Подземный нейтринный эксперимент DUNE – расчёт чувствительности к измерению параметров осцилляций

Deep underground neutrino experiment DUNE – calculation of sensitivity to the measurement of oscillation parameters

Автор: Степанова Анна Соавторы: Гончар Максим, Колупаева Людмила, Тресков Константин

Лаборатория ядерных проблем им. В.П.Джелепова, ОИЯИ

15 декабря 2021

DUNE

Осцилляции нейтрино Моделирование в GLoBES и GNA Заключение

Устройство DUNE

DUNE - Deep Underground Neutrino Experiment

Преимущества DUNE:

- работа с широким энергетическим диапазоном: 0.5 8 ГэВ
- длинная база осцилляций: 1284.9 км
- доверительный объём дальнего детектора: 40 кт ⁴⁰ Ar

Основная цель:

выполнение программы по изучению осцилляций нейтрино в парадигме 3-х флейворных состояний нейтрино Стандартной Модели

DUNE Осцилляции нейтрино Заключение

Параметры осцилляций Задачи

Осцилляции нейтрино в вакууме

Моделирование в GLoBES и GNA

Матрица Понтекорво – Маки – Накагавы – Сакаты:

$$\begin{split} U_{PMNS} &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & e^{-i\delta_{cp}}s_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{cp}}s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}, \\ \mathsf{Fge} \ s_{\alpha\beta} &= \sin\theta_{\alpha\beta}, c_{\alpha\beta} &= \cos\theta_{\alpha\beta}, \alpha, \beta = \overline{1,3} \end{split}$$

Частота осцилляций зависит от расщепления масс:

$$\Delta m_{ij}^2=m_i^2-m_j^2, (i,j=$$
1,2,3) и выполняется соотношение: $\Delta m_{31}^2=\Delta m_{32}^2+\Delta m_{21}^2$

Параметры осцилляций:

- 3 угла смешивания $\theta_{12}, \ \theta_{13}, \ \theta_{23} \in [0, \frac{\pi}{2}]$
- CP-фаза: δ_{CP} ∈ [0, 2π]
- 2 расщепления масс Δm_{21}^2 , Δm_{31}^2 и знак Δm_{31}^2

Параметры осцилляций Задачи

Задачи DUNE

На сегодняшний день весь комплекс нейтринных экспериментов измерил 5 осцилляционных параметров: $\theta_{12}, \theta_{13}, \theta_{23}, \Delta m_{21}^2, \Delta m_{31}^2$.

Но пока неизвестны:

- иерархия масс нейтрино (знак Δm_{31}^2)
- фаза комбинированной чётности δ_{CP}
- октант, в котором находится угол смешивания θ_{23}

Измерить неизвестные параметры – одна из задач DUNE, поэтому необходимо оценить его чувствительность к ним. А также задача DUNE – уточнить *все* известные параметры осцилляций.

イロト イボト イヨト イヨト

Структура Первый шаг – числа событий в каналах Второй шаг – чувствительности

Изучение чувствительности эксперимента

Основывается:

• на моделировании сигнальных и фоновых событий: ν , $\bar{\nu}$ режимы:

- ν_e появление: $\nu_\mu
 ightarrow \nu_e$ сигнал, $\nu_\mu
 ightarrow \nu_\mu$ фон, $\nu_e
 ightarrow \nu_e$ фон, ...
- $\bar{\nu}_e$ появление: $\bar{\nu}_\mu \to \bar{\nu}_e$ сигнал, $\bar{\nu}_\mu \to \bar{\nu}_\tau$ фон, $\bar{\nu}_e \to \bar{\nu}_e$ фон, ...
- ν_{μ} исчезновение: $\nu_{\mu}
 ightarrow \nu_{\mu}$ сигнал, NC фон, $\nu_{\mu}
 ightarrow \nu_{\tau}$ фон, ...
- $\bar{\nu}_{\mu}$ исчезновение: $\bar{\nu}_{\mu}
 ightarrow \bar{\nu}_{\mu}$ сигнал, $\nu_{\mu}
 ightarrow \nu_{\mu}$ фон, ...

