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Introduction: ultracold molecules in 1D and 2D geometries

Dipolar gases are more stable in a quasi-two-dimensional geometry, in contrast
with a 3D case, due to the absence of the "head-to-tail"instability1.
Optical lattices with 2D geometries are prospective candidates for a dipolar
gas stabilization, trapping, and dynamics controlling because the dipole-dipole
interaction (DDI) is isotropic and repulsive in the case of dipole moments polarized
along the frozen direction, whereas tilting of the polarization axis leads to a
controllable anisotropy of the interaction2.
Molecules collisions in one layer of a pancake-shaped trap are modelled by a 2D
dynamics of the molecules3.
The investigations of a dipolar diatomic molecules interaction in a plane are
highly relevant due to prospects for one of the possible realisation of a qubit and
application to the quantum computing schemes4.

1Bohn, J. L. et al. English. Science 357, 1002–1010 (2017), Koch, T. et al. English. Nature
physics 4, 218–222 (2008), Ni, K.-K. et al. English. Nature 464, 1324 (2010).

2Bohn, J. L. et al. English. Science 357, 1002–1010 (2017), De Miranda, M. et al. English.
Nature Physics 7, 502–507 (2011), Lahaye, T. et al. English. Rep. Prog. Phys. 72, 126401 (2009).

3De Miranda, M. et al. English. Nature Physics 7, 502–507 (2011), Ticknor, C. English.
Physical Review A 80, 052702 (2009), Ticknor, C. English. Physical Review A 84, 032702 (2011),
Ticknor, C. et al. English. Physical review letters 106, 065301 (2011), Volosniev, A. et al. English.
Physical review letters 106, 250401 (2011), Rosenkranz, M. & Bao, W. English. Physical Review
A 84, 050701 (2011), Koval, E. A. et al. English. Physical Review A 89, 052710 (2014).

4DeMille, D. English. Physical Review Letters 88, 067901 (2002), Ni, K.-K. et al. English.
Chemical science 9, 6830–6838 (2018).
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Introduction: ultracold molecules in 1D and 2D geometries

3D

Fig.1 The schematic representation of
the polar molecules in 3D (a,b,c,d),
2D (e) and 1D (f) geometries of
optical traps.

2D (e)

1D (f)
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2D dipole-dipole scattering

The 2D Shrödinger equation for describing quantum dipolar scattering in a plane
on anisotropic potential U(𝜌, 𝜑) in polar coordinates (𝜌, 𝜑) reads:[︁

− ~2

2𝜇

(︂
1
𝜌

𝜕

𝜕𝜌

(︂
𝜌
𝜕

𝜕𝜌

)︂
+

1
𝜌2

𝜕2

𝜕𝜑2

)︂
+ U (𝜌, 𝜑) − E

]︁
Ψ (𝜌, 𝜑) = 0 (1)

with boundary condition in the asymptotic region 𝜌→ ∞:

Ψ (𝜌, 𝜑) → e iq𝜌 + f (q, 𝜑, 𝜑q)
e iq𝜌√
−i𝜌

. (2)

The relative momentum q is defined by the collision energy E with q =
√

2𝜇E/~
and 𝜇 denotes the reduced mass of the system. The incoming wave direction q/q
is defined by the 𝜑q angle.
A scattering differential cross section is defined by the calculated scattering
amplitude f (q, 𝜑, 𝜑q)

d𝜎(q, 𝜑, 𝜑q)/dΩ=|f (q, 𝜑, 𝜑q)|2, (3)

where dΩ = d𝜑qd𝜑. A total cross section is obtained by averaging over incoming
wave directions (𝜑q) and integration over scattering angle 𝜑:

𝜎(q)=
1
2𝜋

2𝜋∫︁
0

2𝜋∫︁
0

d𝜎

dΩ
d𝜑qd𝜑. (4)
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2D dipolar scattering

A transition to scattering of identical bosons (fermions) is done with the symmetrization
𝜖 = +1 (antisymmetrization 𝜖 = −1) of the wave function:

Ψ (𝜌, 𝜑) → e iq𝜌 + 𝜖 e−iq𝜌 + f (𝜑)
e iq𝜌√
−i𝜌

(5)

as well as the differential cross section:

d𝜎(𝜑)/dΩ = |f (𝜑, 𝜑q)|2 = |f (𝜑) + 𝜖f (|180∘ − 𝜑|)|2 . (6)

