Three-nucleon EM form-factors in the Bethe-Salpeter-Faddev approach

S. Bondarenko, V. Burov ${ }^{1}$, S. Yurev

Joint Institute for Nuclear Research, Dubna, Russia

International Workshop on Nuclear and Particles Physics, Almaty, Kazakhstan, April 25-30, 2022

Why a relativistic approach?

- Elastic electron-deuteron scattering experiments
"Large Momentum Transfer Measurements of the Deuteron Elastic Structure Function $\mathrm{A}\left(\mathrm{Q}^{2}\right)$ at Jefferson Laboratory"
JLab Hall A Collaboration, Phys.Rev.Lett.82:1374-1378,1999 $\mathrm{Q}^{2}=0.7-6.0(\mathrm{GeV} / \mathrm{c})^{2}$

Lorentz transformation factor: $\eta_{L O R}=-Q^{2} / 4 M_{d}^{2} \sim 0.43$,
$\sqrt{1+\eta_{L O R}} \sim 1.19, \sqrt{\eta_{L O R}} \sim 0.65$

- Exclusive disintegration of the deuteron experiments JLab Hall C Deuteron Electro-Disintegration at Very High Missing Momenta (E12-10-003) proposal https://www.jlab.org/exp_prog/proposals/10/PR12-10-003.pdf:
"We propose to measure the $D(e, e ' p) n$ cross section at $Q^{2}=4.25(\mathrm{GeV} / \mathrm{c})^{2}$ and $\mathrm{xbj}=1.35$ for missing momenta ranging from $\mathrm{pm}=0.5 \mathrm{GeV} / \mathrm{c}$ to $\mathrm{pm}=1.0 \mathrm{GeV} / \mathrm{c}$ expanding the range of missing momenta explored in the Hall A experiment (E01-020)"

Lorentz transformation factor: $\eta_{L O R}=-Q^{2} / 4 s_{n p} \sim 0.30$,
$\sqrt{1+\eta_{L O R}} \sim 1.14, \sqrt{\eta_{L O R}} \sim 0.55$

Separable kernels of the NN interaction

The separable kernels of the nucleon-nucleon interaction are widely used in the calculations. The separable kernel as a nonlocal covariant interaction representing complex nature of the space-time continuum.
Separable rank-one Ansatz for the kernel

$$
V_{L}\left(p_{0}^{\prime},\left|\mathbf{p}^{\prime}\right| ; p_{0},|\mathbf{p}| ; s\right)=\lambda^{[L]}(s) g^{[L]}\left(p_{0}^{\prime},\left|\mathbf{p}^{\prime}\right|\right) g^{[L]}\left(p_{0},|\mathbf{p}|\right)
$$

Solution for the T matrix

$$
T_{L}\left(p_{0}^{\prime},\left|\mathbf{p}^{\prime}\right| ; p_{0},|\mathbf{p}| ; s\right)=\tau(s) g^{[L]}\left(p_{0}^{\prime},\left|\mathbf{p}^{\prime}\right|\right) g^{[L]}\left(p_{0},|\mathbf{p}|\right)
$$

with

$$
\begin{gathered}
{[\tau(s)]^{-1}=\left[\lambda^{[L]}(s)\right]^{-1}+h(s),} \\
h(s)=\sum_{\text {coupled } L} h_{L}(s)=-\frac{i}{4 \pi^{3}} \int d k_{0} \int|\mathbf{k}|^{2} d|\mathbf{k}| \sum_{L}\left[g^{[L]}\left(k_{0},|\mathbf{k}|\right)\right]^{2} S\left(k_{0},|\mathbf{k}| ; s\right)
\end{gathered}
$$

$g^{[L]}$ - the model function, $\lambda^{\left[L^{\prime} L\right]}(s)$ - a model parameter.

What is a separable kernel?

