Effects of moving environment on self-organized critical behavior in anisotropic systems

N. M. Lebedev

(in collaboration with N. V. Antonov, P. I. Kakin and A. Yu. Luchin)

International Workshop on Nuclear and Particles Physics
Republic of Kazakhstan
Almaty

26 April 2022

Vector \mathbf{n} picks up a preferred direction of transport, so that coordinates can be split as

$$
\mathbf{x}=\mathbf{x}_{\perp}+x_{\|} \mathbf{n} ; \quad\left(\mathbf{x}_{\perp} \cdot \mathbf{n}\right)=0
$$

Symmetry of the system

$$
x_{\|} \rightarrow-x_{\|} ; \quad h \rightarrow-h
$$

We are looking for infrared scaling behaviour

$$
\langle h(\mathbf{x}, t) h(\mathbf{0}, 0)\rangle \simeq x_{\perp}^{-2 \Delta_{h}} \mathcal{F}\left(t / r_{\perp}^{\Delta_{\omega}}, r_{\|} / r_{\perp}^{\Delta_{\|}}\right)
$$

The matter is conserved by the internal dynamics

$$
\partial_{t} h+\partial \cdot \mathbf{j}=f(\mathbf{x}, t)
$$

We aim to describe long-range physics, assuming fluctuations of the height to be relatively small

$$
\mathbf{j}=-\nu_{\perp} \partial_{\perp} h-\nu_{\|} \mathbf{n} \partial_{\|} h+\frac{\lambda}{2} \mathbf{n} h^{2}
$$

Equation of motion ${ }^{1}$

$$
\partial_{t} h=\nu_{\perp} \partial_{\perp}^{2} h+\nu_{\|} \partial_{\|}^{2} h-\frac{\lambda}{2} \partial_{\|} h^{2}+f
$$

Balance between income and drain of particles implies

$$
\langle f(\mathbf{x}, t)\rangle=0 ; \quad\langle f(\mathbf{x}, t) f(\mathbf{x}, t)\rangle=C \delta\left(t-t^{\prime}\right) \delta^{(d)}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)
$$

Any stochastic problem of the form

$$
\partial_{t} \Phi(\mathbf{x}, t)=U(\Phi, \mathbf{x})+f(\mathbf{x}, t) ; \quad\left\langle f(\mathbf{x}, t) f\left(\mathbf{x}^{\prime}, t^{\prime}\right)\right\rangle=D\left(\mathbf{x}-\mathbf{x}^{\prime}, t-t^{\prime}\right)
$$

can be recast into field theoretic problem with the action

$$
S\left(\Phi, \Phi^{\prime}\right)=\frac{1}{2} \Phi^{\prime} D \Phi^{\prime}+\Phi^{\prime}\left(-\partial_{t} \Phi+U(\Phi)\right)
$$

Hwa-Kardar Stochastic equation is equivalent to the fiels-theoretic model

$$
S\left(h, h^{\prime}\right)=\frac{C}{2} h^{\prime} h^{\prime}+h^{\prime}\left(-\partial_{t} h+\nu_{\|} \partial_{\|}^{2} h+\nu_{\perp} \partial_{\perp}^{2} h-\frac{\lambda}{2} \partial_{\|} h^{2}\right)
$$

Additional symmetry

$$
\mathbf{x} \rightarrow \mathbf{x}+u t \mathbf{n} ; \quad h^{\prime}(\mathbf{x}, t) \rightarrow h^{\prime}(\mathbf{x}+u t \mathbf{n}, t) ; \quad h(\mathbf{x}, t) \rightarrow h(\mathbf{x}+u t \mathbf{n}, t)-u
$$

Parameter λ can be absorbed by rescaling of fields and parameters

$$
\nu_{\|}=\nu_{\| R} Z_{\nu_{\|}}
$$

Three independent canonical dimentions

$$
[F] \sim[T]^{-d_{F}^{\omega}}\left[L_{\|}\right]^{-d_{F}^{\|}}\left[L_{\perp}\right]^{-d_{F}^{\perp}}
$$

for each there is equation of canonical scale invariance

$$
\left(\sum_{i} d_{i} \mathcal{D}_{i}-d_{G}\right) G=0 ; \quad \mathcal{D}_{x}=x \partial_{x}
$$

