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2-body 3-body Bethe-Salpeter (BS) formalism

BS equation
BS-Fadeev
equations

Kernel of strong interactions

T matrix and D
T matrix

and T, 3He Model of EM interactions

EM probes (e, γ) Nucleon probes (p, n)

eD → eD
eD → enp
γD → np

e3He → e3He
e3He → eDp
e3He → enpp
γ3He → Dp
γ3He → npp

...

pD → pD
pD → ppn
pD → 3He

...
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Why a relativistic approach?

Elastic electron-deuteron scattering experiments
�Large Momentum Transfer Measurements of the Deuteron Elastic Structure
Function A(Q2) at Je�erson Laboratory�
JLab Hall A Collaboration, Phys.Rev.Lett.82:1374-1378,1999
Q2=0.7-6.0 (GeV/c)2

Lorentz transformation factor: ηLOR = −Q2/4M2
d ∼ 0.43,√

1 + ηLOR ∼ 1.19,
√
ηLOR ∼ 0.65

Exclusive disintegration of the deuteron experiments
JLab Hall C Deuteron Electro-Disintegration at Very High Missing Momenta
(E12-10-003) proposal
https://www.jlab.org/exp_prog/proposals/10/PR12-10-003.pdf:
�We propose to measure the D(e,e'p)n cross section at Q2 = 4.25 (GeV/c)2

and xbj = 1.35 for missing momenta ranging from pm = 0.5 GeV/c to
pm = 1.0 GeV/c expanding the range of missing momenta explored in the
Hall A experiment (E01-020)�

Lorentz transformation factor: ηLOR = −Q2/4snp ∼ 0.30,√
1 + ηLOR ∼ 1.14,

√
ηLOR ∼ 0.55
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Separable kernels of the NN interaction
The separable kernels of the nucleon-nucleon interaction are widely used in the
calculations. The separable kernel as a nonlocal covariant interaction representing
complex nature of the space-time continuum.
Separable rank-one Ansatz for the kernel

VL(p′0, |p′|; p0, |p|; s) = λ[L](s)g[L](p′0, |p′|)g[L](p0, |p|)

Solution for the T matrix

TL(p′0, |p′|; p0, |p|; s) = τ(s) g[L](p′0, |p′|) g[L](p0, |p|)

with [
τ(s)

]−1
=
[
λ[L](s)

]−1
+ h(s),

h(s) =
∑

coupledL

hL(s) = − i

4π3

∫
dk0

∫
|k|2 d|k|

∑
L

[g[L](k0, |k|)]2S(k0, |k|; s)

g[L] - the model function, λ[L
′L](s) - a model parameter.
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What is a separable kernel?
The integral equations in the nuclear physics (Lippmann-Schwinger,
Bethe-Salpeter) can be reduced to the Fredholm (�rst or second) type of
equations. The separable kernel of the integral equation is the degenerated kernel.
Fredholm integral equation of the second type:

φ(x) = f(x) + λ

∫
dy K(x, y)φ(y)

Degenerated kernel of the equation:

K(x, y) =
∑
i

ai(x)bi(y)

Solution of the equation:

φ(x) = f(x) + λ
∑
i

ciai(x)

Constants ci can be found by solving the system of linear equations

ci − λ
∑
j

kijcj = fi

Matrix kij and fi are:

kij =

∫
dy bi(y)aj(y), fi =

∫
dy f(y)bi(y)
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Lippmann-Schwinger equation → Bethe-Salpeter equation

G. Rupp and J. A. Tjon �Relativistic contributions to the deuteron
electromagnetic form factors� Phys. Rev. C41. 472 (1990)

p2 → −p2 = −p20 + p2

gp(p, P ) =
1

−p2 + β2

c.m.−→ 1

−p20 + p2 + β2 + iε

singularities: p0 = ±
√
p2 + β2 ∓ iε

This procedure works well for reactions with 2-body bound state but failed for
unbound np-state
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Kernel of interaction V (p′, p)

BS equation Separable Ansatz [λ, g]

Solution for T (p′, p) matrix

On-mass-shell T̄ = T (p̄, p̄) matrix

S matrix Arndt-Roper parametrization

Phase shift δ, inelasticity ρ

Minimize χ2[λ, g]

Experimental data
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Procedure (J = 0− 1)

calculate the kernel parameters � λ(s)-matrix and parameter of the g-functions �
to minimize the function χ2:
χ2 =

n∑
i=1

(δexp(si)− δ(si))2/(∆δexp(si))
2 � for all partial-wave states

n∑
i=1

(ρexp(si)− ρ(si))
2/(∆ρexp(si))