The integral equations in the nuclear physics (Lippmann-Schwinger, Bethe-Salpeter) can be reduced to the Fredholm (first or second) type of equations. The separable kernel of the integral equation is the degenerated kernel. Fredholm integral equation of the second type:

$$
\phi(x)=f(x)+\lambda \int d y K(x, y) \phi(y)
$$

Degenerated kernel of the equation:

Solution of the equation:

$$
K(x, y)=\sum_{i} a_{i}(x) b_{i}(y)
$$

$$
\phi(x)=f(x)+\lambda \sum c_{i} a_{i}(x)
$$

Constants c_{i} can be found by solving the systèm of linear equations

Matrix $k_{i j}$ and f_{i} are:

$$
c_{i}-\lambda \sum_{j} k_{i j} c_{j}=f_{i}
$$

$$
k_{i j}=\int d y b_{i}(y) a_{j}(y), \quad f_{i}=\int d y f(y) b_{i}(y)
$$

Lippmann-Schwinger equation \rightarrow Bethe-Salpeter equation

G. Rupp and J. A. Tjon "Relativistic contributions to the deuteron electromagnetic form factors' Phys. Rev. C41. 472 (1990)

$$
\begin{gathered}
\mathbf{p}^{2} \rightarrow-p^{2}=-p_{0}^{2}+\mathbf{p}^{2} \\
g_{p}(p, P)=\frac{1}{-p^{2}+\beta^{2}} \xrightarrow{\text { c.m. }} \frac{1}{-p_{0}^{2}+\mathbf{p}^{2}+\beta^{2}+i \epsilon}
\end{gathered}
$$

singularities: $p^{0}= \pm \sqrt{\mathbf{p}^{2}+\beta^{2}} \mp i \epsilon$

This procedure works well for reactions with 2-body bound state but failed for unbound $n p$-state

Procedure ($J=0-1$)

calculate the kernel parameters $-\lambda(s)$-matrix and parameter of the g-functions to minimize the function χ^{2} :
$\chi^{2}=$

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(\delta^{\exp }\left(s_{i}\right)-\delta\left(s_{i}\right)\right)^{2} /\left(\Delta \delta^{\exp }\left(s_{i}\right)\right)^{2} \quad-\text { for all partial-wave states } \\
& \sum_{i=1}^{n}\left(\rho^{\exp }\left(s_{i}\right)-\rho\left(s_{i}\right)\right)^{2} /\left(\Delta \rho^{\exp }\left(s_{i}\right)\right)^{2} \quad-\text { for all partial-wave states } \\
& +\left(a_{0}^{\exp }-a_{0}\right)^{2} /\left(\Delta a_{0}^{\exp }\right)^{2} \quad-\text { for the }{ }^{1} S_{0}^{+} \text {and }{ }^{3} S_{1}^{+} \text {partial-wave states } \\
& +\left(E_{d}^{\exp }-E_{d}\right)^{2} /\left(\Delta E_{d}^{\exp }\right)^{2} \quad-\text { for the }{ }^{3} S_{1}^{+}{ }^{3} D_{1}^{+} \text {partial-wave states } \\
& \{+\ldots\}
\end{aligned}
$$

δ - the phase shifts, a_{0}, r_{0} - the low-energy parameters (the scattering length, the effective range), E_{d} - the deuteron binding energy

Covariant generalization of the Yamaguchi-functions

functions for $g^{[L]}\left(p_{0}, p\right)$:

$$
\begin{aligned}
g^{[S]}\left(p_{0},|\mathbf{p}|\right) & =\frac{1}{p_{0}^{2}-\mathbf{p}^{2}-\beta_{0}^{2}+i 0} \\
g^{[P]}\left(p_{0},|\mathbf{p}|\right) & =\frac{\sqrt{\left|-p_{0}^{2}+\mathbf{p}^{2}\right|}}{\left(p_{0}^{2}-\mathbf{p}^{2}-\beta_{1}^{2}+i 0\right)^{2}} \\
g^{[D]}\left(p_{0},|\mathbf{p}|\right) & =\frac{C\left(p_{0}^{2}-\mathbf{p}^{2}\right)}{\left(p_{0}^{2}-\mathbf{p}^{2}-\beta_{2}^{2}+i 0\right)^{2}}
\end{aligned}
$$

