

OMC4DBD 136 Ba data: analysis of time evolution of γ -lines in HPGe detectors

Yu. Shitov, JINR

Motivation

- Testing of different methods to analyze time dependences of γ -lines.
- Required for determination of global, partial capture times calculations, separation of isotope production mechanisms (direct OMC? vs beam production), etc.

Data processing method

- Using Analyzer to produce 2 TTrees with muons and ge hits, sorted by time (DUBNA trees) for each runs (~ 5 minutes) which corresponds to MIDAS run.
- Basic parameter μ-ge-hit coincidence window (CW). 14 μs in this analysis.
- Processing each ge-hit in cycle. Taking energy in particular range (big γ -peaks) and build 3 types of spectra: Good (1 μ -stop in CW), Multiple (> 1 μ -stop in CW) and uncorrelated

μ & ge-hit event structure

```
typedef struct
{
     Double_t energy;
     Double_t time;
     uint16_t module;
     uint16_t channel;
     uint8_t status_flag;
} base_event;
```


Ba data: processing statistics

- 1390 runs (~ 85 h) in the data list:
 - 1 series 441 runs (~ 27h)
 - 2 series 949 runs (~ 58 h)

Muon logic:

"Incoming muon" – C_1 & not(C_0) hit : could be optimized further

MONUMENT 2021 shitov @jinr.ru 4

Mg-24 spectra

Here all methods are demonstrated on the ²³Na line 440 keV (the strongest in the correlated

spectrum) 2D Time vs. energy

X/Y-projections for Good/Multi

MONUMENT 2021

shitov@jinr.ru

Ba-136 spectra

Here all methods are demonstrated on the ¹³⁶Ba line 3991 keV (the strongest in the correlated

spectrum) 2D Time

2D Time vs. energy

X/Y-projections for Good/Multi

Further steps

- 2D E/T histos in two T windows (long < 14 mks & short < 1.45 mks)
- Look (fit) at time evolution of OMC correlated g-lines
- Analysis with Michel-electrons with C3 counter.