Investigation of superconductivity and magnetism in layered nanostructures by polarized neutron reflectometry with secondary radiation registration Zhaketov V.D.¹, Nikitenko Yu.V.¹, Petrenko A.V.¹, Gledenov Yu.M.¹, Gundorin A.N.¹, Kopatch Yu.N.¹, Aksenov V.L.¹ ¹JOINT INSTITUTE FOR NUCLEAR RESEARCH, FRANK LABORATORY OF NEUTRON PHYSICS

Magnetic and superconducting heterostructures

55th meeting of the PAC for Condensed Matter Physics, Dubna, January 20-21, 2022

1/5

Proximity effects at S-F structures. Results

- $d_F \sim \xi_F$
- $d_F/d_S = 10^{-3} \div 10^{-2}$
- Alloys: FeV, CuNi

M, %

25

20

15

10

0

- Systems S/Fe/S type
- Different metalls (V, Nb, Fe, Ni, Gd)

H = 4 kOe (3 K)

 $H = 7 \ kOe \ (3 \ K)$

Magnetic moment relaxation of the structure with ferromagnet FeV

 $t \cdot 10^3$, s

15

20

 $T = 2 K (17 \ Oe)$

10

5

Inverse proximity effect

Recently, a new proximity effect has been described in ferromagnetic-superconducting layered nanostructures, which is characterized by a large scale (10 nm) of the interaction of superconductivity and magnetism, and which takes place for any ferromagnets.

Electromagnetic proximity effect in planar superconductor-ferromagnet structures

Inverse proximity effect. Results and plans.

At present, the Al2O3//Nb(100nm)/Gd(3nm)/V(70nm)/Nb(15nm) structure, where Gd is a ferromagnet and Nb and V are superconductors, has been studied. A change in the magnetization in superconducting layers (at area 10 nm close to F-layer) under the influence of superconductivity at a level of 4-10% was found, which corresponds to the implementation of the inverse proximity effect. Further plans are in detailed processing of experimental data and new experiments.

Secondary radiation registration

Secondary radiation registration at neutron reflectometry

Channel of secondary radiation registration at REMUR-spectrometer:

- charged particles: $\sigma_{min} = 0.025 \ barn$ (~ 22 isotopes)
- gamma-quanta: $\sigma_{min} = 0.3 \ barn$ (> 100 isotopes)
- spin-flip neutrons: $B_{min} = 1 Gs$ (9 elements: Fe, Co, Ni, Gd, Dy, Tb, Ho, Er, Tm)

Zhaketov V.D. et al. // Surface investigations, vol. 6, pp. 1-15 (2021) Zhaketov V.D. et al. // Surface investigations, vol. 6, pp. 20–30 (2019)

Data for layer with thickness 5 nm

5/5

Conclusion

- 1. Proximity effects in superconducting-ferromagnetic structures were studied. A nonequilibrium magnetic state in the structures with ferromagnets of the transition group of metals, such as FeV and NiCu, has been discovered and investigated.
- 2. At the structure Al2O3//Nb(100nm)/Gd(3nm)/V(70nm)/Nb(15nm) change in the magnetization in superconducting layers (at area 10 nm close to F-layer) under the influence of superconductivity at a level of 4-10% was found, which corresponds to the implementation of the inverse proximity effect.
- 3. At the REMUR reflectometer realized mode for detecting secondary radiation: charged particles, gamma quanta, and neutrons with spin flip, what makes it possible to determine the spatial profile of individual isotopes.

Thank you for your attention!