The relativistic generalization of the NR Graz-II and Paris separable kernel:

- Graz-II: ${ }^{1} S_{0}^{+}$- rank 2, ${ }^{3} S_{1}^{+}-{ }^{3} D_{1}$ - rank 3
- Paris-1,2: ${ }^{1} S_{0}^{+}$- rank 3, ${ }^{3} S_{1}^{+}-{ }^{3} D_{1}$ - rank 4

Results for ${ }^{1} S_{0}^{+}$channel

	Exp.	Graz-II	Paris-1	Paris-2
$a(\mathrm{fm})$	-23.748	-23.77	-23.72	-23.72
$r_{0}(\mathrm{fm})$	2.75	2.683	2.810	2.817

Results for ${ }^{3} S_{1}^{+}-{ }^{3} D_{1}$ channels

	Exp.	Graz-II	Graz-II	Graz-II	Paris-1	Paris-2
$p_{d}(\%)$		4	5	6	5.77	5.77
$a(\mathrm{fm})$	5.424	5.419	5.420	5.421	5.426	5.413
$r_{0}(\mathrm{fm})$	1.759	1.780	1.779	1.778	1.775	1.765
$E_{d}(\mathrm{MeV})$	2.2246	2.2254	2.2254	2.2254	2.2246	2.2250

Phase shifts

Experimental data for ${ }^{3} \mathrm{He}$

Experimental data for ${ }^{3} \mathrm{H}$

The relativistic three-particle equation for T matrix
is considered in the Fadeev form with the following assumptions:

- no three-particles interaction $V_{123}=\sum_{i \neq j} V_{i j}$
- two-particles interaction is separable
- nucleon propagators are chosen in a scalar form
- the only strong interactions are considered (not EM), so ${ }^{3} \mathrm{He} \equiv T$

Bethe-Salpeter-Fadeev equation

$$
\left[\begin{array}{l}
T^{(1)} \\
T^{(2)} \\
T^{(3)}
\end{array}\right]=\left[\begin{array}{c}
T_{1} \\
T_{2} \\
T_{3}
\end{array}\right]-\left[\begin{array}{ccc}
0 & T_{1} G_{1} & T_{1} G_{1} \\
T_{2} G_{2} & 0 & T_{2} G_{2} \\
T_{3} G_{3} & T_{3} G_{3} & 0
\end{array}\right]\left[\begin{array}{l}
T^{(1)} \\
T^{(2)} \\
T^{(3)}
\end{array}\right],
$$

where full three-particles T matrix $T=\sum_{i} T^{(i)}, G_{i}$ is the free two-particles (j and n) Green function (ijn is cyclic permutation of ($1,2,3$)):

$$
G_{i}\left(k_{j}, k_{n}\right)=1 /\left(k_{j}^{2}-m_{N}^{2}+i \epsilon\right) /\left(k_{n}^{2}-m_{N}^{2}+i \epsilon\right),
$$

and T_{i} is the two-particles T matrix which can be written as following

$$
T_{i}\left(k_{1}, k_{2}, k_{3} ; k_{1}^{\prime}, k_{2}^{\prime}, k_{3}^{\prime}\right)=(2 \pi)^{4} \delta^{(4)}\left(k_{i}-k_{i}^{\prime}\right) T_{i}\left(k_{j}, k_{n} ; k_{j}^{\prime}, k_{n}^{\prime}\right) .
$$

with $s_{i}=\left(k_{j}+k_{n}\right)^{2}=\left(k_{j}^{\prime}+k_{n}^{\prime}\right)^{2}$.