на методах и инструментах анализа данных

Проведено в:

- GLoBES General Long Baseline Experiment Simulator (classic)
- GNA Global Neutrino Analysis (new)

Взяты во внимание результаты Technical Design Report: arxiv:2002.03005

Структура Первый шаг – числа событий в каналах Второй шаг – чувствительности

GNA. Разработано в ЛЯП, ОИЯИ

Программное обеспечение, созданное для проведения полного осцилляционного анализа в экспериментах разного типа: реакторных, ускорительных и др.

Особенности:

- независимые вычислительные блоки, объединенные в граф
- вычисления через особые функции – преобразования, реализованные на языке C++
- интерфейс на языке Python
- управление моделью через командную строку
- доступны функции и методы ROOT

Возможности:

- удобство задания модели и внесения изменений в неё
- все операции: от умножения массивов до построения карты доверительных интервалов
- высокая скорость вычислений и эффективность работы
- варьирование параметров, минимизация и фитирование, построение графиков ⇒ проведение полного осцилляционного анализа

Структура

Первый шаг – числа событий в каналах Второй шаг – чувствительности

Задача работы – ускорительная оболочка в GNA

Соавторами широко развит анализ данных **реакторных** экспериментов в GNA: JUNO, Daya Bay

Цели:

 разработать удобную
 структуру входного файла для
 ускорительных экспериментов;
 создать оболочку с
 классическими функциями для проведения
 осцилляционного анализа;
 смоделировать другие
 ускорительные эксперименты в ней: NOvA, T2K и др.

FLUXES:

www.input.data/dune/flux/flux_fhc_numu.txt
nue: input_data/dune/flux/flux_fhc_nue.txt
numebar: input_data/dune/flux/flux_fhc_numbar.txt
numubar: input_data/dune/flux/flux_fhc_numubar.txt

alilu :

nume: input_data/dune/flux/flux_fhc_numu.txt nume: input_data/dune/flux/flux_fhc_nume.txt numbar: input_data/dune/flux/flux_fhc_numbar.txt numbar: input_data/dune/flux/flux_fhc_numbar.txt

CROSS_SECTION: CC:

NC:

ne: isput data/dune/xsec/xsec_nue_nc.txt num: isput_data/dune/xsec/xsec_num_nc.txt number: input_data/dune/xsec/xsec_number_nc.txt number: input_data/dune/xsec/xsec_number_nc.txt nutuber: input_data/dune/xsec/xsec_nutua.nc.txt nutuber: input_data/dune/xsec/xsec_nutua.nc.txt

SMEARING_MATRIX

test_input_dist/den/sear/app.now_isig.tit meak-sig: input_dist/den/sear/app.nowies_ig.tit meak-sig: input_dist/den/sear/app.now Mag.tit meak-sig: input_dist/den/sear/app.now Mag.tit meak-sig: input_dist/den/sear/app.now Mag.tit nowies Mag: input_dist/den/sear/app.now Mag.tit notice Mag: input_dist/den/sear/app.now Mag.tit notice Mag: input_dist/den/sear/app.now Mag.tit notice Mag: input_dist/den/sear/app.now Mag.Mag.tit notice Mag: input_dist/den/sear/app.now Mag.tit notice Mag: input_dist/den/sear/app.now Mag.tit notice Mag: input_dist/den/sear/app.now Mag.tit

DIS:

num_sig: input_data/dume/smear/dis_numu_sig.txt numbar_bkg: input_data/dume/smear/dis_numbar_sig.txt numubar_sig: input_data/dume/smear/dis_numbar_sig.txt num_bkg: input_data/dume/smear/dis_numu_sig.txt nuteu_bkg: input_data/dume/smear/dis_numu_sig.txt

MODE :

aco nue sia type: sig horn current: fhc initial flavor: numu final flavor: nue xsec type: CC eff: input data/dune/effic/app sig nue fhc.txt type: sig horn current: fhc initial flavor: numubar final flavor: nuebar xsec type: CC eff: input data/dune/effic/app sig nuebar fhc.txt bkq1: horn_current: fhc initial flavor: nue final flavor: nue xsec type: CC eff: input data/dume/effic/app bkg mue fhc.txt horn current: the initial flavor: nueban final flavor: nuebar xsec type: CC eff: input data/dune/effic/app bkg nuebar fhc.txt bkg2: horn current: fhc initial flavor: numu final flavor: numu xsec_type: NC eff: input data/dune/effic/app bkg nc fhc.txt horn current: fhc initial flavor: nue final flavor: nue xsec type: NC eff: input data/dune/effic/app bkg nc fhc.txt horn current: fhc initial flavor: numubar final flavor: numubar

