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Feynman Diagrams: Basic Definitions

Quantum field theory amplitudes are represented as a sum of Feynman
Diagrams, graphs for which each line and vertex is represented by a
factor in a term of the quantum amplitude.
Integrating over all unconstrained momenta gives rise to a Feynman
Integral, FI. For L loops and n internal lines, and allowing the
propagators to be raised to powers νj ,
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Our final goal is to find a solution of FI as a series in dimensional
regularization parameter ε where coefficients are expressed in terms of
some special functions with well-established properties.
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IBP Relations, Master Integrals and Differential Equations

Integration by parts leads to a set of recurrence relations among
diagrams of a given topology but different powers of the propagators.
K.G. Chetyrkin, F.V. Tkachov, Nucl. Phys. B 192, 159 (1981)
The full set of recurrence relations should be solved by finding how the
integral with powers of propagators (j1 + j2 + · · ·+ jk ) reduced to
integrals with powers (j1 + j2 + · · ·+ jk − 1)
The method involves taking derivatives of each integral with respect to
momenta and reducing it to the original integral.
The relations found permit a reduction to a basis set of master
integrals in terms of which the diagrams of this class may be expressed.
The diffrential equation system fo FI is obtained by taking some
derivatives of a given master integral with respect to kinematical
invariants and masses.
A.V. Kotikov, Phys. Lett. B 254, 158 (1991)
Then the result is written in terms of Feynman integrals of the given
family and, according to the known reduction, in terms of the master
integrals.
Finally, one obtains a system of differential equations for the master
integrals which can be solved with appropriate boundary conditions.
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Questions to answer

to find some independent way for calculation of recurrence relation
among FI

establish the class of function in terms of which FI could be expressed

find a way to construct the differential equation for given FI (master
integral) for arbitrary value of propagator powers, masses and impulses

establish the exact number of master integrals for FI
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Hypergeometric function definition

Gauss hypergeometric function
first used by John Wallis in 1655
systematic treatment was given by Carl Friedrich Gauss (1813)
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generalized Lauricella series

Appell hypergeometric function:
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∑
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To express the Feynman integral we need hypergeometric function
called generalized Lauricella series:
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The Mellin-Barnes Representation

The Mellin-Barnes representation relies on the identity

1
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The contour is chosen to separate the poles in Γ(−z) from the poles in
Γ(λ+ z).
This relation is applied to the denominator in the Feynman Parametrization to
break it up into monomials in the Feynman parameters xi . The integration
over the Feynman parameters can then be easily performed in terms of Γ
functions,
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Upon application of Cauchy’s theorem, the Feynman integral can be
converted into a linear combination of multiple series:
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The Mellin-Barnes Representation II

Mellin-Barnes representation of FI:

Jl(m2
1, ....m

2
n; p

2
1, ...p

2
k , α1, ..., αn) = C

+i∞∫
−i∞

Π
j,l

dul
Γ(
∑

i aijui + bj)

Γ(
∑

i cijui + dj)
z
∑

fkl uk
l

An FI answer we could write down in terms of hypergeometric function of
Horn type
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calculation of Mellin-Barnes representation in terms of series is not easy

we need further expansion of FI in terms of dimensional regularization
parameter.
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The Mellin-Barnes Representation -what could be inferred from it?

An FI could be written in terms of hypergeometric series of Horn type

The expansion over dimesional regularization parameter (derivatives of
Horn type hypergeometric function) could be written in terms of function
of the same class
V.B., B. Kniehl, Nucl.Phys.B 952 (2020) 114911

Derivatives of the generalized Lauricella series in one of their (upper or
lower) parameters can be expressed as a finite sum of the generalized
Lauricella series
the n-th term of the ε series can be expressed as a Horn-type
hypergeometric function in n + m variables, where m is the number of
summations in the Horn-type representation of the Feynman integral
The region of convergence of any of these parameter derivatives, i.e., the
coefficients in the ε expansion, and the initial FI are the same

we could find differential contiguous relations
All special functions in coefficients of dimensional regularization expansion
must inherit algebra of that differential operators (shuffle and stuffle algebra
in MPL)

we could establish differential equation for particular FI
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Differential Contiguous Relations

Shifting the integration contours in the Mellin-Barnes representation or
equivalently shifting summation indices in hypergeometric representation
we find differential contiguous relations.
They can be expressed in terms of step-up L+

bj
and step-down L−

dj

operators which shift indices bj , dj by a unit:

H(a, b⃗ + e⃗j , c, d⃗ ; z⃗) = L+
bj

H(a, b⃗, c, d⃗ ; z⃗) =
(∑

i
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)
H(a, b⃗, c, d⃗ ; z⃗),
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)
H(a, b⃗, c, d⃗ ; z⃗),

The inverse operators L−
bj

, L+
dj

can not be directly constructed form
Mellins-Barnes representation
Together operators L−

bj
, L+

dj
, L+

bj
, L−

dj
helps one to change parameters of FI

(Horn hypergeometric function) on integer number and find relation
between the number of nontrivial master integrals found from IBP (which
are not expressible in terms of Gamma functions) and the maximal
power of derivatives generated by the L−

bj
, L+

dj

The inverse operators L−
bj

, L+
dj

inherit information about simplification of
hypergeometric function (lowering its order)
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Differential Equation System Derivation