Bethe-Salpeter-Fadeev equation

Orbital momentum of triton

$$
L=l+\lambda
$$

l - orbital momentum of $N N$-pair
$\boldsymbol{\lambda}$ - orbital momentum of 3d particle
Using separable Ansatz for two-particles T matrix one-rank

$$
\begin{gathered}
\Psi_{L M}(p, q ; s)=\sum_{a \lambda} \Psi_{\lambda L}^{(a)}\left(p_{0},|\mathbf{p}|, q_{0},|\mathbf{q}| ; s\right) \mathcal{Y}_{\lambda L M}^{(a)}(\hat{\mathbf{p}}, \hat{\mathbf{q}}) \\
\mathcal{Y}_{\lambda L M}^{(a)}(\hat{\mathbf{p}}, \hat{\mathbf{q}})=\sum_{m \mu} C_{l m \lambda \mu}^{L M} Y_{l m}(\hat{\mathbf{p}}) Y_{\lambda \mu}(\hat{\mathbf{q}})
\end{gathered}
$$

where $a \equiv{ }^{2 s+1} l_{j}$ is two-nucleon states of the $N N$-pair

Partial-wave three-nucleon functions

$$
\Psi_{\lambda L}^{(a)}\left(p_{0},|\mathbf{p}|, q_{0},|\mathbf{q}| ; s\right)=g^{(a)}\left(p_{0},|\mathbf{p}|\right) \tau^{(a)}\left[\left(\frac{2}{3} \sqrt{s}+q_{0}\right)^{2}-\mathbf{q}^{2}\right] \Phi_{\lambda L}^{(a)}\left(q_{0},|\mathbf{q}| ; s\right)
$$

System of the integral equations

$$
\begin{aligned}
& \Phi_{\lambda L}^{(a)}\left(q_{0},|\mathbf{q}| ; s\right)=\frac{i}{4 \pi^{3}} \sum_{a^{\prime} \lambda^{\prime}} \int_{-\infty}^{\infty} d q_{0}^{\prime} \int_{0}^{\infty} \mathbf{q}^{\prime 2} d\left|\mathbf{q}^{\prime}\right| Z_{\lambda \lambda^{\prime}}^{\left(a a^{\prime}\right)}\left(q_{0}, q ; q_{0}^{\prime},\left|\mathbf{q}^{\prime}\right| ; s\right) \\
& \frac{\tau^{\left(a^{\prime}\right)}\left[\left(\frac{2}{3} \sqrt{s}+q_{0}^{\prime}\right)^{2}-\mathbf{q}^{\prime 2}\right]}{\left(\frac{1}{3} \sqrt{s}-q_{0}^{\prime}\right)^{2}-\mathbf{q}^{\prime 2}-m^{2}+i \epsilon} \Phi_{\lambda^{\prime} L}^{\left(a^{\prime}\right)}\left(q_{0}^{\prime},\left|\mathbf{q}^{\prime}\right| ; s\right)
\end{aligned}
$$

with effective kernels of equation

$$
\begin{gathered}
Z_{\lambda \lambda^{\prime}}^{\left(a a^{\prime}\right)}\left(q_{0},|\mathbf{q}| ; q_{0}^{\prime},\left|\mathbf{q}^{\prime}\right| ; s\right)=C_{\left(a a^{\prime}\right)} \int d \cos \vartheta_{\mathbf{q q ^ { \prime }}} K_{\lambda \lambda^{\prime} L}^{\left(a a^{\prime}\right)}\left(|\mathbf{q}|,\left|\mathbf{q}^{\prime}\right|, \cos \vartheta_{\mathbf{q q}^{\prime}}\right) \\
\frac{g^{(a)}\left(-q_{0} / 2-q_{0}^{\prime},\left|\mathbf{q} / 2+\mathbf{q}^{\prime}\right|\right) g^{\left(a^{\prime}\right)}\left(q_{0}+q_{0}^{\prime} / 2,\left|\mathbf{q}+\mathbf{q}^{\prime} / 2\right|\right)}{\left(\frac{1}{3} \sqrt{s}+q_{0}+q_{0}^{\prime}\right)^{2}-\left(\mathbf{q}+\mathbf{q}^{\prime}\right)^{2}-m_{N}^{2}+i \epsilon}
\end{gathered}
$$

