Стабилизация мощности излучения лазерного источника для Малогабаритного Прецизионного лазерного инклинометра с помощью АЦП и ЦАП. Часть I

М.В.Ляблин, Ю.В.Клемешов

Принцип работы Прецизионного Лазерного Инклинометра

Смещение лазерного луча на квадрантном фотоприёмнике в ПЛИ

- Лазер, кювета с жидкостью и позиционно-чувствительный (квадрантный) фотоприёмник находятся на основании.
- При наклоне основания на угол положение поверхности жидкости не изменяется,
- Отражённый от поверхности жидкости лазерный луч наклоняется относительно квадрантного фотоприёмника на угол 20
- Пятно лазерного луча смещается на квадрантном фотоприёмнике и изменяет сигналы на его фотоприёмниках.

$$\frac{\Delta U_{\rm rop}}{U} = \frac{(U_2 + U_3) - (U_1 + U_4)}{U_1 + U_2 + U_3 + U_4} = \frac{\Delta P_{\rm rop}}{P}$$

$$\frac{\Delta U_{\text{rop}}}{U} = \frac{\operatorname{erf}\left(\frac{(a+d)\sqrt{2}}{r}\right) + \operatorname{erf}\left(\frac{(a-d)\sqrt{2}}{r}\right)}{2\operatorname{erf}\left(\frac{300\sqrt{2}}{r}\right) + \operatorname{erf}\left(\frac{(a-d)\sqrt{2}}{r}\right) - \operatorname{erf}\left(\frac{(a+d)\sqrt{2}}{r}\right)}$$

Положения одномодового лазерного луча в центре квадрантного фотоприёмника научно-мето

Смещение лазерного луча на квадрантном фотоприёмнике в ПЛИ 2

Зависимость сигнала с квадрантного фотоприёмника от смещения а пятна лазерного луча для различных диаметров **2r** лазерного луча

 $\frac{\Delta \boldsymbol{U}_{\mathrm{rop}}}{\boldsymbol{U}}$

Смещение лазерного луча на квадрантном фотоприёмнике в ПЛИ 3

Нелинейности β относительного сигнала $\frac{\Delta U_{rop}}{U}$ с КФ в зависимости от смещения α для различных диаметров **2r** лазерного луча

$$\boldsymbol{\beta} = \frac{\Delta \boldsymbol{U}_{\text{гор}}}{\Delta \boldsymbol{U}_{\text{сум}}} (\boldsymbol{\alpha}) - \boldsymbol{t} \boldsymbol{g}(\boldsymbol{\gamma}) \boldsymbol{\alpha}$$

 Для диаметра лазерного луча 100мкм диапазон смещения А пятна лазерного луча с возможной нелинейностью β=0.01 достигает 13мкм.

Диапазон смещений **A** лазерного луча с нелинейностью в сигнале с квадрантного фотоприёмника β=0.01 в зависимости от диаметра 2r пятна лазерного луча

Смещение лазерного луча на квадрантном фотоприёмнике в ПЛИ 4

• Наблюдается практически линейная зависимость диапазона смещения А лазерного луча в зависимости от его диаметра 2r.

- При изменении расположения пятна лазерного луча на квадрантном фотоприёмнике происходит разномасштабное распределение мощности лазерного луча на фотоприёмниках квадранта.
- При изменении интенсивности лазерного луча этот фактор даст прямое проникновения шума нестабильности мощности в регистрируемый сигнал.
- Определим степень влияния шума нестабильности мощности, на чувствительность ПЛИ.

• Максимальное изменение относительного сигнала $\frac{\Delta U_{rop}}{U}B$ зоне с нелинейностью 1% составляет величину 28%.

Определение зависимости относительного амплитудного шума лазера от шума измерения угла наклона

 $\Delta \boldsymbol{U} = \boldsymbol{U}_1 - \boldsymbol{U}_2 = \Delta \boldsymbol{U}_0 + \boldsymbol{\delta} \boldsymbol{U}_n = \Delta \boldsymbol{U}_0 \left(1 + \frac{\boldsymbol{\delta} \boldsymbol{U}_n}{\Delta \boldsymbol{U}_0} \right)$

$$\Delta P = P_1 - P_2 = \Delta P_0 + \delta P_n = \Delta P_0 \left(1 + \frac{\delta P_n}{\Delta P_0} \right)$$

Смещение пятна лазерного луча на дуантном фотоприёмнике

 P_0 постоянная мощности , δP переменной составляющей мощности

 ΔU_0 -постоянная составляющая сигнала, δU_n -переменная составляющая сигнала

 ΔP_0 -постоянная разности мощности , δP_n - переменная составляющая разности мощности

Поскольку
$$P = \frac{\eta e}{h\nu} I = \frac{\eta e}{h\nu} \frac{U}{R}$$
 получим $\frac{\delta U_n}{\Delta U_0} = \frac{\delta P_n}{\Delta P_0} = \frac{\delta P}{P_0}$

 $\frac{\delta P}{P_0} = \frac{\delta U_n}{\Delta U_0}$

Зависимость относительного шумового изменения мощности сигнала от относительного изменения шума разностного сигнала на фотоприёмниках

Определение зависимости относительного амплитудного шума лазера от шума измерения угла наклона2

Поскольку относительное изменение сигнала равно относительному изменению углов наклона

Δφ максимальный линейно измеряемый угол **Δ**φ_n шум измеряемого угла

$$\frac{\boldsymbol{\delta P}}{\boldsymbol{P_0}} = \frac{\boldsymbol{\delta \varphi_n}}{\boldsymbol{\Delta \varphi}}$$

Поскольку длина лазерного луча от точки отражения от поверхности жидкости до позиционного квадрантного фотоприёмника L=0.7м а максимально допустимое смещение 100мкм пятна лазерного луча равно A=13мкм. угол ∆φ=A/L =2 10⁻⁵рад,

при максимальной точности измерения ,ограниченной шумами 24 битного АЦП шум измерения максимального угла наклона земной поверхности составит **б***φ*_n=5 10⁻¹⁰ рад.

 $\frac{\delta P}{P_0} = 1.2 \cdot 10^{-5}$

Для измерения в рамках амплитуды Микросейсмического Пика $\Delta \phi = 10^{-7}$ рад

 $\frac{\delta U_n}{\Delta U_0} = \frac{\delta \varphi_n}{\Delta \omega}$

- Изначально стабилизированный по мощности лазерный луч становится нестабильным после прохождения волокна. В этой ситуации необходимо стабилизировать мощность используя её измерение на выходе оптического волокна.
- На выходе оптического волокна производится прецизионное измерение мощности. При помощи фотоприёмника регистрируется её переменная составляющая, которая используется в цепи обратной связи для стабилизации лазерного источника.
- В этой схеме мы стабилизируем мощность лазера в том числе и от возникших в оптическом волокне сопутствующих шумов, что является принципиально важным фактором при использовании этой схемы в ПЛИ.