit for αM1M1. The
M1M1 component dominates in the correction δ of Eq. (4):
δ(M1) = 1.7 × 10−3 and δ(E2) = 1.9 × 10−7. Thus, keeping

FIG. 4. The ratio between polarizabilities αD and αE1E1 as a
function of the mean value V of the matrix elements coupling
one- and two-phonon configurations. The solid line corresponds
to the PPC2-21

+ calculation taking into account scaling of the
quasiparticle-phonon interaction. The results of the two-state model
with �Eu = 0 and 3.2 MeV are denoted by the dashed line and the
dotted line, respectively. The PPC3 calculation of SLy5 is denoted
by the circle.

only 1− virtual states is a satisfactory approximation for the
γ γ decay width. It is worth mentioning that in 48Ca the
spin-flip M1 resonance having a noncollective structure being
dominated by the neutron configuration {1 f −1

7/2, 1 f5/2} is a key
reference for an interpretation of the quenching phenomenon;
see, e.g., Ref. [35].

In total, our PPC3 analysis predicts the γ γ -decay width of
1.0 × 10−10 eV, almost seven orders smaller than the width
corresponding to the single γ decay. This may be considered
as an upper limit of the γ γ /γ branching ratio since the calcu-
lated width of the γ decay, 3.5 × 10−3 eV, is smaller than the
experimental data [28].

IV. SUMMARY AND CONCLUSION

Starting from Skyrme mean-field calculations we have
studied for the first time the γ γ /γ decay of the 21

+ state of
an even-even nucleus. As our test case we considered 48Ca for
which its dipole polarizability has recently been measured. It
can be compared also to the generalized dipole polarizability.
We use the Skyrme EDF SLy5 to create a single-particle
spectrum and to analyze excited states of 48Ca. Our calcula-
tions take into account the coupling between one-, two- and
three-phonon terms in the wave functions. It is shown that
the γ γ decay width is sensitive to the energy difference of
the one-phonon doorway mode and the two-phonon structure
which arises from the coupling of this doorway to the low-
energy phonons. It is further correlated to the PPC strength.
The maximal branching ratio of the competitive γ γ -decay
relative to its single γ -decay is predicted for 48Ca as 3 × 10−8.
It is desirable to experimentally establish the γ γ decay of a
first 2+ state of an even-even nucleus.
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FIG. 5. The transition probability, the γ -decay width, and γ γ /γ

branching ratio of the 21
+ state are given in panels (a), (b), and (c),

respectively. PPC3 calculations are performed with different cutoffs
of single-particle energies (Esp). The solid lines are drawn as guide
to the eye.
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APPENDIX A

The FRSA model enables one to exhaust the Thomas-
Reiche-Kuhn (TRK) sum rule with the enhancement factor
κ for the Skyrme EDF, i.e., (1 + κ )14.8NZ/A e2 fm2 MeV.
One of the basic ingredients for the fitting protocol of the
SLy5 EDF is the enhancement factor of the TRK sum rule
κ = 0.25 [26], i.e., 216 e2 fm2 MeV in the case of 48Ca. The
energy-weighted sum rule of the E1 distribution calculated
within the FRSA amounts to 210 e2 fm2 MeV. The model
configuration space depends on the cutoff of the discretized
continuous part of the single-particle spectra. To confirm the
two-state scenario of the αE1E1 calculation, one needs a maxi-
mum full configurational space. The phonon-phonon coupling
calculations (PPC3) take into account the different values of
single-particle energy cutoff; see Fig. 5. For the γ γ /γ -decay
branching, satisfactory convergence is reached from Esp ≈ 50
MeV. Thus, the cutoff at 100 MeV is sufficient to describe
correctly the γ γ /γ -decay branching ratio.

APPENDIX B

To calculate the dipole strength distributions, the spurious
isoscalar dipole mode appears at zero excitation energy. Be-
cause of small numerical inaccuracies, the E1 transitions are
corrected for the center-of-mass motion. The effective charges
−Z/A for neutrons and N/A for protons eliminate contamina-
tions associated with the operator,

Ŝ =
A∑

i=1

riY1μ(r̂i ). (B1)

To crosscheck the reliability of the prediction of αE1E1, we
use the orthogonalization of the spurious state to all physi-
cal states, as proposed in Ref. [36]. Starting from the wave
functions (6) defined as the set | ν〉, we construct a new set of
normalized states | ν̃〉,

|ν̃〉 = Nν̃ (|ν〉 − ην̃ |S〉), (B2)

where the state |S〉 is defined as |S〉 ≡ Ŝ|0〉, and |0〉 being the
RPA vacuum. The set |ν̃〉 is required to satisfy the following

FIG. 6. (a) The B(E1) strength distribution. (b) Running sum of
the polarizability αD. (c) Running sum of the generalized polariz-
ability αE1E1. The dashed line corresponds to the calculation taking
into account the orthogonalization of the spurious center-of-mass
state to all physical states, the dotted line is the calculation without
the orthogonalization, and the solid line is the calculation with the
effective charges, en

eff = − Z
A e and ep

eff = N
A e.
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conditions:

〈ν̃|Ŝ|0〉 = 0. (B3)

As shown in Fig. 6, we found a remarkable agreement be-
tween the running sum of the generalized polarizability αE1E1,
obtained with the orthogonalization, and the ones, generated
by means of the effective charges. Moreover, the calculation
without the orthogonalization leads to very similar results
for the value of αE1E1. This means that the spurious center-
of-mass state is well separated and it plays a minor role in
our calculation of αE1E1. Nevertheless, the E1 transitions are
corrected for the center-of-mass motion.

APPENDIX C

For estimating the value of the generalized polarizability
αM1M1, we take the spin-flip M1 resonance (GR) and the initial

(21
+) and final (0+

gs) states into account. The two-state mixing
scheme then consists of the GR state, the coupled GR ⊗
21

+ state, and the interaction V between them. The model
parameters are defined by means of the energy-weighted mo-
ments mk = ∑

B(M1) Ek : the centroid, EGR = m1/m0, and
the M1-transition probability, B(M1)GR = m0. The mixed
wave functions are

|1I
+〉 = α|GR〉 + β|GR ⊗ 21

+〉, (C1)

|1II
+〉 = −β|GR〉 + α|GR ⊗ 21

+〉. (C2)

The two-state model gives the following expression:

αM1M1 = B(M1)GR

αβ
√

E2
21

+ + 4V 2

E2
GR − 0.25E2

21
+ − V 2

. (C3)
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