Singularities

Poles from one-particle propagator

$$
q_{1,2}^{0 \prime}=\frac{1}{3} \sqrt{s} \mp\left[E_{\left|\mathbf{q}^{\prime}\right|}-i \epsilon\right]
$$

Poles from propagator in Z-function

$$
q_{3,4}^{0 \prime}=-\frac{1}{3} \sqrt{s}-q^{0} \pm\left[E_{\left|\mathbf{q}^{\prime}+\mathbf{q}\right|}-i \epsilon\right]
$$

Poles from Yamaguchi-functions

$$
q_{5,6}^{0 \prime}=-2 q^{0} \pm 2\left[E_{\left|\frac{1}{2} \mathbf{q}^{\prime}+\mathbf{q}\right|, \beta}-i \epsilon\right]
$$

and

$$
q_{7,8}^{0 \prime}=-\frac{1}{2} q^{0} \pm \frac{1}{2}\left[E_{\left|\mathbf{q}^{\prime}+\frac{1}{2} \mathbf{q}\right|, \beta}-i \epsilon\right]
$$

Cuts from two-particle propagator τ

$$
q_{9,10}^{0 \prime}= \pm \sqrt{q^{\prime 2}+4 m^{2}}-\frac{2}{3} \sqrt{s} \quad \text { and } \quad \pm \infty
$$

Poles from two-particle propagator τ

$$
q_{11,12}^{0 \prime}= \pm \sqrt{q^{\prime 2}+4 M_{d}^{2}}-\frac{2}{3} \sqrt{s}
$$

Method of solution

- Wick-rotation procedure: $q_{0} \rightarrow i q_{4}$
- The Gaussian quadrature with $N_{1} \times N_{2}\left[q_{4} \times|\mathbf{q}|\right]$ grid

$$
\begin{aligned}
& q_{4}=(1+x) /(1-x) \\
& |\mathbf{q}|=(1+y) /(1-y)
\end{aligned}
$$

- Iteration method to obtain the triton binding energy

$$
\left.\lim _{n \rightarrow \infty} \frac{\Phi_{n}(s)}{\Phi_{n-1}(s)}\right|_{s=M_{B}^{2}}=1
$$

Triton binding energy (MeV)

Graz-II 4	8.628
Graz-II 5	8.223
Graz-II 6	7.832
Paris-1	7.545
Exp.	8.48

Electromagnetic form factors of three-nucleon systems:

$$
\begin{aligned}
& 2 F_{\mathrm{C}}\left({ }^{3} \mathrm{He}\right)=\left(2 F_{\mathrm{C}}^{p}+F_{\mathrm{C}}^{n}\right) F_{1}-\frac{2}{3}\left(F_{\mathrm{C}}^{p}-F_{\mathrm{C}}^{n}\right) F_{2}, \\
& F_{C}\left({ }^{3} \mathrm{H}\right)=\left(2 F_{\mathrm{C}}^{n}+F_{\mathrm{C}}^{p}\right) F_{1}+\frac{2}{3}\left(F_{\mathrm{C}}^{p}-F_{\mathrm{C}}^{n}\right) F_{2}, \\
& \mu\left({ }^{3} \mathrm{He}\right) F_{\mathrm{M}}\left({ }^{3} \mathrm{He}\right)=\mu_{n} F_{\mathrm{M}}^{n} F_{1}+\frac{2}{3}\left(\mu_{n} F_{\mathrm{M}}^{n}+\mu_{p} F_{\mathrm{M}}^{p}\right) F_{2}+\frac{4}{3}\left(F_{\mathrm{M}}^{p}-F_{\mathrm{M}}^{n}\right) F_{3}, \\
& \mu\left({ }^{3} \mathrm{H}\right) F_{\mathrm{M}}\left({ }^{3} \mathrm{H}\right)=\mu_{p} F_{\mathrm{M}}^{p} F_{1}+\frac{2}{3}\left(\mu_{n} F_{\mathrm{M}}^{n}+\mu_{p} F_{\mathrm{M}}^{p}\right) F_{2}+\frac{4}{3}\left(F_{\mathrm{M}}^{n}-F_{\mathrm{M}}^{p}\right) F_{3},
\end{aligned}
$$

