Particle identification in SPD: a Bayesian approach

Artem Ivanov JINR, Dubna

Physics \& MC meeting
26.01.2022

- set-up a 'framework' to support Bayesian approach within the SPD

Past talks connect to this topic

7 December 2021

- Ruslan Akhunzyanov " $d E / d x$ studies for particle" https://indico.jinr.ru/event/2554/contributions/15153/attachments/11594/19132/Ruslan_dEdx_Dec7_2021.pdf
- Artem Ivanov "Particle identification with TOF"
https://indico.jinr.ru/event/2554/contributions/15149/attachments/11593/19130/07.12.2021_Ivanov.A.V.pdf

Current talk based on following articles

- "Bayesian approach for combined particle identification in ALICE experiment at LHC"
I. Belikov, P. Hristov, M. Ivanov, T. Kuhr, K. Safarik (2005) Contribution to: CHEP 2004, 423-426
- "Particle identification in ALICE: a Bayesian approach"

ALICE Collaboration, Jaroslav Adam (Prague, Tech. U.) et al. (Feb 3, 2016) Published in: Eur.Phys.J.Plus 131 (2016) 5, 168

- "Идентификация заряженных частии по ионизационным потерям энергии во время-проекиионной камере для экспериментов NICA/MPD"
С. П. Мерц, С. В. Разин, О. В. Рогачевский, Матем. моделирование, 2012, том 24, номер 12, 102-106

S - a raw signal from a detector $\mathrm{S}\left(\mathrm{H}_{\mathrm{i}}\right)$ - expected average signal for a given species $H_{i}(\pi, K, p, \ldots)$

The Bayes theorem

probability that the particle is of species H_{i}, given \vec{S}

$$
P\left(S \mid H_{i}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \mathrm{e}^{\frac{-\left(S-S\left(H_{i}\right)\right)^{2}}{2 \cdot \sigma^{2}}}
$$

One detector

The conditional probability that a particle of species H_{i} produces a signal S (in this case expressed with a Gaussian response)

$$
P\left(\vec{S} \mid H_{i}\right)=\prod_{\alpha=T O F, S T A W, \ldots} P_{\alpha}\left(S_{\alpha} \mid H_{i}\right)
$$

Many detectors
The conditional probability that a particle of species H_{i} produces the set of signals

What is S raw signal

Detector	Signal
STRAW	$\mathrm{dE} / \mathrm{dx}$
TOF	m^{2}

STRAW

from talk of Ruslan Akhunzyanov " $d E / d x$ studies for particle"

conditional probability

$$
P\left(m^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma(p)} \mathrm{e}^{\frac{-\left(m_{\text {ToF }}-m_{\text {fit }}\right)^{2}}{2 \cdot \sigma(p)^{2}}}
$$

TOF

What is priors

Strategy to calculate

$$
P\left(H_{i} \mid \vec{S}\right)=\frac{P\left(\vec{S} \mid H_{i}\right) C\left(H_{i}\right)}{\sum_{k=\pi, K, p} P\left(\vec{S} \mid H_{k}\right) C\left(H_{k}\right)}
$$

Iterative procedure based on a set of unidentified tracks (raw yield $Y(p)$)

$$
P\left(m^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma(p)} \mathrm{e}^{\frac{-\left(m_{m o s}^{2}-m_{\mu}^{2}\right)^{2}}{2 \cdot \sigma(p) p^{2}}}
$$

1) Start with "flat" priors (i.e 1 for all species)

Priors obtained as a function of p
2) Bayesian posterior $P_{n}\left(H_{i} \mid S\right)$ at step n obtained from unidentified raw yield
3) Obtain identified raw yields at step $n+1$ using posteriors as weights
4) Obtain a new set of priors from the relative ratios of

$$
Y_{n+1}\left(H_{i}, p\right)=\sum_{S} P_{n}\left(H_{i} \mid S\right)
$$ identified spectra

Separate sets of priors have to be evaluated for each collision system p-p, d-d, p-d and energies

Calculation priors: only TOF

The extracted K / π and p / π ratio of the priors is shown as a function of p at each step of the iteration.

Efficiency and Contamination: only TOF

$$
\begin{aligned}
& \text { efficiency }=\frac{N_{\text {corr }}}{N_{\text {true }}} \\
& \text { contamination }=\frac{N_{\text {incorr }}}{\left(N_{\text {incorr }}+N_{\text {corr }}\right)}
\end{aligned}
$$

$N_{\text {corr }}$-the number of correctly identified particles of a certaintype
$N_{\text {incorr }}-$ number of misidentified particles a certain type $N_{\text {true }}$-the true number of particles of a certain type.

Calculation TOF P(H|S) probabity in SpdRoot

RecoEventFull.C

Calculation TOF P(H_{i} | S) probabity in SpdRoot

Function from Class SpdTofParticle

std::vector<Double_t> GetProb() const \{ return fprob; Double t GetProbPion() \quad const \{return fprob[0];
Double_t GetProbKaon()
Double t GetProbProton()
Double_t
Double_t
$\begin{array}{ll}\text { GetProbKaon() } & \text { const } \\ \text { GetProbProton() } & \text { const } \\ \text { \{return fprob[1]; }\end{array}$
GetProbMax()
const \{return *std::max element(fprob. begin fprob.end)

YourScriptForAnalysis.C

```
Int_t IdhitTof = fparticle->GetTofParticleId();
if (IdhitTof < 0) continue;
SpdTofParticle *ftofparticle = (SpdTofParticle *)tofparticles->At(IdhitTof);
if (!ftofparticle)
    continue;
std::vector<Double_t> vprob = ftofparticle->GetProb();
```


Conclusion

- The 'framework' for Bayesian approach was added in my folk SpdRoot (https://git.jinr.ru/aivanov/spdroot)
- To add in the official repository
- To combine results with STRAW

Backup

PID analysis with TOF in SpdRoot

Momentum dependence of m^{2} distribution

Momentum dependence of m^{2} distribution

Red lines depict 3σ bands

$$
P\left(m^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma(p)} e^{\frac{-\left(m_{\text {IF }}^{2}-m_{M i L}^{2}\right)^{2}}{2 \cdot \sigma(p)^{2}}}
$$

Momentum dependence of m^{2} distribution