The only dimensionless combination plays the role of expansion parameter

$$
g=C \mu^{-\varepsilon} \nu_{\perp}^{-3 / 2} \nu_{\| R}^{-3 / 2} ; \quad \varepsilon=4-d
$$

RG functions

$$
\gamma_{F}=\widetilde{\mathcal{D}}_{\mu} \ln Z_{F} ; \quad \beta_{g}=\widetilde{\mathcal{D}}_{\mu} g=-g\left(\varepsilon+\gamma_{g}\right)
$$

All anomalous dimensions at the fixed point are known exactly

$$
\gamma_{\nu_{\|}}^{*}=2(4-d) / 3
$$

Renormalization Group equation

$$
\left(\mathcal{D}_{\mu}+\beta(g) \partial_{g}-\gamma_{\nu_{\|}} \mathcal{D}_{\nu_{\|}}-\gamma_{G}\right) G_{R}=0
$$

At fixed point

$$
\left(\mathcal{D}_{\mu}-\gamma_{\nu_{\|}}^{*} \mathcal{D}_{\nu_{\|}}-\gamma_{G}^{*}\right) G_{R}=0
$$

Combining with canonical equations to exclude IR irrelevant parameters $\mu, \nu_{\perp}, \nu_{\|}$

$$
\left(\mathcal{D}_{k_{\perp}}+\Delta_{\|} \mathcal{D}_{k_{\|}}+\Delta_{\omega} \mathcal{D}_{\omega}-\Delta_{G}\right) G_{r}=0
$$

where

$$
\begin{gathered}
\Delta_{\|}=1+\gamma_{\nu_{\|}}^{*} / 2 ; \quad \Delta_{\omega}=2 \\
\Delta_{G}=d_{g}^{\perp}+d_{G}^{\|} \Delta_{\|}+d_{g}^{\omega} \Delta_{\omega}+\gamma_{G}^{*}
\end{gathered}
$$

Exact values of scaling exponents

$$
\Delta_{h}=(d-1) / 3 ; \quad \Delta_{h^{\prime}}=(d+5) / 3 ; \quad \Delta_{\omega}=2 ; \quad \Delta_{\|}=(7-d) / 3
$$

Advection introduced by the minimum coupling with the velocity field

$$
\partial_{t} \rightarrow \nabla_{t}=\partial_{t}+(\mathbf{v} \cdot \partial)
$$

Imcompressibility

$$
\partial_{i} v_{i}=0
$$

Velocity statistics

$$
\begin{aligned}
& \left\langle v_{i}(\mathbf{x}, t)\right\rangle=0 ; \quad\left\langle v_{i}(\mathbf{x}, t) v_{j}\left(\mathbf{x}^{\prime}, t^{\prime}\right)\right\rangle=\delta\left(t-t^{\prime}\right) D_{i j}\left(\mathbf{x}-\mathbf{x}^{\prime}\right) \\
& D_{i j}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)=B \int_{k>m} \frac{d \mathbf{k}}{(2 \pi)^{d}} \frac{1}{k^{d+\xi}} P_{i j}^{\perp}(\mathbf{k}) \exp \left(i \mathbf{k}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)\right)
\end{aligned}
$$

The action of corresponding field model ${ }^{2}$

$$
\begin{aligned}
S\left(h, h^{\prime}, \mathbf{v}, \mathbf{v}^{\prime}\right) & =\frac{C}{2} h^{\prime} h^{\prime}+h^{\prime}\left\{-\nabla_{t} h+\nu_{\|} \partial_{\|}^{2} h+\nu_{\perp} \partial_{\perp}^{2} h-\frac{1}{2} \partial_{\|} h^{2}\right\}+S_{\mathbf{v}} \\
S_{\mathbf{v}} & =-\frac{1}{2} \int d t d \mathbf{x} d \mathbf{x}^{\prime} v_{i}(\mathbf{x}, t) D_{i j}^{-1}\left(\mathbf{x}-\mathbf{x}^{\prime}\right) v_{j}\left(\mathbf{x}^{\prime}, t\right)
\end{aligned}
$$

