Определение оптимальных параметров адронного генератора JETSET для наилучшего описания рождения адронов в глубоконеупругих взаимодействиях нейтрино на основе данных эксперимента NOMAD

Артём Чуканов

Объединённый институт ядерных исследований, Дубна

14 июня 2017

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Содержание доклада

Генераторы нейтринных взаимодействий

Эксперимент NOMAD

Настройка программы моделирования нейтринных взаимодействий

Сравнение данных и МК

Заключение

Артём Чуканов

Генераторы нейтринных взаимодействий

ロト 4 日 ト 4 目 ト 4 目 ト 目 の Q (?)
 модействий 13.06.2017 2 / 34

Генераторы нейтринных взаимодействий Эксперимент NOMAD Настройка программы моделирования нейтринн

Часть III: Генераторы нейтринных взаимодействий

Артём Чуканов

Генераторы нейтринных взаимодействий

<ロ ト < 回 ト < 目 ト < 目 ト < 目 ト く 目 や の へ へ иодействий 13.06.2017 3 / 34

Зачем нужно моделирование взаимодействий

- предварительная оценка чувствительности эксперимента (оптимизация эксперимента)
- отладка и настройка реконструкции
- анализ данных
 - влияние эффективности реконструкции на полученные данные
 - отладка и проверка алгоритмов
 - оценка эффективности и чистоты набора данных
- оценка неопределённостей

・ロト ・ 日 ・ モ ト ・ モ ・ ・ 日 ・ うへで

Типы нейтринных взаимодействий (ЗТ)

- квазиупругое (QES): $\nu_l N \rightarrow N'l$
- резонансное (RES): $\nu_l N \to N^* l$
- глубоконеупругое (DIS): $\nu_l N \to Xl$
- когерентное (COH): $\nu_l A \to A h l$

Распределение взаимодействий по W^2 для CNGS пучка

Описание внутриядерного каскада: взаимодействие вторичных частиц с нуклонами ядра-мишени イロト イヨト イヨト イヨト 三日

Артём Чуканов

Генераторы нейтринных взаимодействий

13.06.2017 5/34

Основные генераторы нейтринных взаимодействий

- GENIE (Generate Events for Neutrino Interaction Experiments)
- NuWro (neutrino Wroclaw)
- NEUT
- GiBUU (Giessen Boltzmann-Uehling-Uhlenbeck)
- NUANCE
- NEUGEN

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Область **SIS-DIS** в генераторах нейтринных взаимодействий

Pion pr thre	oduction sho l d	2 Ge	eV/c N	EUT W	GiBUL	J	2,5	GeV/c	v	V
	Resona (1π, 1K + DIS back («Multi-pi»	nces , 1ŋ ground mode)	PYTI «DIS	HIA 5.72 S» mode	Cross sections from resonance model (PDG and MAID couplings), consistent with electronuclear physics		particle production through string fragmentation (PYTHL)	
		GENIE 1	L,7 GeV/	c 2,3	GeV/c	3 Ge	eV/c	W		
		Resonances + DIS backgrou	s D Ins («AC	IS low W SKY model»)	Linear tra to PYTI	nsition HIA 6	PYTHIA	6		

AGKY-модель: переход между KNO и LUND моделями.

Артём Чуканов

(«AGKY model»)

Генераторы нейтринных взаимодействий

13.06.2017

Артём Чуканов

13.06.2017 8 / 34

Генераторы нейтринных взаимодействий

Множественность рождения заряженных частиц в нейтринных взаимодействиях

K. S. Kuzmin and V. A. Naumov, Phys. Rev. C 88 (2013) 065501.

KNO модель: $\langle n_{ch} \rangle = a_{ch} + b_{ch} \cdot \lg W^2$

Артём Чуканов

Генераторы нейтринных взаимодействий

・ロ ・ ・ 日 ・ ・ 主 ・ ・ 主 ・ ・ う 、 へ で
иолействий 13.06.2017 9 / 34

Генераторы нейтринных взаимодействий Эксперимент NOMAD Настройка программы моделирования нейтринно

Фрагментация струны - модель Лунд

Нейтрино рассеивается на валентном кварке q₃ и выбивает его.

Артём Чуканов

Генераторы нейтринных взаимодействий

・・・・
 ・・・
 ・・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・

Фрагментация струны - модель Лунд

дикварк струна кварк q_1q_2 q_3

Между выбитым кварком q_3 и дикварковым остатком образуется струна (при рассеянии на морском кварке между кварком и антикварком).