< □ > < □ > < □ > < □ > < □ >

Структура Первый шаг – числа событий в каналах Второй шаг – чувствительности

Фрагмент графа модели DUNE в GNA

$$N_{CC} = K \int f(E) \cdot P(\nu_{\mu} \to \nu_{e})(E) \cdot xs(E) \cdot SM \cdot eff(E) \cdot dE$$
$$N_{NC} = K \int f(E) \cdot xs(E) \cdot SM \cdot eff(E) \cdot dE$$

<ロト < 回ト < 回ト < 回ト < 回ト</p>

Структура Первый шаг – числа событий в каналах Второй шаг – чувствительности

Фрагмент графа модели DUNE в GNA

$$N_{CC} = \mathcal{K} \int f(E) \cdot P(\nu_{\mu} \to \nu_{e})(E) \cdot xs(E) \cdot SM \cdot eff(E) \cdot dE$$

Структура Первый шаг – числа событий в каналах Второй шаг – чувствительности

Потоки в режиме нейтрино (слева) и антинейтрино (справа)

Структура Первый шаг – числа событий в каналах Второй шаг – чувствительности

Фрагмент графа модели DUNE в GNA

 $N_{CC} = \mathcal{K} \ \Big| \ f(E) \cdot P(\nu_{\mu} \to \nu_{e})(E) \cdot xs(E) \cdot SM \cdot eff(E) \cdot dE$

Структура Первый шаг – числа событий в каналах Второй шаг – чувствительности

Вероятность осцилляций в веществе из ν_{μ} в ν_{e} :

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &= \sin^{2}\theta_{23} \cdot \sin^{2}\left(2\theta_{13}\right) \cdot \frac{\sin^{2}(\Delta_{31} - aL)}{(\Delta_{31} - aL)^{2}}\Delta_{31}^{2} + \\ &+ \sin(2\theta_{23}) \cdot \sin(2\theta_{13}) \cdot \sin(2\theta_{12}) \cdot \frac{\sin(\Delta_{31} - aL)}{(\Delta_{31} - aL)} \cdot \frac{\sin(aL)}{(aL)} \cdot \Delta_{21} \cdot \\ &\cdot \cos(\Delta_{31} + \delta_{CP}) + \cos^{2}\theta_{23} \cdot \sin^{2}(2\theta_{12}) \cdot \frac{\sin^{2}(aL)}{(aL)^{2}} \cdot \Delta_{21}^{2}, \end{split}$$

где $\Delta_{ij} = 1,27 \cdot \Delta m_{ij}^2 L/E$ (i,j=1,2,3), $a = G_F N_e / \sqrt{2}$ – эффект вещества, G_F – константа Ферми, N_e – плотность количества электронов в Земле.

Структура Первый шаг – числа событий в каналах Второй шаг – чувствительности

Фрагмент графа модели DUNE в GNA

$$N_{CC} = K \int f(E) \cdot P(\nu_{\mu} \to \nu_{e})(E) \cdot \mathsf{xs}(E) \cdot SM \cdot eff(E) \cdot dE$$

Структура Первый шаг – числа событий в каналах Второй шаг – чувствительности

Сечения взаимодействия нейтрино и антинейтрино с ⁴⁰Ar через СС (слева) и NC (справа)

Взяты из нейтринного Монте – Карло генератора GENIE

<ロト < 回ト < 回ト < 回ト < 回ト</p>

Структура Первый шаг – числа событий в каналах Второй шаг – чувствительности

Фрагмент графа модели DUNE в GNA

$$N_{CC} = \mathcal{K} \int f(E) \cdot P(\nu_{\mu} \to \nu_{e})(E) \cdot xs(E) \cdot SM \cdot eff(E) \cdot dE$$

Структура Первый шаг – числа событий в каналах Второй шаг – чувствительности

Матрицы размытия

Они показывают то, насколько правильно восстанавливается энергия относительно истинных значений энергий в диапазоне от 0 до 8 ГэВ.