Electric and magnetic form factors of the proton and neutron $F_{\mathrm{C}, \mathrm{M}}^{p, n}$.

Impulse approximation:

$$
F_{i}(\hat{Q})=\int d^{4} \hat{p} \int d^{4} \hat{q} G_{1}^{\prime}\left(\hat{k}_{1}^{\prime}\right) G_{1}\left(\hat{k}_{1}\right) G_{2}\left(\hat{k}_{2}\right) G_{3}\left(\hat{k}_{3}\right) f_{i}\left(\hat{p}, \hat{q}, \hat{q}^{\prime} ; \hat{P}, \hat{P}^{\prime}\right)
$$

Nucleon propagators:

$$
\begin{aligned}
& G_{i}\left(\hat{k}_{1}\right)=\left[\hat{k}_{i}^{2}-m_{N}^{2}+i \epsilon\right]^{-1} \\
& G_{1}^{\prime}\left(q_{0}^{\prime}, q^{\prime}\right)=\left[\left(\frac{1}{3} \sqrt{s}-q_{0}^{\prime}\right)^{2}-\mathbf{q}^{\prime 2}-m_{N}^{2}+i \epsilon\right]^{-1}
\end{aligned}
$$

Three-nucleon vertex functions:

$$
\begin{aligned}
f_{1} & =\sum_{i=1}^{3} \Psi_{i}^{*}(\hat{p}, \hat{q} ; \hat{P}) \Psi_{i}\left(\hat{p}, \hat{q}^{\prime} ; \hat{P}^{\prime}\right) \\
f_{2} & =-3 \Psi_{1}^{*}(\hat{p}, \hat{q} ; \hat{P}) \Psi_{2}\left(\hat{p}, \hat{q}^{\prime} ; \hat{P}^{\prime}\right) \\
f_{3} & =\Psi_{3}^{*}(\hat{p}, \hat{q} ; \hat{P}) \Psi_{3}\left(\hat{p}, \hat{q}^{\prime} ; \hat{P}^{\prime}\right)
\end{aligned}
$$

Functions Ψ_{i} are the definite combinations of the partial state functions.

The Breit reference system

$$
\begin{equation*}
\hat{Q}=(0, \mathbf{Q}), \quad \hat{P}=\left(E_{B},-\frac{\mathbf{Q}}{2}\right), \quad \hat{P}^{\prime}=\left(E_{B}, \frac{\mathbf{Q}}{2}\right) \tag{1}
\end{equation*}
$$

with $E_{B}=\sqrt{\mathbf{Q}^{2} / 4+s}, s=M_{3 N}^{2}$.

$$
\begin{array}{lll}
\hat{P}=\mathrm{L} \hat{P}_{c . m .}, & \hat{p}=\mathrm{L} \hat{p}_{c . m .}, & \hat{q}=\mathrm{L} \hat{q}_{c . m .} \\
\hat{P}^{\prime}=\mathrm{L}^{-1} \hat{P}_{c . m .}^{\prime}, & \hat{p}^{\prime}=\mathrm{L}^{-1} \hat{p}_{c . m .}^{\prime}, & \hat{q}^{\prime}=\mathrm{L}^{-1} \hat{q}_{c . m}^{\prime}
\end{array}
$$