Артём Чуканов

Генераторы нейтринных взаимодействий 13.06.2017 11 / 34

Фрагментация струны - модель Лунд

дикварк кварк-антикварковые пары кварк $q_1q_2 \cdots q_i \overline{q_i} \cdots q_i \overline{q_i} \cdots q_3$

Струна разрывается и в ней рождаются кварк-антикварковые или дикварк-антидикварковые пары (свободный параметр).

Идея квантовомеханического туннелирования:

$$\exp\left(-\frac{\pi m_{\perp}^2}{k}\right) = \exp\left(-\frac{\pi m^2}{k}\right) \exp\left(-\frac{\pi p_{\perp}^2}{k}\right)$$

Подавление рождения тяжёлых кварков:

 $u: d: s: c \approx 1: 1: 0, 3: 10^{-11}$

Артём Чуканов

Генераторы нейтринных взаимодействий 13

13.06.2017 12 / 34

・ロト ・ 日 ・ モ ト ・ モ ・ ・ 日 ・ うへで

Фрагментация струны - модель Лунд

• разыгрывание доли энергии струны, приходящейся на адрон (функция фрагментации):

$$f(z) \propto z^{-1}(1-z)^a \exp(-bm_{\perp}^2/z),$$

a, b - свободные параметры

- выбор аромата кварков ($u\bar{u}, d\bar{d}, s\bar{s}$) свободные параметры
- выбор типа адрона (спинового состояния) свободные параметры

Артём Чуканов

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Настройка программы моделирования взаимодействий в эксперименте COMPASS

160 Гэ $B/c \mu^+$ пучок.

Настраивались выходы странных частиц и резонансов:

 $\Lambda, K^0, \overline{\Lambda}, \Sigma^{\star\pm}, \overline{\Sigma}^{\star\pm}, \Xi^-, \overline{\Xi}^+$

C. Adolph et al., Eur. Phys. J. C 73 (2013) no.10, 2581

Параметр	Описание	По умолчанию	COMPASS
PARJ(1)	$\mathcal{P}(qq)/\mathcal{P}(q)$	0.10	0.030
PARJ(2)	$\mathcal{P}(s)/\mathcal{P}(u)$	0.30	0.450
PARJ(3)	$(\mathcal{P}(us)/\mathcal{P}(ud))/(\mathcal{P}(s)/\mathcal{P}(d))$	0.40	0.175
PARJ(4)	$(1/3)\mathcal{P}(ud_1)/\mathcal{P}(ud_0)$	0.05	0.078
PARJ(5)	$\mathcal{P}(BM\bar{B})/(\mathcal{P}(B\bar{B}) + \mathcal{P}(BM\bar{B}))$	0.50	3.000
PARJ(7)	s-meson suppression in $BMar{B}$	0.50	0.130

13.06.2017 14/34

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Настройка программы моделирования взаимодействий GENIE

Настраивалась множественность заряженных частиц

T. Katori and S. Mandalia, J. Phys. G 42 (2015) no.11, 115004.

Артём Чуканов

Генераторы нейтринных взаимодействий 13.06

13.06.2017 15

Настройка программы моделирования взаимодействий **GENIE**

Параметр	Описание	По умолчанию	COMPASS	Lund-scan
PARJ(1)	$\mathcal{P}(qq)/\mathcal{P}(q)$	0.10	0.030	0.02
PARJ(2)	$\mathcal{P}(s)/\mathcal{P}(u)$	0.30	0.450	0.25
PARJ(3)	$(\mathcal{P}(us)/\mathcal{P}(ud))/(\mathcal{P}(s)/\mathcal{P}(d))$	0.40	0.175	-
PARJ(4)	$(1/3)\mathcal{P}(ud_1)/\mathcal{P}(ud_0)$	0.05	0.078	-
PARJ(5)	$\mathcal{P}(BM\bar{B})/(\mathcal{P}(B\bar{B}) + \mathcal{P}(BM\bar{B}))$	0.50	3.000	-
PARJ(7)	s-meson suppression in $BM\bar{B}$	0.50	0.13	-
PARJ(11)	$\mathcal{P}(s=1)_{u,d}$	0.50	-	0.51
PARJ(12)	$\mathcal{P}(s=1)_s$	0.60	-	0.57
PARJ(21)	σ_q (GeV)	0.36	-	0.42
PARJ(33)	E_{rem} (GeV)	0.80	-	0.47
PARJ(41)	a	0.30	-	0.68
PARJ(42)	$b (\text{GeV}^{-2})$	0.58	-	0.35
PARJ(45)	aqq	0.50	-	0.74