[^0]Due to the transversity of the velocity field we can not introduce separate dimension along the preferred direction

$$
[F] \sim[T]^{-d_{F}^{\omega}}\left[L_{k}\right]^{-d_{F}^{k}}
$$

Augmented Galilean symmetry

$$
\begin{gathered}
\mathbf{x} \rightarrow \mathbf{x}+u t \mathbf{n} ; \quad h^{\prime}(\mathbf{x}, t) \rightarrow h^{\prime}(\mathbf{x}+u t \mathbf{n}, t) ; \quad h(\mathbf{x}, t) \rightarrow h(\mathbf{x}+u t \mathbf{n}, t)-u ; \\
\mathbf{v}(\mathbf{x}, t) \rightarrow \mathbf{v}(\mathbf{x}+u t \mathbf{n}, t)
\end{gathered}
$$

Two renormalization constants

$$
\nu_{\|}=\nu_{\| R} Z_{\nu_{\|}} ; \quad \nu_{\perp}=\nu_{\| R} Z_{\nu_{\perp}}
$$

Couplings

$$
g=C \mu^{-\varepsilon} \nu_{\perp R}^{-3 / 2} \nu_{\| R}^{-3 / 2} ; \quad u=B \mu^{-\xi} \nu_{\perp R}^{-1} ; \quad x=\nu_{\| R} \nu_{\perp R}^{-1}
$$

One-loop calculation gives

$$
\begin{aligned}
& \beta_{g}=g\left(-\varepsilon+\frac{9}{32} g+\frac{9}{46} \frac{u}{x}+\frac{9}{16} u\right) \\
& \beta_{u}=u\left(-\xi+\frac{3}{8} u\right) \\
& \beta_{x}=x\left(-\frac{3}{16} g-\frac{3}{8} \frac{u}{x}+\frac{3}{8} u\right)
\end{aligned}
$$

Four fixed points can be IR attractive

- $g^{*}=0$;
$u^{*}=0 ;$
$x^{*}=\forall ;$
attractive for $d>4 ; \xi<0$
- $g^{*}=0$;
$u^{*}=8 \xi / 3 ;$
$x^{*}=1 ;$
attractive for $\xi>0 ; \xi>(4-d) / 3$
- $g^{*}=32 \varepsilon / 9$;
$u^{*}=0 ; \quad x^{*} \rightarrow \infty ;$
- $g^{*}=32 \varepsilon / 9$;
$x^{*}=8 \xi / 3 ;$
$u^{*} \rightarrow \infty$;
attractive for $d<4 ; \xi<0$
attractive for $\xi>0 ; \xi<(4-d) / 3$

At the pure Hwa-Kardar fixed point there are 2 IR-irrelevant parameters μ, ν_{\perp}

$$
\left(\mathcal{D}_{k_{\perp}}+\mathcal{D}_{k_{\|}}+\Delta_{\omega} \mathcal{D}_{\omega}-\Delta_{G}\right) G_{r}=0
$$

where $\Delta_{\omega}=2-\gamma_{\nu_{\perp}}^{*}=2$ at Hwa-Kardar fixed point.
Lets introduce inverse coupling $\alpha=x^{-1}=\nu_{\perp R} \nu_{\| R}^{-1}$

$$
\beta_{\alpha}(\alpha)=\beta_{\alpha}\left(\alpha^{*}\right)+\beta_{\alpha}^{\prime}\left(\alpha^{*}\right)\left(\alpha-\alpha^{*}\right)
$$