The definitions (3) and (6) show, that it leads to an increase for bosons and a
decrease for fermions of the differential cross section with respect to the case of
distinguishable particles for some scattering angles, e.g., for 𝜑+ 𝜑q = 90∘:

d𝜎B(𝜑+ 𝜑q)

dΩ
= 4

d𝜎(𝜑+ 𝜑q)

dΩ
(for bosons),

d𝜎F (𝜑+ 𝜑q)

dΩ
= 0 (for fermions).
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2D dipolar scattering

The interaction potential U (𝜌, 𝜑) has the form:

U(𝜌, 𝜑) = VSR(𝜌) + Vdd(𝜌, 𝜑), (7)

where for an approximation of the repulsive short-range interaction (SRI) VSR(𝜌)
we use two different types of potentials: the hard wall potential with the width
of 𝜌SR (so that the wave function is equal to zero at 𝜌SR) and and the more
realistic Lennard-Jones (LJ) potential:

V HW
SR (𝜌) =

{︂
∞, 𝜌 6 𝜌SR
0, 𝜌 > 𝜌SR

; V LJ
SR (𝜌) =

C12

𝜌12 − C6

𝜌6 (8)

A fixed value of the C6 parameter of the Lennard-Jones potential was taken
for polar molecules, e.g., C6 = 1.5 106 a.u. for the 23Na87Rb polar molecule5.
The dipolar length scale D for polar molecules (D ≈ 182554 a.u. for 23Na87Rb) is
much larger than the van der Waals length scale R6 = (2𝜇C6/~2)1/4 (𝜇 = 100167
a.u.; R6 ≈ 740 a.u. for 23Na87Rb) 5 and the Lennard-Jones potential is effectively
used as the short-range repulsion potential for the dipole-dipole interaction potential.
Increasing the C12 at the fixed C6 leads to an increase of the short-range part of
the U(𝜌, 𝜑). So we vary C12 to reproduce the change of 𝜌SR .

5Karman, T. et al. English. Physical Review A 98, 062502 (2018).
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2D dipolar scattering

The long-range interaction potential of the two arbitrarily oriented dipoles Vdd(𝜌, 𝜑)
in a plane reads:

Vdd (𝜌, 𝜑;𝛼, 𝛽, 𝛾) =
d1d2

𝜌3 [sin(𝛼) sin(𝛾) cos(𝛽)+

+ cos(𝛼) cos(𝛾) − 3 sin(𝛼) sin(𝛾) cos(𝜑) cos(𝜑− 𝛽)].

Fig.2 The scheme of mutual orientation of two arbitrarily oriented dipoles d1 and d2,
moving in the XY plane.
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2D dipolar scattering

In order to compare the results of two types of potential with each other, we
need to relate the SRI radius 𝜌SR with the Lennard-Jones C6,C12 parameters. We
define 𝜌SR for the Lennard-Jones potential as 𝜌SR = min(𝜌0(𝜑)), where 𝜌0(𝜑)
is the positions of the zeros of the potential U(𝜌, 𝜑). From the physical point
of view, min(𝜌0(𝜑)) — the minimal distance, that molecules could reach at low
energies of collision. For the considered polar molecules the term −C6/𝜌

6 is small
compared to Vdd . Thus, 𝜌SR is found under the condition C12/𝜌

12 + Vdd(𝜌, 𝛽/2) = 0,
from which the next relation follows:

𝜌SR =

[︃
C12(EDD

3)−1

sin(𝛼) sin(𝛾) 3+cos(𝛽)
2 − cos(𝛼) cos(𝛾)

]︃ 1
9

. (9)
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Numerical algorithm

To tackle the problem (1)–(2), along with interaction potential (7) we apply the
numerical scheme, that we applied to the quantum anisotropic scattering in a
plane6, based on the variation of the discrete-variable representation method,
proposed in V.S.Melezhik paper7 for a solution of the multichannel scattering
problem.
The following wave function expansion is applied:

Ψ (𝜌, 𝜑) ≈ 1
√
𝜌

M∑︁
m=−M

2M∑︁
j=0

𝜉m(𝜑)𝜉−1
mj 𝜓j(𝜌), (10)

where 𝜉−1
mj = 2𝜋

2M+1𝜉
*
jm =

√
2𝜋

2M+1e
−im(𝜑j−𝜋) — is the inverse matrix to the square

matrix (2M + 1)×(2M + 1) 𝜉jm = 𝜉m(𝜑j), that is defined on the uniform angular
grid 𝜑j = 2𝜋j

2M+1 (where j = 0, 1, ..., 2M). In the angular grid’s nodes 𝜑j : Ψ (𝜌, 𝜑j) ≈
𝜓j(𝜌)/

√
𝜌. 𝜉m(𝜑) = (−1)m√

2𝜋
e im𝜑 are the eigenfunctions of the operator h(0)(𝜑) =

𝜕2

𝜕𝜑2 and serve as a basis of functions for the wave function expansion over the
angular variable.

6Koval, E. A. et al. English. Physical Review A 89, 052710 (2014).
7Melezhik, V. S. English. Journal of Computational Physics 92, 67–81 (1991).
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Numerical algorithm

In representation (10), the 2D Schrödinger equation transforms in the system of
(2M + 1) coupled second-order differential equations:

d2𝜓j(𝜌)

d𝜌2 +
2𝜇
~2

(︂
E − U(𝜌, 𝜑j) +

~2

8𝜇𝜌2

)︂
𝜓j(𝜌)+

− 1
𝜌2

∑︁
j′

M∑︁
j′′=−M

j ′′2𝜉jj′′𝜉
−1
j′′j′𝜓j′(𝜌) = 0. (11)

The seven-point finite difference approximation of six-order accuracy is used for
the derivatives discretization. An obtained on each iteration matrix problem is
tackled with the matrix modification of the sweep algorithm for the band matrix.

11 / 23



Ultracold polar molecules 2D dipolar scattering Results Conclusions

Critical (magic) angle for scattering of arbitrarily oriented dipoles

Domains of the attractive dipolar interaction arise around the points 𝜑′, that
are defined by the expression: 𝜕Vdd (𝜌,𝜑)

𝜕𝜑

⃒⃒⃒
𝜑′

= 0. The critical tilt angle 𝛼c(𝛽, 𝛾)

is defined as the angle 𝛼, above which values of Vdd potential become negative
in the points 𝜑 = 𝜑′: Vdd(𝜌, 𝜑) < 0. Thus, the condition: Vdd(𝜌, 𝜑′) = 0,
determines the dependence of the critical tilt angle 𝛼 = 𝛼c(𝛽, 𝛾) of the dipole
d1 on the rotation angle 𝛽 and the tilt angle 𝛾 of the dipole d2:

𝛼c(𝛽, 𝛾) = arctan

(︂
2 cot(𝛾)

3 + cos(𝛽)

)︂
. (12)

The critical tilt angle 𝛼c(𝛽, 𝛾) increases as 𝛽 → 180∘ (e.g. at 𝛾 = 45∘ the angle
𝛼c increases from 26.56∘ to 45∘). It should be noted, that at 𝛽 = 180∘ the
critical tilt angle can be found from a plain ratio 𝛼c(𝛽, 𝛾) = 90∘ − 𝛾, which is
indicated in Fig. 3 by the solid red line.
When one considers the aligned dipoles case 𝛾 = 𝛼 and 𝛽 = 0∘, the expression (12)
reproduces the known value of the critical (magic) angle 𝛼c(𝛽, 𝛾) = arctan 1√

2
≈ 35.3∘,

as previously mentioned8.