Восстановленной энергией нейтрино считается сумма лептонной и адронной энергии.

> Взяты из Монте – Карло моделирования DUNE

> > (日) (周) (王) (王)

Структура Первый шаг – числа событий в каналах Второй шаг – чувствительности

Фрагмент графа модели DUNE в GNA

$$N_{CC} = K \int f(E) \cdot P(\nu_{\mu} \to \nu_{e})(E) \cdot xs(E) \cdot SM \cdot eff(E) \cdot dE$$

Структура Первый шаг – числа событий в каналах Второй шаг – чувствительности

Эффективности отбора для всех каналов

Взяты из Монте – Карло моделирования DUNE

Степанова Анна

Чувствительность DUNE

Структура Первый шаг – числа событий в каналах Второй шаг – чувствительности

Фрагмент графа модели DUNE в GNA

$$N_{CC} = \mathbf{K} \int f(E) \cdot P(\nu_{\mu} \to \nu_{e})(E) \cdot xs(E) \cdot SM \cdot eff(E) \cdot dE$$

Структура Первый шаг – числа событий в каналах Второй шаг – чувствительности

Параметр эксперимента

K = нормировочный коэффициент k \times imes число протонов на мишень РОТ imes время работы t imes масса ⁴⁰Ar m

<ロト < 回ト < 回ト < 回ト < 回ト</p>

Структура Первый шаг – числа событий в каналах Второй шаг – чувствительности

Фрагмент графа модели DUNE в GNA

$$N_{NC} = K \int f(E) \cdot xs(E) \cdot SM \cdot eff(E) \cdot dE$$

Степанова Анна

・ロト ・四ト ・ヨト ・ヨト

Структура Первый шаг – числа событий в каналах Второй шаг – чувствительности

Гистограммы чисел событий в GNA (слева) и в GLoBES (справа)

Появление: $\nu_{\mu} \rightarrow \nu_{e}$ Исчезновение: $\nu_{\mu} \rightarrow \nu_{\mu}$

Степанова Анна

Чувствительность DUNE

Структура Первый шаг – числа событий в каналах Второй шаг – чувствительности

Фрагмент графа модели DUNE в GNA

3

イロン イ団 と イヨン イヨン

Структура Первый шаг – числа событий в каналах Второй шаг – чувствительности

Расчёт чувствительности к иерархии масс нейтрино

•
$$\sigma_{MO} = \sqrt{\Delta \chi^2_{MO}} = \sqrt{\chi^{2(test)}_{IO} - \chi^{2(true)}_{NO}}$$

•
$$\sigma_{\delta_{CP}} = \sqrt{\Delta \chi^2_{\delta_{CP}}} = \sqrt{\min\left(\chi^{2(\text{test})}_{\delta_{CP}=0}, \chi^{2(\text{test})}_{\delta_{CP}=\pi}\right) - \chi^{2(\text{true})}_{\delta_{CP}}}$$

•
$$\sigma_{octant,<\pi/4} = \sqrt{\Delta \chi^2_{octant,<\pi/4}} = \sqrt{\min(\chi^{2(test)}_{>\pi/4}) - \chi^{2(true)}_{<\pi/4}}$$

 $\sigma_{octant,>\pi/4} = \sqrt{\Delta \chi^2_{octant,>\pi/4}} = \sqrt{\min(\chi^{2(test)}_{<\pi/4}) - \chi^{2(true)}_{>\pi/4}}$

<ロト < 回ト < 回ト < 回ト < 回ト</p>

Структура Первый шаг – числа событий в каналах Второй шаг – чувствительности

Чувствительность к иерархии масс нейтрино

Степанова Анна

<ロト < 回ト < 回ト < 回ト < 回ト</p>

Структура Первый шаг – числа событий в каналах Второй шаг – чувствительности

Расчёт чувствительности к СР-фазе

•
$$\sigma_{MO} = \sqrt{\Delta \chi^2_{MO}} = \sqrt{\chi^{2(test)}_{IO} - \chi^{2(true)}_{NO}}$$

