Possibilities of Measuring $\eta_C \rightarrow p\bar{p}$ at SPD

Amaresh Datta (amaresh@jinr.ru)

> DLNP Dubna, Russia

Jan 26, 2022

Amaresh Datta (amaresh@jinr.ru) (JINR) Possibilities of Measuring $\eta_C \rightarrow p\bar{p}$ at SPD

Jan 26, 2022 1 / 15

PYTHIA Details

- $m_{\eta_C}=2.984~{
 m GeV}/c^2$, BR $(\eta_C
 ightarrow par{p})$: $1.45 imes 10^{-3}$
- PYTHIA does not hadronize η_c . J/Ψ used instead for study
- Only J/Ψ produced in p + p collision : Charmonium:gg2ccbar(3S1)[3S1(1)]g = on,off
- $J/\Psi \rightarrow p\bar{p}$ decay forced : 443:oneChannel = 1 1 0 2212 -2212
- Signal events normalized to 600K (expected events : SPD CDR) for one year of data at design luminosity
- MinBias (*SoftQCD:all = on*) studied for background
- Normalized to 39800B MinBias events (39.8 mb cross-section at $\sqrt{s} = 27$ GeV, 1 fb^{-1} integrated luminosity)
- Momentum resolution used : $\frac{\delta p}{p} = 0.02 + 0.002p$
- Basic selection criteria for p,\bar{p} : $p_T>0.2~{\rm GeV/c},~-3.\leq y\leq 3.,$ more on cuts as we go

Daughter Multiplicity and Invariant Mass Distributions

Figure 1: Multiplicities of protons (above) and antiprotons (below) in MinBias events (bkg)

Figure 2: Overall invariant mass distribution of background (above) and signal (below)

Four Sets of Cuts for Comparison of Variables

- To clear multiple/other decays, events with single anti-protons are considered only
- $p, \bar{p}: p_T > 0.2$ GeV, -3. < y < 3. (basic cut for tracker and SPD acceptance)
- $y \sim 3$. corresponds to 2-5 degrees depending on particle and momenta
- $p, \bar{p} : p_T > 0.2 \text{ GeV}, -3. < y < 3., \cos(\theta) < 0.9$
- $cos(\theta) < 0.9$ correspond to ~ 26 degrees, roughly restricts daughter particles to barrel only
- $p, \bar{p}: p_T > 1.0 \text{ GeV}, -3. < y < 3., cos(\theta) < 0.9$
- $p, \bar{p} : p_T > 2.0 \text{ GeV}, -3. < y < 3., \cos(\theta) < 0.9$

Polar Angle : Protons

Polar Angle : Antirotons

Figure 4: Polar angle (θ) of \bar{p} in degrees : signal, background

Opening Angle

Figure 5: Cosine of opening angle : signal, background

Daughter Particle p_T

 Bkg dominated by low *pT* particles
 Decision : try various *pT* cuts, *pT* > 1 GeV/c seems a natural cut

Figure 6: Transverse momentum of p (left) and \bar{p} (right) : signal, background

- To clear multiple/other decays, events with single anti-protons are considered only
- p, p̄: p_T > 0.2 GeV, −3. < y < 3. (basic cut for tracker and SPD acceptance)
- $p, \bar{p}: p_T > 0.2 \text{ GeV}, -3. < y < 3., 45^0 < \theta_{p,\bar{p}} < 135^0$
- $p, \bar{p} : p_T > 0.2 \text{ GeV}, -3. < y < 3., 45^0 < \theta_{p,\bar{p}} < 135^0, \cos(\alpha) > 0.$
- $p, \bar{p}: p_T > 0.5 \text{ GeV}, -3. < y < 3., 45^0 < \theta_{p,\bar{p}} < 135^0, \cos(\alpha) > 0.$
- $p, \bar{p} : p_T > 1.0 \text{ GeV}, -3. < y < 3., 45^0 < \theta_{p,\bar{p}} < 135^0, \cos(\alpha) > 0.$
- $p, \bar{p} : p_T > 2.0 \text{ GeV}, -3. < y < 3., 45^0 < \theta_{p,\bar{p}} < 135^0, \cos(\alpha) > 0.$

Signal and Background : One Year of Data

Figure 7: Invariant mass (within 3σ window of signal peak) for six different cut sets : signal, background

Amaresh Datta (amaresh@jinr.ru) (JINR)

Jan 26, 2022 10 / 15

	Signal (S)	Background (B)	S/B
cut 0	576839	$2.059 imes10^{11}$	$2.802 imes10^{-6}$
cut 1	183674	$2.836 imes 10^{9}$	$6.476 imes10^{-5}$
cut 2	61342	$1.063 imes 10^8$	$5.773 imes10^{-4}$
cut 3	59491	$1.032 imes 10^8$	$5.767 imes 10^{-4}$
cut 4	46180	$1.032 imes 10^{7}$	$6.292 imes 10^{-4}$
cut 5	2353	$6.766 imes10^5$	$3.477 imes 10^{-3}$

Table 1: For one year of data at design luminosity, signal and background counts from $\eta_c \rightarrow p\bar{p}$. cut 4 represent daughter pT > 1 GeV/c cut. Higher pT cut drastically reduces signal but also improves S/B ratio

- Analysis very similar to Nikita Trunovs work
- Somewhat stricter cut on polar angle and opening angle compared to his
- Still too high backgrounds for extraction of signal from fit
- Shall report again if I find something that improves S/B
- From transverse momentum distributions, it is clear we can further reduce background at the cost of signal too
- Not feasible for any asymmetry study, but cross-section measurements at high $p_T > 3 \ GeV/c$ bins can be quite possible, especially, with data collected over multiple years
- More ideas for background suppression are welcome

Thank You

pT of Ec-det 0 pT of Ec-det 1 pT of Ec-det 2 10 104 10 10 10 10 10 10 10 ببا يتبيا بتنبا بتنبا بتنبا بتنبا بتنباء 6 8 9 10 p. (GeV/c) 8 9 10 p, (GeV/c) 4 8 9 10 p, (GeV/c) pT of Ec-det 3 pT of Ec-det 4 pT of Ec-det 5 109 10 10 102 10 10 10 10

Figure 8: Invariant transverse momentum of signal particle

8 9 10 p, (GeV/c)

3 4 5 6

بطيب والتبيية وتناقيت المتنبة وتتنابه

4 6 8 9 10 p, (GeV/c)

8 9 10 p. (GeV/c)

xF of Ec-det 0

Figure 9: Feynman x of signal particle