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Theoretical understanding of turbulence is one the most important unsolved problems in
classical physics. Of course, the concept of turbulence encompasses a wide class of physical
phenomena of various nature, so that any exhaustive and completed “theory of turbulence” can
hardly ever be constructed. However, there is a “canonical list” the of problems: existence and
stability of solutions to the hydrodynamics equations, convective (thermally driven) turbulence,
instability of laminar flows, decaying turbulence, etc., which have both practical and conceptual
significance and have always been in the focus of theorists’ attention. One of them is the
problem of describing the fully developed (homogeneous, isotropic) hydrodynamic turbulence
(in particular, its inertial-range behaviour).

Turbulent flows occurring in various liquids or gases at very high Reynolds numbers ex-
hibit a number of general encouraging phenomena and features (cascades of energy and other
conserved quantities, scaling behaviour with apparently universal “anomalous exponents,” etc.),
indicating that the developed turbulence can be described within the framework of a certain self-
sufficient and internally consistent theory. The most notable feature of developed turbulence,
which does not fit into the framework of the classical phenomenological Kolmogorov-Obukhov
theory, is the “intermittency” phenomenon arising due to the strong energy flux fluctuations.
In particular, it manifests itself in a singular dependence, presumably power-law, of various
equal-time correlation and structure functions, on the distances and the integral scale, and is
characterized by an infinite number of independent anomalous exponents (anomalous multi-
scaling). Both experiments and numerical simulations show that the anomalous scaling is more
strongly pronounced for the passive turbulent transfer of scalar and vector fields (temperature,
impurity concentration, magnetic field) than that for the velocity field itself. Therefore, the
problem of passive transfer is an essential integral part of the study of scaling in a turbulent
medium.

A related class of problems is associated with the study of the role of turbulence in fluids
near their critical points, at which the systems turn out to be extremely sensitive to external
influences and hydrodynamic fluctuations, which ultimately lead to the emergence of new dy-
namic scaling universality classes both in classical and quantum systems, for example, in liquid
helium. In the latter, vanishing of the viscosity coefficient immediately leads to arbitrarily large
Reynolds numbers even at low flow rates.

Fluctuations of random velocity fields, including turbulent ones, affect many other stochastic
processes in Nature. Among them, a special place is occupied by chemical reactions proceeding
in random environments, models of non-equilibrium critical behaviour , describing the roughen-
ing of a randomly growing surface (like the Kardar-Parisi-Zhang equation), models of directed
percolation, describing the propagation of fronts of forest-fires, epidemics, the growth of tumors
and bacterial colonies, and others. It turns out that taking into account the turbulent motion
of the environment significantly enriches the universality classes of such systems.

It should be emphasized that the dynamical physical quantities (velocity, impurity con-
centration, magnetic field, etc.) are random fields and their evolution is described by nonlin-
ear stochastic differential equations. The main goal of theoretical research is to find various
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averaged statistical characteristics of those fields: correlation functions, response functions,
structure functions and more complex objects. Suitable methods for achieving these goals are
the methods of quantum field theory (renormalization group) and non-equilibrium statistical
physics.

The authors have contributed significantly to the adaptation and improvement of these
methods for solving turbulence problems. Original methods were developed to calculate the
representative constants and parameters of turbulent systems using perturbation theory and
the critical dimensions of the so-called "dangerous" composite operators forming a multi-fractal
(intermittent) behaviour of statistical correlations of the investigated random fields.

Since the second half of the 90s of the last century, their use has led to several significant
results in the theory of developed turbulence and the study of its influence on other stochastic
processes in open systems. Below we briefly summarize the main results of the authors, pub-
lished in leading international journals in 1995-2021, including four review articles [6, 14, 27, 35].

1. Within the framework of dimensional-analytical regularization [1], the Kolmogorov con-
stants and the skewness factor have been calculated, which are consistent with the exper-
imental values [2]–[5]. The kinetic energy spectrum in the energy-containing and inertial
interval and the transfer function in the energy balance equation, expressed in terms of
the triple correlation function of the velocity field, have been found [7]. The calculated
Kolmogorov constant Ck and the kinetic energy spectrum are in a good agreement with
experimental data, Fig. (1).
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Figure 1: Longitudinal spectrum of energy as a wave number function (see [7] for details).

The leading correction to the Kolmogorov spectrum due to compressibility (second order
in the Mach number) and anisotropic corrections to the Kolmogorov constant have been
calculated. The validity of the Second Kolmogorov hypothesis for the energy spectrum
has been justified, based on the assumption of isotropisation of the flow in the inertial
interval [8]–[12]. The values of the Prandtl number for a passive scalar impurity and the
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magnetic Prandtl number in the models of developed turbulence with broken mirror –
spatial parity – symmetry have been calculated [13, 14].

2. The advection of scalar and vector impurities by a turbulent medium has been investi-
gated. Up to the three-loop approximation, the critical dimensions of the “dangerous”
composite operators have been calculated, which determine the anomalous (intermit-
tent) behaviour of the concentration and magnetic field in the inertial range [15]–[20]. It
has been found that anisotropy, mirror symmetry breaking, and compressibility of the
medium do not destroy the stability of critical regimes, but contribute to the anomalous
dimensions of the composite operators [21]–[30].

3. A quantum-field model has been formulated that describes the kinetics of the autocat-
alytic annihilation reaction in the presence of fluctuations of the density and velocity field.
The RG methods have been used to study the asymptotic behaviour of the particle den-
sity at large times near the critical dimension two, and it has been shown that arbitrarily
small fluctuations of the velocity field dominate the density fluctuations, accelerating the
process of annihilation of particles. Calculations have been carried out up to the two-loop
order [31, 32, 33]. The influence of sources and sinks simulating the interaction of ac-
tive particles with a chemically active medium (chemical radicals) has been studied, and
the corresponding actions have been constructed [34]. An integro-differential nonlinear
equation for the mean particle density has been obtained, which is a generalization of the
well-known kinetic equation in the mean-field approximation [35, 36]. The influence of
hydrodynamic fluctuations on the processes of directed percolation has been investigated.
New scaling regimes have been established; the critical exponents, that determine the
temporal asymptotics of the average number of active agents, the survival probability of
active clusters, and the effective radius, have been calculated [37]–[43].

4. In [44]–[51] systematical investigation has been carried out of the influence of the motion
of a medium (including turbulent one) on the scaling behaviour of a number of models of
random growth of surfaces (interfaces between media, smoke and flame fronts, landscapes
– the Kardar-Parisi-Zang models [44, 47] and Pastor-Satorras-Rotman [45, 46] and their
modifications) and stochastic models of self-organized criticality (the Hwa-Kardar model
[49, 50] and its variants). In all cases, possible types of scaling behaviour (“universality
classes”) and regions of their stability have been found. The corresponding critical dimen-
sions have been calculated in the leading orders of the renormalization group expansions,
and in some cases, exactly.

5. The influence of turbulent fluctuations on the phase transition to the superfluid state of
Helium described in the framework of the models of critical dynamics has been analyzed.
A new critical regime has been established, and it has been shown that the developed
turbulent fluctuations that appear due to the vanishing viscosity suppress the phase tran-
sition to a superfluid state. They affect the stability of previously known fixed points, at
one of which, as is commonly believed, the phase transition takes place [52]–[56]. Analysis,
which takes into account compressible infrared-relevant hydrodynamic modes, supports
the generalized “model A” – proposed on the basis of quantum kinetic theory – in which
the fixed point is unique [57, 58].
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93 (2016) 012151
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