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Outline

1. Investigated systems;

2. Machinery of the functional renormalization group;

3. The outcomes achieved.
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Multicomponent cold fermions

ℓT ∼ T−1/2︸ ︷︷ ︸
de Broglie wavelength

≳ ℓ ∼ (density)−1/3︸ ︷︷ ︸
interparticle distance

Atom Species

– 171Y b I = 1/2 SU(2)

– 173Y b I = 5/2 SU(6) (Rey, Rep. Prog. Phys. 2014)

– 87Sr I = 9/2 SU(10) (Ye, Nature Phys. 2020)

– 171Y b+173 Y b SU(2)× SU(6) (Taie, PRL 2010)

SU(n = 2I + 1) interaction ⇐⇒ spin-independent scattering length as
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Effective description

The system scales aBorh ∼ 0.5Å

– the Van der Waals lenght ℓV dW (10÷ 100)× aBorh

– s-wave scattering length as (10÷ 200)× aBorh

– interparticle distance ℓ (800÷ 3000)× aBorh

– thermal de Broglie wavelength ℓT (10 000÷ 40 000)× aBorh

– size of the system L 100 000× aBorh

ℓV dW ≲ as ≲ ℓ≪ ℓT ≪ L
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Fermionic model

Ultra-Violet scales:

✓ ΛUF ∼ 1/ℓV dW - reciprocal of the Van der Waals lenght (atomic systems)

✓ ΛUF ∼ ωD - the Debye frequency (electorons in solids)

The starting point – effective fermionic action

The pairwise interaction for scales ℓ > ℓV dW reads U(x) = λ δ(x), and the action
cast in the form

S[ψ] =
1/T∫
0

dt

∫
dx
(
ψ∗
i

{
∂t −∇2 − µ

}
ψi +

λ

2
(ψ∗

i ψi)
2
)
, i = 1, . . . , n,

with the strength λ = 4πas/m and the chemical potential µ ∼ TFermi.
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General aims

✓ Investigation of the model in the Cooper channel, where

ϕij ∼ ψi ψj ̸= 0

✓ Obtaining possible phase transitions

✓ Estimation of thermodynamic quantities

S[ψ] on scale ∼ 1/as︸ ︷︷ ︸
“micro”ψ

=⇒ S[ϕ] on scale ∼ 1/ℓT︸ ︷︷ ︸
“meso”ϕ∼ψ ψ

=⇒ Γ[φ] on scale ∼ 1/L︸ ︷︷ ︸
“macro”φ∼⟨ϕ⟩︸ ︷︷ ︸

Bosonic field models

Knowledge of Γ[φ] – “solution” of the model
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Bosonic model
Integrating fermions out gives rise to the pure bosonic theory (put forward by Gor’kov

for BCS, 1959)

S[ϕ] =
∫

dx
[
tr(∂ϕ† ∂ϕ) +m2

0 tr(ϕ
†ϕ) + g01(tr(ϕ

†ϕ))2 + g02 tr(ϕ
†ϕϕ†ϕ)

]
✓ S[ϕ] – the G.-L.-like “Hamiltonian” for skew-symmetric field ϕ size of n× n

✓ The bare parameters m2
0, g01, g02 – functions of µ, as, T , and ΛUF .

Business as usual

– New nontrivial phase for m2
0 < 0

– Continuous phase transition at the temperature T0: m
2
0|T=T0 = 0

T0 ≈ 0.61TFermi exp

(
π

2aspFermi

)

Let’s treat fluctuations!
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1PI-functional

✓ The generating functional of connected Green’s functions

W [J ] = ln

∫
Dϕ exp {−S[ϕ] + Jϕ} .

✓ The Legendre transformation – 1PI Green’s functions

Γ[φ] = Jφφ−W [Jφ],

where Jφ meets the equation

δW [J ]

δJ

∣∣∣∣
J=Jφ

= φ.
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Mode decoupling

✓ The generating functional of connected Green’s functions

Wk[J ] = ln

∫
Dϕ exp {−S[ϕ]−∆Sk[ϕ] + Jϕ} ,

with the quadratic additive

∆Sk[ϕ] =
1

2
ϕRk ϕ.

✓ The Legendre transformation – 1PI Gren’s functions

Γk[φ] = Jk,φφ−W [Jk,φ]−∆Sk[φ],

where Jk,φ meets the equation

δWk[J ]

δJ

∣∣∣∣
J=Jk,φ

= φ.
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The cut-off kernel Rk

Properties of Rk:

✓ Rk(p) → ∞ as k → Λ (or ∞): fluctuations are frozen, thus Γk→Λ[φ] → S[φ] –
the mean-field free energy.

✓ Rk(p) → 0 as k → 0: all fluctuations are integrated out, thus Γk→0[φ] → Γ[φ]
– the full free energy.