Артём Чуканов

Генераторы нейтринных взаимодействий

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ● ● ● 13.06.2017

Генераторы нейтринных взаимодействий Эксперимент NOMAD Настройка программы моделирования нейтринно

Часть I: Эксперимент NOMAD

Артём Чуканов

Генераторы нейтринных взаимодействий

<ロト < 回 > < 目 > < 目 > < 目 > < 目 > こ の Q () иодействий 13.06.2017 17 / 34

Эксперимент NOMAD

- поиск $u_{\mu}
 ightarrow
 u_{ au}$ осцилляций
- энергия протонов от ускорителя SPS (CERN) 450 ГэВ
- расстояние между распадным каналом π, К мезонов и детектором - 620 м
- средняя энергия нейтрино $\langle E_{\nu_{\mu}} \rangle$ 24,3 ГэВ
- большая статистика: 780 000 ν_{μ} ЗТ, 240 000 ν НТ событий, > 20~000 идентифицированных нейтральных странных частиц

イロン イヨン イヨン イヨン

Детектор NOMAD

Артём Чуканов

Генераторы нейтринных взаимодействий

13.06.2017

イロト イヨト イヨト イヨト 三日

Программа моделирования нейтринных взаимодействий для эксперимента **NOMAD**

- LEPTO 6.1 (взаимодействие нейтрино с нуклоном)
- JETSET 7.4 (фрагментация струны)
- GEANT 3 (протаскивание частиц через вещество детектора)
- DPMJET (внутриядерные взаимодействия)

Артём Чуканов

Генераторы нейтринных взаимодействий

13.06.2017 20 / 34

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Параметры JETSET по умолчанию - количество заряженных треков

Артём Чуканов

Генераторы нейтринных взаимодействий

13.06.2017 21/34

Параметры JETSET по умолчанию - выходы адронов

Адроны	MK (%)	Данные (%)	МК/Данные
$\overline{K_S^0}$	11.8 ± 0.03	8.66 ± 0.08	1.36 ± 0.02
Λ^{0}	9.2 ± 0.08	6.08 ± 0.08	1.51 ± 0.02
$\bar{\Lambda}^{0}$	0.77 ± 0.02	0.52 ± 0.02	1.48 ± 0.08
$\overline{\rho^0(770)}$	25.72	19.50 ± 1.90	1.32 ± 0.13
$f_0(980)$	-	1.80 ± 0.40	-
$f_2(1270)$	-	3.80 ± 0.90	-
D^{*+}	1.22	0.97 ± 0.14	1.26 ± 0.18
D^0	2.44	2.69 ± 0.22	0.91 ± 0.07
Отношения			
$\frac{\frac{N(K^{\star+}\to K^0_S\pi^+)}{N(K^0_S)}}{N(K^0_S)}$	30.3 ± 0.6	14.3 ± 1.0	2.1 ± 0.2
$\frac{N(K^{\star-} \rightarrow K^0_S \pi^-)}{N(K^0_S)}$	13.5 ± 0.5	$8.1~\pm~0.7$	1.7 ± 0.2
$\frac{N(\Sigma^{\star +} \to \tilde{\Lambda}\pi^{+})}{N(\Lambda)}$	16.4 ± 0.6	4.8 ± 1.0	3.5 ± 0.7

Согласие между данными и МК:

распределения по основным кинематическим переменным $(E_{\nu}, Q^2, W^2, ...)$

Разногласие между данными и МК:

интегральные выходы странных частиц и резонансов, распределение по

множественности заряженных треков

Артём Чуканов

Генераторы нейтринных взаимодействий

13.06.2017 22/34

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つくや

Настройка программы моделирования для эксперимента **NOMAD**

- Поперечный импульс адронов (*Parj(21*))
- Множественность первичных заряженных частиц (*Parj*(41), *Parj*(42))
- Выходы очарованных, странных частиц и резонансов (*Parj(1) Parj(17*))

Итеративная процедура: (1) настраиваем выходы странных частиц и резонансов, (2) настраиваем множественность первичных заряженных частиц, (3) повторяем пункт 1.

