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Talk plan

1. Ferromagnetic(F)-superconducting(S) heterostructures 

2. Electromagnetic proximity effect in SF structures

3. Neutron reflectometry with registration of secondary radiation
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Magnetic and superconducting heterostructures
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Ferromagnet / superconductor

Magnetic states of S-F systems under influence of proximity effects

Normal metal / superconductor
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Low-dimensional heterostructures

Influence of magnetism on superconducting 
properties of the system

Influence of superconductivity
on magnetic properties of the system
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𝑑𝐹 ≪ 𝑑𝑆
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• 𝑑𝐹 ~ 𝜉𝐹

• Τ𝑑𝐹 𝑑𝑆 = 10−3 ÷ 10−2

• Alloys: FeV, CuNi

• Systems S/Fe/S - type

• Different metalls (V, Nb, Fe, Ni, Gd)

Proximity effects at S-F structures. Results
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Results of experimental data fitting

𝐻 = 661 𝑂𝑒

• Reducing the magnetic moment of structures [Nb(25 nm)/Gd(x=1.2, 3, 5 nm)]х12 below 𝑇𝑐

• Transition of a ferromagnetic structure to superconducting state

• The superconductor displaces the magnetic field 𝐻 = 𝐻𝑒𝑥𝑡 ∙ )𝑐ℎ( Τ𝑧 𝜆 ∙ )𝑐ℎ( Τ𝐷𝑠 2 𝜆 −1

• The penetration depth was 𝜆 = 180 ± 10 nm > 𝜆(𝑁𝑏) = 120 nm

2022

Giant electromagnetic proximity effect in
superconductor/ferromagnet superlattices

A.V. Putilov, S.V. Mironov, A.S. Mel’nikov, A.I. Buzdin

Diamagnetism of a periodic ferromagnetic-superconducting structure
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2018

Electromagnetic proximity effect
Recently, a new proximity effect has been described in ferromagnetic-superconducting layered
nanostructures, which is characterized by a large scale (10 nm) of the interaction of superconductivity
and magnetism, and which takes place for any ferromagnets.
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Al2O3

Nb(100nm)

Gd(3,6,12nm)

V(70nm)

Nb(15nm)

Secondary radiation channel (gamma-quanta)

Determination of the nuclear profile of the Gd layer

Polarized neutrons

determination of the magnetic profile of the Gd layer
and superconducting layers;

nuclear profile for sum of elements

Electromagnetic proximity effect. Results.
At present, the Al2O3//Nb(100nm)/Gd(3nm)/V(70nm)/Nb(15nm) structure, where Gd is a ferromagnet and Nb

and V are superconductors, has been studied. A change in the magnetization in superconducting layers (at area

10 nm close to F-layer) under the influence of superconductivity at a level of 4-10% was found, which

corresponds to the implementation of the inverse proximity effect. Further plans are in detailed processing of

experimental data and new experiments.

7/15



𝜃0 𝜃1

Polarized neutrons reflectometry

𝑈𝑛𝑢𝑐 = 𝑉 − 𝑖𝑊
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Secondary radiation calculation:
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Standing wave regime
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• Charged particles (n, α); (n, t); (n, p)

• Gamma-quanta (n, γ)

• Fission fragments (n, f)

• Spin-flip neutrons

• Noncoherent scattered neutrons by nuclei

• Inelastically scattered neutrons

• Diffusely scattered neutrons on medium inhomogeneities

𝑊 =෍𝑊𝑖𝑗 ∝෍𝑁𝑖𝜎𝑖𝑗

i – isotope, j – type of secondary radiation

Registration of secondary radiation
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Some options

• Sample plane - vertical

• Scattering plane - horizontal

• Neutron wavelength 0.9 – 15 Å

• Wavelength resolution δλ = 0.015 Å

• Scattering angles range 1 – 100 mrad

• Sample-detector distance 0.7 – 4.9 m

• Resolution of PSD 2.5 mm

Reflectometer REMUR
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Measurements scheme

Gamma-quanta registration channel
and position of the sample

70°

𝐻

1, 2 – charged particles
3, 4 – spin-flip neutronsNeutron reflectivity and charged particles spectra 

𝜃 = 3 𝑚𝑟𝑎𝑑

1 - neutron reflectivity
2 - secondary radiation

Neutron reflectivity and gamma-quanta spectra 

Secondary radiation registration at REMUR

Schema of the REMUR spectrometer at the IBR-2 reactor
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Gamma-quanta registration channel

Charged particles and polarized neutrons registration channels
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Actinide heterostructures

V.P. Mineev. Superconductivity in uranium ferromagnets //
Uspekhi fizicheskikh nauk, vol. 187, no. 2

S.P. Pogossian. Enhanced neutron concentration in uranium thin film
waveguides // Journal of Applied Physics 102, 104501 (2007)

Tasks

• Targets for the synthesis of superheavy elements

• Search for cryptoferromagnetism in uranium superconducting ferromagnets

• Uranium thin-film waveguides

Motivation

• Nanograms of matter

• Low-dimensional effects

• Complex magnetism

• Superconductivity

• Coexistence of superconductivity and ferromagnetism

• Source of fission fragments and gamma quanta
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Ferromagnetism does not suppress the superconductivity
with triplet pairing, hence, there is no reason for the
formation of a cryptomagnetic state. Indeed, no traces of a
space modulation of magnetic moments directions on the
scale smaller than the coherence length has been revealed
[4, 10–12]. On the other hand, the neutron depolarization
measurements on UGe2 down to 4.2 K (that is in the
ferromagnet but not superconducting region) establish,
that the magnetic moment strictly aligned along the a-axis,
with a typical domain size in the bc-plane of the order
4.4×10−4 cm [13] that is about two orders of magnitude
larger than the largest superconducting coherence length
in the b-direction ξb ≈ 7 × 10−6 cm. Similar size of domains
has been recently measured in UCoGe.[14]
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1. Proximity effects in superconducting-ferromagnetic structures were studied. A
nonequilibrium magnetic state in the structures with ferromagnets of the transition group
of metals, such as FeV and NiCu, has been discovered and investigated.

2. Diamagnetism of a periodic ferromagnetic-superconducting structure [Nb/Gd] was
investigated. Rare-earth elements perspective for investigation of proximity effects at SF
heterostructures.

3. At the structure Al2O3//Nb(100nm)/Gd(3nm)/V(70nm)/Nb(15nm) change in the
magnetization in superconducting layers (at area 10 nm close to F-layer) under the
influence of superconductivity at a level of 4-10% was found, which corresponds to the
implementation of the inverse proximity effect.

4. At the REMUR reflectometer realized mode for detecting secondary radiation: charged
particles, gamma quanta, and neutrons with spin flip, what makes it possible to determine
the spatial profile of individual isotopes. At the moment, the following values ​​have been
achieved for a layer with a thickness of 5 nm: for the channel of charged particles 𝜎𝑚𝑖𝑛 =
0.025 barn (22 isotopes), for the channel of gamma quanta 𝜎𝑚𝑖𝑛 = 0. 3 barn (> 100
isotopes), for magnetic elements 𝐵𝑚𝑖𝑛 = 1 Gs (Fe, Co, Ni, Gd, Dy, Tb, Ho, Er, Tm)

Conclusion
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Thank you for your attention!