•
$$\sigma_{\delta_{CP}} = \sqrt{\Delta \chi^2_{\delta_{CP}}} = \sqrt{\min\left(\chi^{2(\text{test})}_{\delta_{CP}=0}, \chi^{2(\text{test})}_{\delta_{CP}=\pi}\right) - \chi^{2(\text{true})}_{\delta_{CP}}}$$

•
$$\sigma_{octant,<\pi/4} = \sqrt{\Delta \chi^2_{octant,<\pi/4}} = \sqrt{\min(\chi^{2(test)}_{>\pi/4}) - \chi^{2(true)}_{<\pi/4}}$$

 $\sigma_{octant,>\pi/4} = \sqrt{\Delta \chi^2_{octant,>\pi/4}} = \sqrt{\min(\chi^{2(test)}_{<\pi/4}) - \chi^{2(true)}_{>\pi/4}}$

3

イロト イヨト イヨト イヨト

Структура Первый шаг – числа событий в каналах Второй шаг – чувствительности

Чувствительность к СР-фазе

<ロト < 回ト < 回ト < 回ト < 回ト</p>

Структура Первый шаг – числа событий в каналах Второй шаг – чувствительности

Расчёт чувствительности к октанту угла $heta_{23}$

•
$$\sigma_{MO} = \sqrt{\Delta \chi^2_{MO}} = \sqrt{\chi^{2(test)}_{IO} - \chi^{2(true)}_{NO}}$$

•
$$\sigma_{\delta_{CP}} = \sqrt{\Delta \chi^2_{\delta_{CP}}} = \sqrt{\min\left(\chi^{2(\text{test})}_{\delta_{CP}=0}, \chi^{2(\text{test})}_{\delta_{CP}=\pi}\right) - \chi^{2(\text{true})}_{\delta_{CP}}}$$

•
$$\sigma_{octant,<\pi/4} = \sqrt{\Delta \chi^2_{octant,<\pi/4}} = \sqrt{\min(\chi^{2(test)}_{>\pi/4}) - \chi^{2(true)}_{<\pi/4}}$$

 $\sigma_{octant,>\pi/4} = \sqrt{\Delta \chi^2_{octant,>\pi/4}} = \sqrt{\min(\chi^{2(test)}_{<\pi/4}) - \chi^{2(true)}_{>\pi/4}}$

イロト イヨト イヨト イヨト

Структура Первый шаг – числа событий в каналах Второй шаг – чувствительности

Чувствительность к октанту угла $heta_{23}$ в GLoBES

イロト イヨト イヨト イヨト

Результаты Backup

Физический результат

В соответствии с полученными чувствительностями DUNE сможет измерить неизвестные параметры осцилляций нейтрино и приблизит расширенную Стандартную Модель элементарных частиц к завершению.

Технический результат

Разработана универсальная оболочка для проведения осцилляционного анализа в ускорительных экспериментах с длинной базой в GNA. Получено согласие результатов GNA с GLoBES на примере эксперимента DUNE.

Спасибо за внимание!

イロト イボト イヨト イヨト

DUNE Осцилляции нейтрино

Результат Backup

Заключение

Данные глобального фитирования NuFIT 4.0

Моделирование в GLoBES и GNA

Параметр	Центральное	Относительная
	значение	погрешность, %
θ_{12}	0.5903	2.3
θ_{23} (NO)	0.866	4.1
θ_{23} (IO)	0.869	4.0
θ_{13} (NO)	0.150	1.5
θ_{13} (IO)	0.151	1.5
Δm_{21}^2	7.39 · 10 ⁻⁵ эВ ²	2.8
Δm_{31}^2 (NO)	2.451 · 10 ^{−3} эВ ²	1.3
Δm_{31}^2 (IO)	$-2.512 \cdot 10^{-3} \text{ sB}^2$	1.3

イロト イロト イヨト イヨト

DUNE

Заключение

Осцилляции нейтрино Моделирование в GLoBES и GNA Результать Backup

Вероятность осцилляций

э

・ロン ・日 ・ ・ ヨン・

DUNE Осцилляции нейтрино

Результать Backup

Заключение

Фрагмент графа модели DUNE в GNA

Моделирование в GLoBES и GNA

$$N_{CC} = K \int xs(E) \cdot f(E) \cdot P(\nu_{\mu} \to \nu_{e})(E) \cdot SM \cdot eff(E) \cdot dE$$