8Ticknor, C. English. Physical Review A 84, 032702 (2011), Giovanazzi, S. et al. English.
Physical review letters 89, 130401 (2002), Macia, A. et al. English. Physical Review A 84, 033625
(2011).
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Critical (magic) angle for scattering of arbitrarily oriented dipoles

β = 0°

β = 45°

β = 90°

β = 135°

β = 180°

0 30 60 90

0

30

60

90

γ deg)

c
β
,γ
)
d
e
g
)

0 90 180
30

40

50

β (deg)

�

c

�

β
,γ
=

�

)
(d
e
g
)

Fig.3 The dependence of the critical tilt angle 𝛼c (𝛽, 𝛾) of the dipole d1 on the
rotation angle 𝛽 and on the tilt angle 𝛾 of the dipole d2. The inset presents the
critical tilt angle 𝛼c (𝛽, 𝛾) as a function of the rotation angle 𝛽 for the case of the
dipoles with equal tilt angles (𝛾 = 𝛼).
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Angular distributions of differential cross section

• We revealed the strong dependence of the angular distributions of the 2D
dipolar scattering differential cross section d𝜎/dΩ on the value of SRI radius
𝜌SR .

• The differential cross section angular distributions for bosons exhibit circular
shape in the resonant 𝜌SR points both for 𝛼 = 45∘ and 𝛼 = 90∘, indicating
s−wave dominance in the resonance emergence. At dipole tilt angles, which
are larger than a critical angle, the d𝜎/dΩ angular distribution has disturbed
resonant-like form at the points of 𝜎(𝜌SR) minimum.

• Whereas at the tilt angle 𝛼 = 90∘ angular distributions of d𝜎/dΩ are strongly
anisotropic at the points of a minimum of total cross section dependence 𝜎B(𝜌SR),
indicating that the s−wave contribution is suppressed and the scattering is
governed by higher partial waves.

• So, in contrast to the central potentials, the 2D low-energy dipolar scattering
of bosons is strongly anisotropic and its properties are highly sensitive to the SRI
radius as well as dipoles mutual orientation.
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Angular distributions of differential cross section: bosons

a b

c d

Fig.9 The dependencies of the differential cross sections d𝜎/dΩ on the scattering
angle 𝜑 at the different values of the incident angle 𝜑q , which is changing along the
Z -axis, for the resonant (a, c) and non-resonant (b, d) dipolar scattering of bosons.
Here QB

X = d𝜎B/dΩcos(𝜑), QB
Y = d𝜎B/dΩ sin(𝜑). The curves are presented for the

tilt angles 𝛼 = 45∘ (a, b, e, f ) and 90∘ (c, d , g , h) of two aligned (𝛽 = 0∘; 𝛾 = 𝛼)
dipoles.
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Angular distributions of differential cross section: fermions

e f

g h

Fig.10 The dependencies of the differential cross sections d𝜎/dΩ on the scattering
angle 𝜑 at the different values of the incident angle 𝜑q , which is changing along the
Z -axis, for resonant (e, g) and non-resonant (f , h) dipolar scattering of fermions. Here
QF

X = d𝜎F /dΩcos(𝜑), QF
Y = d𝜎F /dΩ sin(𝜑). The curves are presented for the tilt

angles 𝛼 = 45∘ (a, b, e, f ) and 90∘ (c, d , g , h) of two aligned (𝛽 = 0∘; 𝛾 = 𝛼) dipoles.
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SRI-induced resonances in low-energy 2D scattering of bosonic dipoles
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• The distinct narrow resonances in the
dependence of the calculated total cross
section 𝜎B(𝜌SR) for bosonic dipoles occur
for the scattering of the two aligned dipoles
(𝛽 = 0∘; 𝛾 = 𝛼) at tilt angles 𝛼 = 45∘.

• The number of resonances in the
cross section dependence on the 𝜌SR is
quadrupled with increasing tilt angle 𝛼 from
45∘ up to 90∘.

• The cross section does not depend on
the SRI potential and there are no dipolar
scattering resonances at 𝛼 ≤ 𝛼c (𝛽, 𝛾) and
𝜌SR/D ≪ 1. Thus, the rotation of the
dipole moment vector d2 around the Z
axis by 𝛽 → 180∘ causes the narrowing
of the domains, where the dipolar potential
is attractive, and the number of the
resonances decreases until they disappear at
𝛽 → 180∘.

• The resonances emerge also in the case of
oppositely oriented dipoles (𝛽 = 180∘) lying
in the scattering plane at 𝛼 → 90∘.
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SRI-induced resonances in low-energy 2D scattering of fermionic dipoles

(a)
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(d )
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𝛼c = 45∘

Fig.5

• The fermion scattering is significantly
different from the boson scattering at low
energies.