Is such approximation the equation of critical scaling takes the form

$$
\left(\mathcal{D}_{k_{\perp}}+\mathcal{D}_{k_{\|}}+\Delta_{\omega} \mathcal{D}_{\omega}+\beta_{\alpha}^{\prime}\left(\alpha^{*}\right) \mathcal{D}_{\alpha}-\Delta_{G}\right) G_{r}=0
$$

which allows us to incorporate third equation of canonical scale invariance and reproduce exact results of Hwa-Kardar

The next step toward the realism of the model is to describe the velocity field by the stochastic Navier-Stokes equation for incompressible fluid

$$
\partial_{t} v_{i}+(\mathbf{v} \cdot \partial) v_{i}=\nu \partial^{2} v_{i}-\partial_{i} P+\eta_{i} ; \quad \partial_{i} v_{i}=0
$$

Random force statistics

$$
\left\langle\eta_{i}(\mathbf{x}, t)\right\rangle=0 ; \quad\left\langle\eta_{i}(t, \mathbf{x}) \eta_{j}\left(t^{\prime}, \mathbf{x}^{\prime}\right)\right\rangle=B \delta\left(t-t^{\prime}\right) \int_{k>m} \frac{d \mathbf{k}}{(2 \pi)^{d}} P_{i j}^{\perp}(\mathbf{k}) \exp i\left(\mathbf{k} \cdot\left(\mathbf{x}-\mathbf{x}^{\prime}\right)\right)
$$

The action of corresponding field model

$$
\begin{gathered}
S\left(h, h^{\prime}, \mathbf{v}, \mathbf{v}^{\prime}\right)=\frac{C}{2} h^{\prime} h^{\prime}+h^{\prime}\left\{-\nabla_{t} h+Z_{1} \nu_{\|} \partial_{\|}^{2} h+Z_{2} \nu_{\perp} \partial_{\perp}^{2} h-Z_{4} \frac{1}{2} \partial_{\|} h^{2}\right\}+S_{\mathbf{v}} \\
S_{\mathbf{v}}=\frac{B}{2} \mathbf{v}^{\prime} \cdot \mathbf{v}^{\prime}+\mathbf{v}^{\prime} \cdot\left\{-\nabla_{t} \mathbf{v}+Z_{3} \nu \partial^{2} \mathbf{v}\right\}
\end{gathered}
$$

Galilean symmetry

$$
\begin{aligned}
\mathbf{x} \rightarrow \mathbf{x}+u t \mathbf{n} ; \quad h^{\prime}(\mathbf{x}, t) \rightarrow h^{\prime}(\mathbf{x}+u t \mathbf{n}, t) ; \quad h(\mathbf{x}, t) \rightarrow h(\mathbf{x}+u t \mathbf{n}, t) \\
\mathbf{v}^{\prime}(\mathbf{x}, t) \rightarrow \mathbf{v}^{\prime}(\mathbf{x}+u t \mathbf{n}, t) ; \quad \mathbf{v}(\mathbf{x}, t) \rightarrow \mathbf{v}(\mathbf{x}+u t \mathbf{n}, t)-u \mathbf{n}
\end{aligned}
$$

Couplings

$$
g=C \mu^{-\varepsilon} \nu_{\perp R}^{-3 / 2} \nu_{\| R}^{-3 / 2} ; \quad w=B \mu^{-\varepsilon} \nu_{R}^{-3} ; \quad x_{1}=\nu_{\| R} \nu_{R}^{-1} ; \quad x_{2}=\nu_{\perp R} \nu_{R}^{-1}
$$

One-loop calculation

$$
\begin{gathered}
Z_{1}=1-\frac{1}{8 \pi^{2} \varepsilon}\left[g \frac{3}{16}+w \frac{\sqrt{x_{2}+1}\left(-3 x_{1}+x_{2}-2\right)+2\left(x_{1}+1\right)^{3 / 2}}{2 x_{1} \sqrt{x_{2}+1}\left(x_{1}-x_{2}\right)^{2}}\right] \\
Z_{2}=1-\frac{1}{8 \pi^{2} \varepsilon} \frac{w}{3} \frac{2 \sqrt{x_{1}+1}\left(2 x_{1}-3 x_{2}-1\right)+\sqrt{x_{2}+1}\left(-3 x_{1}+5 x_{2}+2\right)}{2 x_{2} \sqrt{x_{2}+1}\left(x_{2}-x_{1}\right)^{2}} ; \\
Z_{3}=1-\frac{1}{8 \pi^{2} \varepsilon} \frac{w}{8} ; \quad Z_{4}=0
\end{gathered}
$$