2 � for all partial-wave states

+(aexp0 − a0)2/(∆aexp0 )2 � for the 1S+
0 and 3S+

1 partial-wave states
+(Eexp

d − Ed)2/(∆Eexp
d )2 � for the 3S+

1 -
3D+

1 partial-wave states
{+...}

δ - the phase shifts, a0, r0 - the low-energy parameters (the scattering length, the
e�ective range), Ed - the deuteron binding energy
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Covariant generalization of the Yamaguchi-functions

functions for g[L](p0, p):

g[S](p0, |p|) =
1

p20 − p2 − β2
0 + i0

g[P ](p0, |p|) =

√
| − p20 + p2|

(p20 − p2 − β2
1 + i0)2

g[D](p0, |p|) =
C(p20 − p2)

(p20 − p2 − β2
2 + i0)2
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The relativistic generalization of the NR Graz-II and Paris separable kernel:

Graz-II: 1S+
0 � rank 2, 3S+

1 −3 D1 � rank 3

Paris-1,2: 1S+
0 � rank 3, 3S+

1 −3 D1 � rank 4

Results for 1S+
0 channel

Exp. Graz-II Paris-1 Paris-2

a (fm) -23.748 -23.77 -23.72 -23.72
r0 (fm) 2.75 2.683 2.810 2.817

Results for 3S+
1 −3 D1 channels
Exp. Graz-II Graz-II Graz-II Paris-1 Paris-2

pd (%) 4 5 6 5.77 5.77
a (fm) 5.424 5.419 5.420 5.421 5.426 5.413
r0 (fm) 1.759 1.780 1.779 1.778 1.775 1.765
Ed (MeV) 2.2246 2.2254 2.2254 2.2254 2.2246 2.2250
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Phase shifts
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Experimental data for 3He
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Experimental data for 3H
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The relativistic three-particle equation for T matrix

is considered in the Fadeev form with the following assumptions:

no three-particles interaction V123 =
∑
i 6=j Vij

two-particles interaction is separable

nucleon propagators are chosen in a scalar form

the only strong interactions are considered (not EM), so 3He ≡ T
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Bethe-Salpeter-Fadeev equation[ T (1)

T (2)

T (3)

]
=

[ T1
T2
T3

]
−

[ 0 T1G1 T1G1

T2G2 0 T2G2

T3G3 T3G3 0

][ T (1)

T (2)

T (3)

]
,

where full three-particles T matrix T =
∑
i T

(i), Gi is the free two-particles (j
and n) Green function (ijn is cyclic permutation of (1,2,3)):

Gi(kj , kn) = 1/(k2j −m2
N + iε)/(k2n −m2

N + iε),

and Ti is the two-particles T matrix which can be written as following

Ti(k1, k2, k3; k′1, k
′
2, k
′
3) = (2π)4δ(4)(ki − k′i)Ti(kj , kn; k′j , k

′
n).

with si = (kj + kn)2 = (k′j + k′n)2.
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Bethe-Salpeter-Fadeev equation

Orbital momentum of triton
L = l+ λ

l � orbital momentum of NN -pair
λ � orbital momentum of 3d particle
Using separable Ansatz for two-particles T matrix one-rank

ΨLM (p, q; s) =
∑
aλ

Ψ
(a)
λL(p0, |p|, q0, |q|; s)Y(a)

λLM (p̂, q̂)

Y(a)
λLM (p̂, q̂) =

∑
mµ

CLMlmλµYlm(p̂)Yλµ(q̂),

where a ≡ 2s+1lj is two-nucleon states of the NN -pair
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Partial-wave three-nucleon functions

Ψ
(a)
λL(p0, |p|, q0, |q|; s) = g(a)(p0, |p|)τ (a)[(

2

3

√
s+ q0)2 − q2] Φ

(a)
λL(q0, |q|; s)

System of the integral equations

Φ
(a)
λL(q0, |q|; s) =

i

4π3

∑
a′λ′

∫ ∞
−∞

dq′0

∫ ∞
0

q′
2
d|q′|Z(aa′)

λλ′ (q0, q; q
′
0, |q′|; s)

τ (a
′)[( 2

3

√
s+ q′0)2 − q′

2
]