• For the case of fermion collisions, the
amplitudes of the resonances are two orders
of magnitude smaller, than those for bosons,
in the case of low energy of the collision.

• The Lennard-Jones potential models
short-range repulsion more physically, in the
sense of introducing correlations between
the different partial waves short-range
phases, which shift narrow resonances in
high partial waves, as seen in Figs. 4 and 5.
But the resonances’ structure remains
qualitatively the same as when using the
hard wall potential, because the resonances
are due to the s-wave (p-wave) dominance
in the scattering of bosons (fermions).

• The results for the hard wall potential
are marked by a black dashed line, whereas
for the Lennard-Jones potential by the blue
solid line; Born approx. by a green line.
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Energetic dependencies of 2D dipolar scattering cross section
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Fig.6 The energy dependencies of the total cross section of the dipolar scattering of
identical bosons 𝜎B(E) (𝛼 = 45∘(a), 90∘(c)) and identical fermions 𝜎F (E)
(𝛼 = 45∘(b), 90∘(d)) for aligned dipoles configuration 𝛽 = 0∘ and 𝛾 = 𝛼. The tilt
angle exceeds the critical angle 𝛼 > 𝛼c (𝛼c = 35.3∘) for such dipole mutual
orientations. The curves corresponding to the resonance points are indicated by a red
solid line, the non-resonant curves by a blue dashed line; the Born approximation by a
green dotted line, the eikonal approximation by a gray dashed line. 19 / 23
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Energetic dependencies of 2D dipolar scattering cross section
• The analysis of the dependencies shows that in a low-energy limit, the cross
section of resonant cases is at least an order of magnitude greater than the values
for non-resonant cases.
• The cross section of identical bosons scattering increases in the E → 0 limit in
both cases due to the s-wave, which is caused by the divergence in 2D space9. It
should be noted, that in the vicinity of resonances the cross section is an order
of magnitude greater than those at the absence of resonances.
• All resonant curves of the cross section 𝜎F (E) for the dipolar scattering of
fermions demonstrate a peak shape in the low-energy limit, in contrast to the
non-resonant curves, that monotonically decrease. These peaks shift to the lower
energies with the growing value of its maximums at an increase of 𝜌SR . The
resonances for fermions are narrower than for bosons, due to potential barriers
for high partial waves, that suppress the partial cross section in the low-energy
limit.
• The boson (fermion) dipoles 2D scattering cross section in the absence of
resonances increases (decreases) in the low-energy limit in contrast to the 3D
scattering, where the cross section in the absence of resonances has the form of
a plateau in the low-energy limit for both bosons and fermions (Refs.10,11).

9Simon, B. English. Annals of Physics 97, 279–288 (1976).
10Roudnev, V. & Cavagnero, M. English. Journal of Physics B: Atomic, Molecular and Optical

Physics 42, 044017 (2009).
11Bohn, J. et al. English. New Journal of Physics 11, 055039 (2009).

20 / 23



Ultracold polar molecules 2D dipolar scattering Results Conclusions

Conclusions

• The impact of the short-range interaction on the resonances occurrence in the anisotropic
dipolar scattering in a plane was numerically investigated for different orientations of the
dipoles and for a wide range of collision energies.

• We revealed the strong dependence of the cross section on the radius of short-range
interaction, which is modeled by a hard wall potential and by the more realistic Lennard-
Jones potential. The results of the numerical calculations of the cross section agree within
the low-energy and high-energy limits with the results obtained within the Born and eikonal
approximations, respectively.

• It was found, that the s−wave (p−wave) dominates in the angular distributions of the
differential cross section at resonance points in the 2D dipolar scattering of identical bosons
(identical fermions), whereas the higher partial waves dominate at non-resonant points and
the differential cross sections are highly anisotropic.

• We also defined the critical (magic) tilt angle of one of the dipoles, depending on the
direction of the second dipole for arbitrarily oriented dipoles. It was found that resonances
arise only when this angle is exceeded.

• In the absence of the resonances the energy dependencies of the boson (fermion) dipolar
scattering cross section grows (is reduced) with energy decrease in 2D case, in contrast to
the 3D case, where it has the form of a plateau for both bosons and fermions.
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Thank you for your attention!
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