System of the beta functions

$$
\begin{aligned}
\beta_{g} & =-g\left[\varepsilon-\frac{3}{2} \gamma_{1}-\frac{3}{2} \gamma_{2}+2 \gamma_{4}\right] \\
\beta_{w} & =-w\left[\varepsilon-3 \gamma_{3}\right] \\
\beta_{x_{1}} & =-x_{1}\left[\gamma_{1}-\gamma_{3}\right] ; \\
\beta_{x_{2}} & =-x_{2}\left[\gamma_{2}-\gamma_{3}\right] ;
\end{aligned}
$$

At one-loop level there is a linear dependence between β functions

$$
\beta_{g}=-g\left[\frac{3}{2} \frac{\beta_{x_{1}}}{x_{1}}+\frac{3}{2} \frac{\beta_{x_{2}}}{x_{2}}-\frac{\beta_{w}}{w}+2 \gamma_{4}\right]
$$

$\gamma_{4}=0 \Rightarrow$ there are line of the fixed points

$$
w^{*}=8 \varepsilon / 3, \quad g^{*}\left(x_{2}^{*}\right), \quad x_{1}^{*}\left(x_{2}^{*}\right), \quad x_{2}^{*} \in[0,(\sqrt{13}-1) / 2]
$$

The entire line is IR attractive and belong to the pure turbulence universality class.

Couplings

$$
g=C \mu^{-\varepsilon} \nu_{\perp}^{-3 / 2} \nu_{\|}^{-3 / 2} ; \quad w=B \mu^{-\varepsilon} \nu^{-3} ; \quad x_{1}=\nu_{\|} \nu^{-1} ; \quad x_{2}=\nu_{\perp} \nu^{-1}
$$

Other possible fixed points

- $g^{*}=0$;

$$
w=0
$$

$$
x_{1}=\forall ; \quad x_{2}=\forall ;
$$

- $g^{*}=0$;
$w /\left(x_{1} x_{2}\right)=0 ;$
$x_{1}=0$;
$x_{2}=0$;
- $g^{*}=32 \varepsilon / 9 ; \quad w=0$;
$x_{1}=\infty ; \quad x_{2}=\forall ;$
- $g^{*}=32 \varepsilon / 9 ; \quad w / x_{1}=0$;
$x_{1}=0 ; \quad x_{2}=\forall ;$
- $g^{*}=32 \varepsilon / 9 ; \quad w /\left(x_{1} x_{2}\right)=0$;
$x_{1}=0$;
$x_{2}=0$;
- $g^{*}=32 \varepsilon / 9 ; \quad w=8 \varepsilon / 3$;
$x_{1} \rightarrow \infty ; \quad x_{2} \rightarrow \infty$;
- $g^{*}=0 ; \quad w=8 \varepsilon / 3$;
$x_{1} \rightarrow \infty ; \quad x_{2} \rightarrow \infty ;$
- $g^{*}=0$;
$w=\varepsilon \frac{2 x_{2}^{2} \sqrt{1+x_{2}}}{2\left(1-\sqrt{1+x_{2}}\right)+x_{2} \sqrt{1+x_{2}}} ;$
$x_{1}=0$;
$x_{2}=\forall ;$
- $g^{*}=0$;
$w=\varepsilon \frac{6 x_{1}^{2}}{6 x_{1}+2\left(2 x_{1}-1\right) \sqrt{1+x_{1}}} ;$
$x_{1}=\forall ;$
$x_{2}=0 ;$

Thank you for attention!

[^0]: ${ }^{2}$ N. V. Antonov, N. M. Gulitskiy, P. I. Kakin and G. E. Kochnev, Universe 6, 145 (2020)