( 1
3

√
s− q′0)2 − q′2 −m2 + iε

Φ
(a′)
λ′L(q′0, |q′|; s)

with e�ective kernels of equation

Z
(aa′)
λλ′ (q0, |q|; q′0, |q′|; s) = C(aa′)

∫
d cosϑqq′K

(aa′)
λλ′L (|q|, |q′|, cosϑqq′)

g(a)(−q0/2− q′0, |q/2 + q′|)g(a′)(q0 + q′0/2, |q + q′/2|)
( 1
3

√
s+ q0 + q′0)2 − (q + q′)2 −m2

N + iε
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Singularities
Poles from one-particle propagator

q0′1,2 =
1

3

√
s∓ [E|q′| − iε]

Poles from propagator in Z-function

q0′3,4 = −1

3

√
s− q0 ± [E|q′+q| − iε]

Poles from Yamaguchi-functions

q0′5,6 = −2q0 ± 2[E| 12q′+q|,β − iε]

and

q0′7,8 = −1

2
q0 ± 1

2
[E|q′+ 1

2q|,β
− iε]

Cuts from two-particle propagator τ

q0′9,10 = ±
√
q′2 + 4m2 − 2

3

√
s and ±∞

Poles from two-particle propagator τ

q0′11,12 = ±
√
q′2 + 4M2

d −
2

3

√
s

If
√
s = 3mN − Et < 3mN then q0 → iq4 (Wick-rotation procedure)Int. Workshop on Nuclear and Particles Physics, Almaty, Kazakhstan, April 25-30, 2022
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Im k

Re k0

0

pole

pole
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Method of solution

Wick-rotation procedure: q0 → iq4
The Gaussian quadrature with N1 ×N2[q4 × |q|] grid

q4 = (1 + x)/(1− x)

|q| = (1 + y)/(1− y)

Iteration method to obtain the triton binding energy

lim
n→∞

Φn(s)

Φn−1(s)

∣∣∣
s=M2

B

= 1

Triton binding energy (MeV)

Graz-II 4 8.628
Graz-II 5 8.223
Graz-II 6 7.832
Paris-1 7.545
Exp. 8.48
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Electromagnetic form factors of three-nucleon systems:

2FC(3He) = (2F pC + FnC)F1 −
2

3
(F pC − F

n
C)F2,

FC(3H) = (2FnC + F pC)F1 +
2

3
(F pC − F

n
C)F2,

µ(3He)FM(3He) = µnF
n
MF1 +

2

3
(µnF

n
M + µpF

p
M)F2 +

4

3
(F pM − F

n
M)F3,

µ(3H)FM(3H) = µpF
p
MF1 +

2

3
(µnF

n
M + µpF

p
M)F2 +

4

3
(FnM − F

p
M)F3,

Electric and magnetic form factors of the proton and neutron F p,nC,M.
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Impulse approximation:

Fi(Q̂) =

∫
d4p̂

∫
d4q̂ G′1(k̂′1)G1(k̂1)G2(k̂2)G3(k̂3) fi(p̂, q̂, q̂

′; P̂ , P̂ ′)

Nucleon propagators:

Gi(k̂1) =
[
k̂2i −m2

N + iε
]−1

,

G′1(q′0, q
′) =

[
(
1

3

√
s− q′0)2 − q′2 −m2

N + iε

]−1
,

Three-nucleon vertex functions:

f1 =

3∑
i=1

Ψ∗i (p̂, q̂; P̂ ) Ψi(p̂, q̂
′; P̂ ′)

f2 = −3Ψ∗1(p̂, q̂; P̂ ) Ψ2(p̂, q̂′; P̂ ′)

f3 = Ψ∗3(p̂, q̂; P̂ ) Ψ3(p̂, q̂′; P̂ ′)

Functions Ψi are the de�nite combinations of the partial state functions.
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The Breit reference system

Q̂ = (0,Q), P̂ = (EB ,−
Q

2
), P̂ ′ = (EB ,

Q

2
), (1)

with EB =
√

Q2/4 + s, s = M2
3N .

P̂ = LP̂c.m., p̂ = Lp̂c.m., q̂ = Lq̂c.m.

P̂ ′ = L−1P̂ ′c.m., p̂′ = L−1p̂′c.m., q̂′ = L−1q̂′c.m.