Настроенный набор параметров программы JETSET

Parameter	Description	Default	ALEPH	Lund-scan	COMPASS	NOMAD
PARJ(1)	$\mathcal{P}(qq)/\mathcal{P}(q)$	0.10	0.106	0.02	0.030	0.070
PARJ(2)	$\mathcal{P}(s)/\mathcal{P}(u)$	0.30	0.285	0.25	0.450	0.205
PARJ(3)	$(\mathcal{P}(us)/\mathcal{P}(ud))/$	0.40	0.71	-	0.175	0.200
	$(\mathcal{P}(s)/\mathcal{P}(d))$					
PARJ(4)	$(1/3)\mathcal{P}(ud_1)/\mathcal{P}(ud_0)$	0.05	-	-	0.078	0.005
PARJ(5)	$\mathcal{P}(BM\bar{B})/$	0.50	-	-	3.000	0.600
	$(\mathcal{P}(B\bar{B}) + \mathcal{P}(BM\bar{B}))$					
PARJ(6)	$s\bar{s}$ suppression in $BM\bar{B}$	0.50	-	-	-	0.500
PARJ(7)	s-meson suppression	0.50	-	-	0.130	0.220
	in $BM\bar{B}$					
PARJ(11)	$\mathcal{P}(s=1)_{u,d}$	0.50	0.55	0.51	-	0.550
PARJ(12)	$\mathcal{P}(s=1)_s$	0.60	0.47	0.57	-	0.650
PARJ(13)	$\mathcal{P}(s=1)_{c,b}$	0.75	0.65	-	-	0.660
PARJ(14)	$\mathcal{P}(S=0, L=1, J=1)$	0.0	0.12	-	-	0.150
PARJ(15)	$\mathcal{P}(S = 1, L = 1, J = 0)$	0.0	0.04	-	-	0.100
PARJ(16)	$\mathcal{P}(S = 1, L = 1, J = 1)$	0.0	0.12	-	-	0.150
PARJ(17)	$\mathcal{P}(S = 1, L = 1, J = 2)$	0.0	0.20	-	-	0.295
PARJ(19)	Leading baryon	1.0	0.57	-	-	0.500
	suppression					
PARJ(21)	σ_q (GeV)	0.36	0.370	0.42	-	0.400
PARJ(32)	E_{min} (GeV)	1.0	-	-	-	0.200
PARJ(33)	E_{rem} (GeV)	0.80	-	0.47	-	0.200
PARJ(41)	a	0.30	0.40	0.68	-	1.100
PARJ(42)	$b (\text{GeV}^{-2})$	0.58	0.796	0.35	-	1.400
PARJ(45)	a_{qq}	0.50	-	0.74	-	0.400
PARJ(54)	εc	-0.05	-0.04			-0.165
MSTJ(11)	fragmentation type	4	3			3
MSTJ(12)	baryon model	2	3			3

Артём Чуканов

Генераторы нейтринных взаимодействий

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで 13.06.2017

Генераторы нейтринных взаимодействий Эксперимент NOMAD Настройка программы моделирования нейтринн

Часть II: Сравнение данных и МК в эксперименте NOMAD.

 u_{μ} взаимодействия по каналу 3T

Артём Чуканов

Генераторы нейтринных взаимодействий

13.06.2017 25

イロト イヨト イヨト イヨト 三日

Новый набор JETSET параметров - количество заряженных треков

Артём Чуканов

Генераторы нейтринных взаимодействий

13.06.2017 26 / 34

Новый набор JETSET параметров - выходы частиц и резонансов

Адроны	MK (%)	Данные (%)	МК/Данные
$\overline{K_S^0}$	8.90 ± 0.06	8.81 ± 0.08	1.00 ± 0.01
Λ^{0}	5.63 ± 0.05	5.91 ± 0.08	0.95 ± 0.02
$\bar{\Lambda}^0$	0.44 ± 0.01	0.45 ± 0.02	0.98 ± 0.06
$\overline{\rho^0(770)}$	20.28	19.50 ± 1.90	1.04 ± 0.10
$f_0(980)$	1.87	1.80 ± 0.40	1.04 ± 0.23
$f_2(1270)$	3.93	3.80 ± 0.90	1.04 ± 0.24
D^{*+}	0.92	0.97 ± 0.14	0.95 ± 0.14
D^0	2.34	2.69 ± 0.22	0.87 ± 0.07
Отношения			
$\frac{N(K^{\star+}\to K^0_S\pi^+)}{N(K^0_S)}$	17.1 ± 0.7	17.2 ± 1.2	1.0 ± 0.1
$\frac{N(K^{\star-}\to K^0_S\pi^-)}{N(K^0_S)}$	9.7 ± 0.5	8.8 ± 0.8	1.1 ± 0.1
$\frac{\frac{N(\Sigma^{\star +} \to \Lambda \pi^+)}{N(\Lambda)}}{N(\Lambda)}$	6.0 ± 0.8	6.6 ± 1.5	0.9 ± 0.2

