Participation of the University of Warsaw group in the MPD project

MultiPurpose Detector

- 2π acceptance in azimuth
- 3-D tracking (TPC)
- Low material budget
- High event rate $\sim 6~\text{kHz}$

• Powerful PID (TPC, TOF, ECAL) $\rightarrow \pi/K$ up to 1.5 GeV/c, $\rightarrow K/p$ up to 3 GeV/c, $\rightarrow \gamma$, e : 0.1<p<3 GeV/c

MPD Time Projection chamber

The Time-Projection Chamber (TPC) \rightarrow the main tracking detector allowing for particle track reconstruction in 3D via ionization cluster position measurement in X-Y plane and electron drift time measurement in Z direction

	EL
Pass 19	

Item	Dimension
Length of the TPC	340cm
Outer / Inner radius of vessel	140cm / 27 cm
Outer / Inner radius of the	100
drift volume	133Cm / 34Cm
Length of the drift volume	163 cm (of each half)
Electric field strength	~140 V/cm
Drift gas	90% Ar+10% CH4 /
	80%Ar+20%CO ₂
Gas amplification factor	~ 104
Drift velocity	5.45 cm/µs;
Drift time	< 30 µs;
Temperature stability	< 0.5°C
Number of readout chambers	24 (12 on each side)
Number of pads	95232
Maximal event rate	< 7 KHz (at Lum.= 10 ²⁷)
Electronics shaping time	~180 ns
Signal-to-noise ratio	30:1
Signal dynamical range	10 bits
Signal sampling	10 MHz
Two-track resolution	~1 cm

 $\begin{array}{rccc} {\sf TPC} & {\sf readout} & {\sf system} & \rightarrow & {\sf Multi-Wire} \\ {\sf Proportional} & {\sf Chambers} & ({\sf MWPC}) & {\sf with} \\ {\sf cathode} & {\sf pad} & {\sf readout}. & {\sf The} & {\sf end-cap} & {\sf readout} \\ {\sf plane} & {\sf is} & {\sf covered} & {\sf by} & 12 \times 30 & {\sf trapezoidal} & {\sf sectors} \\ ({\sf bottom=}214 & {\sf mm}, & {\sf top=}643 & {\sf mm} & {\sf and} & {\sf the} \\ {\sf height} - {\sf H=} & {\sf 800} & {\sf mm}). \end{array}$

Padplane: 27 rows of 5×12 mm pads at inner and 26 rows 5×18 mm pads at outer part of ROC. The total number of pads in the TPC is 95232.

Magdalena Kuich

In the ROC chamber next wire planes are used: an anode plane, a cathode plane and a gating grid. The gap between the planes is 3 mm.

Gating-grid

- 24(+2) gating-grid pulser modules
- Design follows the well-known solutions (NA61/SHINE, ALICE)
 - $\rightarrow\,$ gating electrode control
 - $\rightarrow\,$ communication with DCS
 - \rightarrow synchronization with (pre-)trigger
- Compatibility with MWPC geometry
 - $\rightarrow\,$ properly adjusted HV settings
 - \rightarrow electron transparency (open mode)
 - \rightarrow efficient charge blockade (closed mode)
 - $\rightarrow\,$ fast and efficient ion neutralization

Magdalena Kuich

Control unit

- Distribution of HV and monitoring of HV and LV
- Trigger interface: receive and distribute trigger signals, generate BUSY (special overlay board able to translate various types of trigger)
- Monitor gate opening and closing of each module
- Control interface: SoC running Linux and communicating via Ethernet

Simulations

- Establishing optimal gating-grid voltages
- Study efficiency of ion neutralization
- Consideration of other gas mixtures

Tasks

- Simulation of the charge transport and drift velocity (UW)
- Simulation of the gate operation for selected operating conditions (UW)
- Determination of optimal working conditions for ROC and gating-grid (UW, LHEP)
- Development of the project of gating-grid modules (UW, Minsk)
- Development of the control unit with trigger and DCS interfaces (UW)
- Production of gating modules and laboratory tests (UW, LHEP, Minsk)
- Production of HV power supplies for the gating-grid pulsers (Minsk)
- Functional test of gating modules with ROCs (LHEP, Minsk, UW)
- Integration of the gating-grid in MPD, i.e. hardware-wise & software-wise (LHEP, UW, Minsk)
- Possible adaptation of transmission lines to ensure the correct operation of the system (LHEP, UW)