The explicit form of the transformation L can be obtained by using (1). Let us assume the boost of the system to be along the Z axis:

$$
\mathrm{L}=\left(\begin{array}{cccc}
\sqrt{1+\eta} & 0 & 0 & -\sqrt{\eta} \tag{2}\\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\sqrt{\eta} & 0 & 0 & \sqrt{1+\eta}
\end{array}\right)
$$

Relation of the arguments of initial and final $3 N$ functions:

$$
\begin{align*}
& q_{0}^{\prime}=(1+2 \eta) q_{0}-2 \sqrt{\eta} \sqrt{1+\eta} q_{z}+\frac{2}{3} \sqrt{\eta} Q \tag{3}\\
& q_{x}^{\prime}=q_{x} \quad q_{y}^{\prime}=q_{y} \\
& q_{z}^{\prime}=(1+2 \eta) q_{z}-2 \sqrt{\eta} \sqrt{1+\eta} q_{0}-\frac{2}{3} \sqrt{1+\eta} Q
\end{align*}
$$

here $q_{z}=q \cos \theta_{q Q}$ is the projection of momentum \mathbf{q} onto the Z axis

Static approximation (SA):

$$
q_{0}^{\prime}=q_{0}, \quad \mathbf{q}^{\prime}=\mathbf{q}-\frac{2}{3} \mathbf{Q}
$$

Propagator and final function:

$$
\begin{aligned}
& G_{1}^{\prime}\left(q_{0}^{\prime}, q^{\prime}\right) \rightarrow\left[\left(\frac{1}{3} \sqrt{s}-q_{0}\right)^{2}-\mathbf{q}^{2}-\frac{2}{3} \mathbf{q} \cdot \mathbf{Q}-\frac{4}{9} \mathbf{Q}^{2}-m_{N}^{2}+i \epsilon\right]^{-1} \\
& \Psi_{i}\left(p_{0}, p, q_{0}^{\prime}, q^{\prime}\right) \rightarrow \Psi_{i}\left(p_{0}, p, q_{0},\left|\mathbf{q}-\frac{2}{3} \mathbf{Q}\right|\right)
\end{aligned}
$$

with $\mathbf{q} \cdot \mathbf{Q}=q Q \cos \theta_{q Q}$.
The poles of G_{1}^{\prime} on q_{0} do not cross the imaginary q_{0} axis and always stay in the second and fourth quadrants. In this case, the Wick rotation procedure $q_{0} \rightarrow i q_{4}$ can be applied.

One-rank relativistic kernel, static approximation, ${ }^{3} \mathrm{He}$

Beyond the SA:

1. Exact propagator

$$
\begin{aligned}
& G_{1}^{\prime}=\left[q_{0}^{2}+\frac{2}{3} \sqrt{s}(1+6 \eta) q_{0}+4 \sqrt{1+\eta} \sqrt{s} \sqrt{\eta} q_{z}-\frac{8}{3} \eta s+\frac{1}{9} s-\mathbf{q}^{2}-m_{N}^{2}+i \epsilon\right] \\
& \Psi_{i}\left(p_{0}, p, q_{0}^{\prime}, q^{\prime}\right) \rightarrow \Psi_{i}\left(p_{0}, p, q_{0},\left|\mathbf{q}-\frac{2}{3} \mathbf{Q}\right|\right) .
\end{aligned}
$$

For any $t=-\hat{Q}^{2}>-\hat{Q}_{\text {min }}^{2}=2 / 3 \sqrt{s}\left(3 m_{N}-\sqrt{s}\right)$ the pole of G_{1}^{\prime} on q_{0} crosses the imaginary q_{0} axis and appears in the third quadrant.