Артём Чуканов

Генераторы нейтринных взаимодействий

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ● ● ● 13.06.2017

Генераторы нейтринных взаимодействий Эксперимент NOMAD Настройка программы моделирования нейтринн

Новый набор JETSET параметров - распределение по Q^2 и W^2

Артём Чуканов

Генераторы нейтринных взаимодействий

13.06.2017

Новый набор JETSET параметрв - распределения по z и импульсу заряженных частиц

Артём Чуканов

Генераторы нейтринных взаимодействий

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
 иолействий
 13.06.2017

Новый набор JETSET параметров - распределение по W^2

Сравнение данных и МК, сравнение с генератором GENIE

13.06.2017 30 / 34

(D) (A) (A)

Множественное рождение нейтральных странных частиц

Каналы	Реконстру	МК/Данные	
	MK	Данные	-
$\Lambda^0 X$	7115	7164	0.99 ± 0.02
$K_S^0 X$	14055	13642	1.03 ± 0.01
$\bar{\Lambda}^{0}X$	548	577	0.95 ± 0.06
$K^0_S K^0_S X$	412	294	1.40 ± 0.11
$\Lambda^{0}K^{0}_{S}X$	375	267	1.41 ± 0.11
$\Lambda^0 \bar{\Lambda}^{ ilde{0}}$	50	39	1.29 ± 0.28
$K^0_S \bar{\Lambda}^0 X$	18	14	1.30 ± 0.46
$\Lambda^{0}\Lambda^{0}X$	15	9	1.68 ± 0.71
$K^{0}_{S}K^{0}_{S}K^{0}_{S}X$	4	2	2.01 ± 1.74

В данных выходы K^{\pm} -мезонов завышены относительно выходов K^0 -мезонов по сравнению с MK

Артём Чуканов

Генераторы нейтринных взаимодействий

13.06.2017 31 / 34

Зависимость множественности рождения π^0 в нейтринных взаимодействиях

T. Katori and S. Mandalia, J. Phys. G 42 (2015) no.11, 115004.

Артём Чуканов

Генераторы нейтринных взаимодействий

13.06.2017 32/34

Сравнение настроенного МК для эксперимента NOMAD с генератором GENIE на уровне генерации событий для пучка CNGS

$E_{\nu} =$	10300	ГэВ,	W^2	> 9	$\Gamma \mathfrak{B}^2$	$/c^4$
-------------	-------	------	-------	-----	-------------------------	--------

Hadrons	NOMAD (%)	GENIE (%)	NOMAD/GENIE
Λ^0	6.48	5.65	1.15
$\bar{\Lambda}^{0}$	0.41	0.20	2.05
K^0	7.93	5.34	1.49
\overline{K}^0	5.47	4.08	1.34
$\overline{\rho^{0}(770)}$	22.04	22.79	1.07
$f_0(980)$	2.11	2.33	0.91
$f_2(1270)$	4.33	5.34	0.81
D^0	2.38	5.84	0.41
D^+	1.18	2.31	0.51
D^{*+}	0.91	0	-
K^+	12.29	10.09	1.22
K^{-}	5.44	4.70	1.16

Существенное разногласие между генератором NOMAD и GENIE (оба основаны на программе JETSET фрагментации струны).

Возможны скрытые настройки генератора GENIE

Артём Чуканов

Генераторы нейтринных взаимодействий

13.06.2017 33 / 34

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 - 釣べ⊙

Заключение

- рассмотрены основные генераторы нейтринных взаимодействий
- произведена настройка программы моделирования нейтринных взаимодействий с использованием данных эксперимента **NOMAD**
- получено хорошее согласие по выходам частиц и резонансов
- получено хорошее согласие по множественности рождения заряженных частиц
- Существует разногласие между генератором NOMAD и GENIE с настроенными параметрами программы JETSET фрагментации струны (предварительно).