The explicit form of the transformation L can be obtained by using (1). Let us
assume the boost of the system to be along the Z axis:

L =


√

1 + η 0 0 −√η
0 1 0 0
0 0 1 0
−√η 0 0

√
1 + η

 . (2)
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Relation of the arguments of initial and �nal 3N functions:

q′0 = (1 + 2η) q0 − 2
√
η
√

1 + η qz +
2

3

√
η Q, (3)

q′x = qx q′y = qy

q′z = (1 + 2η) qz − 2
√
η
√

1 + η q0 −
2

3

√
1 + η Q,

here qz = q cos θqQ is the projection of momentum q onto the Z axis
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Static approximation (SA):

q′0 = q0, q′ = q− 2

3
Q

Propagator and �nal function:

G′1(q′0, q
′)→

[
(
1

3

√
s− q0)2 − q2 − 2

3
q ·Q− 4

9
Q2 −m2

N + iε

]−1
Ψi(p0, p, q

′
0, q
′)→ Ψi(p0, p, q0, |q−

2

3
Q|)

with q ·Q = qQ cos θqQ.
The poles of G′1 on q0 do not cross the imaginary q0 axis and always stay in the
second and fourth quadrants. In this case, the Wick rotation procedure q0 → iq4
can be applied.
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One-rank relativistic kernel, static approximation, 3He
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Beyond the SA:

1. Exact propagator

G′1 =

[
q20 +

2

3

√
s(1 + 6η)q0 + 4

√
1 + η

√
s
√
ηqz −

8

3
ηs+

1

9
s− q2 −m2

N + iε

]−1
,

Ψi(p0, p, q
′
0, q
′)→ Ψi(p0, p, q0, |q−

2

3
Q|).

For any t = −Q̂2 > −Q̂2
min = 2/3

√
s(3mN −

√
s) the pole of G′1 on q0 crosses

the imaginary q0 axis and appears in the third quadrant.
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Beyond the SA:
2. Additional term from residue inside the countour of integration
Using the Cauchy theorem, one can transform the integrals over p0, q0 as follows:∫ ∞

−∞
dp0

∫ ∞
−∞

dq0

∫ ∞
0

dq

∫ 1

−1
dy ... f(p0, q0, p, q, x, y) = (4)

−
∫ ∞
−∞

dp4

∫ ∞
−∞

dq4

∫ ∞
0

dq

∫ 1

−1
dy ... f(ip4, iq4, p, q, x, y)

+2π Res
q0=q

(2)
0

∫ ∞
−∞

dp4

∫ qmax

qmin

dq

∫ 1

ymin

dy ... f(ip4, q
(2)
0 , p, q, x, y),

where (...) means the two-fold integral
∫∞
0
dp
∫ 1

−1 dx and

q
(1,2)
0 =

√
s

3
(1 + 6η)±

√
4η(1 + η)s− 4

√
s
√
η
√

1 + ηqy + q2 +m2
N (5)

are the simple poles of the propagator G′1.
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Im k

Re k0
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Beyond the SA:
3. Final function arguments transformation
Remembering that the BSF solutions are known for real values of q4 only, the
following assumption was made:

Ψ(p0, p, q
′
0, q
′)→ g(p0, p) τ [(

2

3

√
s+ q

(2)
0 )2 − q̄′2] Φ(0, q̄′),

where value q̄′ is obtained using (3) with q0 = q
(2)
0 .

The expansion of the function Φ(q′4, q
′) up to the �rst order of the parameter η:

Φ(iq′4, q
′) = Φ(iq4, |q−

2

3
Q|) +

[
Cq4

∂

∂q4
Φj(iq4, q)

]
q=|q− 2

3Q|

+
[
Cq

∂

∂q
Φj(iq4, q)

]
q=|q− 2

3Q|
,

where

Cq4 = −i
(

2iηq4 − 2
√
η
√

1 + ηq cos θqQ +
2

3

√
ηQ

)
,

Cq =

(
2ηq cos θqQ − 2i

√
η
√

1 + ηq4 −
2

3
(
√

1 + η − 1)Q

)
cos θqQ.

To exclude double counting, one needs to take into account only the second and
third terms of the right-hand expression of expression since the �rst term coincides
with BC.
In this case, the function Φ′ is determined by the integral Φ′ =

∫
K ′Φ where K ′

is a derivative of the kernel of the integral equation.
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Graz-II relativistic kernel
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Paris relativistic kernel
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Conclusion 3N EM form-factors in the BSF approach

Summary

the relativistic three-nucleon vertex functions were founs solving the BSF
systen of equations

the charge and magnetic EM form factors of the 3N systems were calculated

the static approximation and relativistic corrections were investigated

the relativistic corrections were found to be signi�cant in describing the
experimental data
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