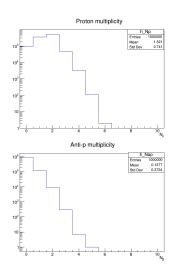
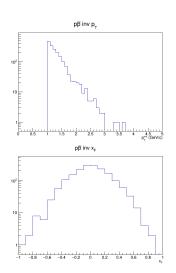
Signal and Background for $\eta_{\it C} ightarrow {\it p}ar{\it p}$

Amaresh Datta (amaresh@jinr.ru)


DLNP Dubna, Russia


Jan 18, 2022

PYTHIA Details

- $m_{\eta_C}=2.984~{
 m GeV}/c^2$, BR $(\eta_C o par p):1.45 imes10^{-3}$
- PYTHIA does not hadronize η_c . J/Ψ used instead for study
- Only J/Ψ produced in p+p collision : Charmonium:gg2ccbar(3S1)[3S1(1)]g = on,off
- $J/\Psi \rightarrow p\bar{p}$ decay forced : 443:oneChannel = 1 1 0 2212 -2212
- Signal events normalized to 600K (expected events : SPD CDR) for one year of data at design luminosity
- MinBias (SoftQCD:all = on) studied for background : p, \bar{p} NOT from J/Ψ are considered only
- Momentum resolution used : $\frac{\delta p}{\rho} = 0.02 + 0.002 p$
- ullet Each event, all possible combinations of p and $ar{p}$ are stored as bkg
- ullet For pT and xF distribution, candidates in 3σ mass window are used
- Selection criteria for $p, \bar{p}: p_T \geq 1$ GeV, $-2. \leq y \leq 2$.

Background Distributions

Signal Distributions

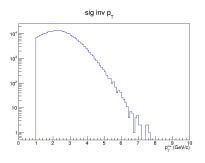


Figure 1: Signal invariant pT distribution

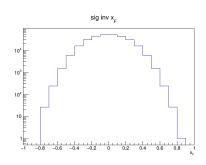
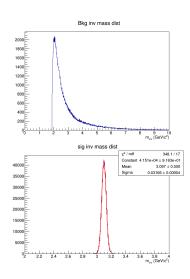



Figure 2: Signal invariant xF distribution

Invariant Mass Distributions

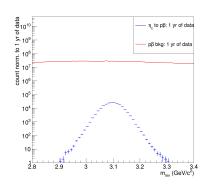


Figure 3: signal to background for $p\bar{p}$ invariant mass distribution

Outlook

- Distance of Common Approach (DCA) between the tracks were not very helpful as almost all p, \bar{p} comes essentially from the primary vertex or VERY close to it
- Opening angle between the particles could be useful to eliminate background
- Looking at some events in SPDROOT might give more realistic variables to tweak