Beyond the SA:

2. Additional term from residue inside the countour of integration

Using the Cauchy theorem, one can transform the integrals over p_{0}, q_{0} as follows:

$$
\begin{align*}
& \int_{-\infty}^{\infty} d p_{0} \int_{-\infty}^{\infty} d q_{0} \int_{0}^{\infty} d q \int_{-1}^{1} d y \ldots f\left(p_{0}, q_{0}, p, q, x, y\right)= \tag{4}\\
& -\int_{-\infty}^{\infty} d p_{4} \int_{-\infty}^{\infty} d q_{4} \int_{0}^{\infty} d q \int_{-1}^{1} d y \ldots f\left(i p_{4}, i q_{4}, p, q, x, y\right) \\
& +2 \pi \underset{q_{0}=q_{0}^{(2)}}{\operatorname{Res}} \int_{-\infty}^{\infty} d p_{4} \int_{q_{\min }}^{q_{\max }} d q \int_{y_{\min }}^{1} d y \ldots f\left(i p_{4}, q_{0}^{(2)}, p, q, x, y\right)
\end{align*}
$$

where (...) means the two-fold integral $\int_{0}^{\infty} d p \int_{-1}^{1} d x$ and

$$
\begin{equation*}
q_{0}^{(1,2)}=\frac{\sqrt{s}}{3}(1+6 \eta) \pm \sqrt{4 \eta(1+\eta) s-4 \sqrt{s} \sqrt{\eta} \sqrt{1+\eta} q y+\mathbf{q}^{2}+m_{N}^{2}} \tag{5}
\end{equation*}
$$

are the simple poles of the propagator G_{1}^{\prime}.

Beyond the SA:

3. Final function arguments transformation

Remembering that the BSF solutions are known for real values of q_{4} only, the following assumption was made:

$$
\Psi\left(p_{0}, p, q_{0}^{\prime}, q^{\prime}\right) \rightarrow g\left(p_{0}, p\right) \tau\left[\left(\frac{2}{3} \sqrt{s}+q_{0}^{(2)}\right)^{2}-\overline{\mathbf{q}}^{\prime 2}\right] \Phi\left(0, \bar{q}^{\prime}\right)
$$

where value \bar{q}^{\prime} is obtained using (3) with $q_{0}=q_{0}^{(2)}$.
The expansion of the function $\Phi\left(q_{4}^{\prime}, q^{\prime}\right)$ up to the first order of the parameter η :

$$
\begin{aligned}
\Phi\left(i q_{4}^{\prime}, q^{\prime}\right)=\Phi\left(i q_{4},\left|\mathbf{q}-\frac{2}{3} \mathbf{Q}\right|\right)+ & {\left[C_{q_{4}} \frac{\partial}{\partial q_{4}} \Phi_{j}\left(i q_{4}, q\right)\right]_{q=\left|\mathbf{q}-\frac{2}{3} \mathbf{Q}\right|} } \\
+ & {\left[C_{q} \frac{\partial}{\partial q} \Phi_{j}\left(i q_{4}, q\right)\right]_{q=\left|\mathbf{q}-\frac{2}{3} \mathbf{Q}\right|} }
\end{aligned}
$$

where

$$
\begin{aligned}
& C_{q_{4}}=-i\left(2 i \eta q_{4}-2 \sqrt{\eta} \sqrt{1+\eta} q \cos \theta_{q Q}+\frac{2}{3} \sqrt{\eta} Q\right) \\
& C_{q}=\left(2 \eta q \cos \theta_{q Q}-2 i \sqrt{\eta} \sqrt{1+\eta} q_{4}-\frac{2}{3}(\sqrt{1+\eta}-1) Q\right) \cos \theta_{q Q}
\end{aligned}
$$

Graz-II relativistic kernel

Paris relativistic kernel

Summary

- the relativistic three-nucleon vertex functions were founs solving the BSF systen of equations
- the charge and magnetic EM form factors of the 3 N systems were calculated
- the static approximation and relativistic corrections were investigated
- the relativistic corrections were found to be significant in describing the experimental data