Widely used kernels:

– the exponential shape

Rk(p) =
p2

ep2/k2 − 1

– the theta-regulator
(Litim, 2021)

Rk(p) = (k2 − p2)Θ(k2 − p2) Figure 1: A typical shape of the cut-off
function1.

1N. Dupuis et al. “The nonperturbative functional renormalization group and its applications”. In: Physics Reports 910
(2021), pp. 1–114.
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The Wetterich equation

✓ Flow in functional space (Wetterich, 1990’s)

∂kΓk[φ] =
1

2
Tr
{
(Γ

(2)
k [φ] +Rk)

−1∂kRk

}
,

where Γ
(2)
k [φ] is given by the second functional derivative of Γk[φ].

Figure 2: Schematic flows for two
different cut-off shapes Rk.

Widely used truncations:

– derivative expansion

Γk[φ] = Zk(φ)(∂φ)
2 + Uk(φ) + higher order deriv.

– vertex expansion

Γk[φ] =
∑
n

1

n!

∫
x

Γ
(n)
k (x1, . . . , xn)φ(x1) . . . φ(xn)
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Invariant expansion

✓ Geometry of the vacuum expectation value ⟨Φ⟩ = φ t1

t1 =

(
0 In/2

−In/2 0

)
✓ The group invariants we use here are defined as

ρ1 = tr(Φ†Φ), ρa = tr
(
Φ†Φ− ρ1

n

)a
, a ∈ N

✓ Invariant expansion

Uk(Φ,Φ
†) ≈ Vk(ρ1) +Wk(ρ1) ρ2 + etc.
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Flow equations

The flow system

∂k Vk(ρ1) = Cd k
d+1

{
1/n2

k2 +V′
k +2ρ1 V

′′
k

+
(n+ 1)(n− 2)/(2n2)

k2 +V′
k +4ρ1 Wk

+
(n− 1)/(2n)

k2 +V′
k

}
,

∂k Wk(ρ1) = Cd k
d+1

{
(1− 2/n)W2

k

(k2 +V′
k)

3
+

9(n+ 2)(n− 4)W2
k

n2(k2 +V′
k +4ρ1 Wk)3

− (Wk +2 (1− 1/n)ρ1 W
′
k)

4ρ1(k2 +V′
k)

2

− 1/n2

(k2 +V′
k +2ρ1 V

′′
k)

2

(
2W′′

k ρ1 + 5W′
k +

Wk

ρ1
− V′′

k

2ρ1
+

(
V′′

k + 4W′
k ρ1 + 4 Wk

)2
2ρ1

(
V′′

k − 2Wk

) )

+
1/n2

(k2 +V′
k +4ρ1 Wk)2

(
n2 + 4

4ρ1
Wk − n2 + 6

2
W′

k − V′′
k

2ρ1
+

(
V′′

k + 4W′
k ρ1 + 4 Wk

)2
2ρ1

(
V′′

k − 2Wk

) )}

was solved with the UV initial conditions

VΛ(ρ1) = −m2
Λ ρ1 + g1Λ ρ

2
1 & WΛ(ρ1) = g2Λ.
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Numerical solution

Flowing down potential at the phase
transition point m2

Λ = m2
c .

The full IR potential at k = 0.05Λ for
different m2

Λ values.

The flow was stored on a grid using pseudo-spectral
methods and then run within Runge-Kutta schemes.
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The first order phase transition
The potential VIR(φ,m

2
Λ) acquires a non-trivial stable minimum φ0 when

∂φVIR(φ,m
2
c)|φ=φ0 = 0 & VIR(0,m

2
c) = VIR(φ0,m

2
c).

Order parameter as a function of
“temperature”.

The full IR potential at k = 0.05Λ for
different m2

Λ values.

m2
Λ(T ) ≈ m2

Λ(Tc)︸ ︷︷ ︸
m2

c

+ α × (Tc − T )
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Weak and strong phase transitions

Order parameter as a function of the
coupling constant g2Λ

Phase transition “temperature” as a
function of the coupling constant g2Λ
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Weak and strong phase transitions: a special case

In the original potential (after fermions elimination) we get g1Λ = g2Λ/N .

Order parameter as a function of the
coupling constant g2Λ

Phase transition “temperature” as a
function of the coupling constant g2Λ

m2
c

Λ2
∼
(g2Λ

Λ

)0.8
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Nonperturbative findings

1. One should expect the first order phase transition to superfluity in SU(N)
fermions

2. The obtained picture preserves at the large N limit N → ∞

3. No universal scaling behaviour with the standard critical exponents ν, η, but
the pseudo-scaling with respect to a coupling constant

4. Quasi-universal behaviour in both weak and strong phase transitions
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Th
e end

!