From the differential continuous relations a dynamical symmetry algebra
could be constructed, and from the Lie algebra the system of differential
equations could be established

(
Π

j=m+
k

L+
bj
− 1

zk
θk Π

j=m+
k

L−
dj

)
H(a, b⃗, c, d⃗ ; z⃗) = 0,

set m+
k consists of integers j defined from equation

∑
i |aij |ei ̸= 0 and

m−
k consists of integers j :

∑
i |cij |ei ̸= 0.

variables zi are independent (all mass and external momenta are
different and not equal to zero), and the indices of propagators are real
numbers.
we consider the multivariable specialization of initial differential equation:

zj = yj(x⃗), j = 1, . . . , n

x⃗ = (x1, . . . , xk ), k < n .

when multivariable specialization fall in singular locus of differential
equation, the rank of new system will be lower
The rank of differential system after multivariable specialization could be
also lower in some specific combinations of parameters and variables.
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Differential Equation System Derivation II

Applying the chain rule χ times we construct system of differential
equation where various derivatives of order less or equal χ w.r.t. new
variables x⃗ are expressed in terms of derivatives w.r.t. old z⃗ and
derivatives of yi(x⃗) functions.
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One-Loop Two-point Diagram, different masses

one-loop two-point diagram with different masses and arbitrary powers
of propagators:

J(α1, α2,m1,m2) =

∫
dnk

(k2 − m2
1)
α1
(
(k − p)2 − m2

2

)α2
.

By constructing step-up and step down operators we obtain the system
of partial differential equations of second order with two variables for
J(α, β,m1,m2):
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(
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n
2
+ θ1

)
− (2α1 + 2α2 − n − 2θ1 − 2θ2)(α1 + α2 − n − θ1 − θ2 + 1)

2z1
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θ2
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−α2 +

n
2
+ θ2

)
− (2α1 + 2α2 − n − 2θ1 − 2θ2)(α1 + α2 − n − θ1 − θ2 + 1)

2z2
= 0 .

it is equivalent to the equation of Appell hypergeometric function
F4(a, b, c1, c2, z1, z2) and has 4 different solutions. The singular locus on
P2 is z1 = 0, z2 = 0, the line at infinity, z2

1 + z2
2 + 1 = 2z1z2 + 2z1 + 2z2
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One-Loop Two-point Diagram, different masses

we choose χ = 4, the number of derivatives w.r.t. x . In this case we
need χ− η = 2 differentiations w.r.t. sets of variables z1, z2 and obtain
an Fuchsian differential equation over one variable

L4(x)J(α1, α2,m1,m2) = 0 ,

where L4(x) is the differential operator of the fourth order.
it has 4 singular points inherited from initial differential system, so the
final answer could not be expressed in terms of hypergeometric function
of one variable
monodromy is reduced, is defined by
{a, b, c1 − a, c1 − b, c2 − a, c2 − b, c1 + c2 − a, c1 + c2 − b} ∈ Z , and in
our case we have −b + c1 + c2 = 3, so one solution of system
degenerates to Puiseux-type and one-variable equation for F4 must
factorize by first-order differential operator

L1(x)L3(x)J(α1, α2,m1,m2) = 0

By defining arbitrary constants, we could see that final answer for bubble
FI with two different masses and arbitrary powers of propagators has
only two F4 terms for the variables z1 = p2/m2

2, z2 = m2
1/m

2
2 and three

terms in variables z1 = m2
2/p

2, z2 = m2
2/p

2
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One-Loop Two-point Diagram, equal masses

J is equivalent to a two-loop bubble FI with equal masses m1 = m2:
z1 = y1(x) = x and z2 = y2(x) = x .

we could find an differential equation ofr case of equal masses by two
different ways: consider the case z1 = z2 = x and
z1 = x ,z2 = const = x .

this univariate specialization does not belong to singular locus, the rank
of new differential system should be the same.

L̃4(x)F4(x , x) = 0

we have three distinct poles at points 0, 1/4,∞. Compare the singular
points and local exponents with differential equation for hypergeometric
function 4F3, we came to the well-known result for univariate
specialization of F4

F4

(
a, b

c1, c2
x , x

)
= 4F3

(
a, b, c1+c2

2 , c1+c2−1
2

c1, c2, c1 + c2 − 1
4x

)
.
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One-Loop Two-point Diagram, equal masses II

The monodromy group of initial differential equation for bubble is
reduced due to equation for the parameters −b + c1 + c2 = 3, so we find
the factorization of L̃4(x) if we substitute parameters:

L1(x)L3(x)J(α1, α2,m,m) = 0,

L1(x) =
d

dx
+

((x − 4)(−α1 − α2 + n) + 3x − 8)
x(x − 4)

,

L3(x) =
d3

dx3 +
−(x − 8)(α1 + α2 − n − 3) + 2n + 18

(x − 4)x
d2

dx2

−
4
(
(α1 + α2)(5(α1 + α2)− 8n + 1) + 3n2)+ x(2α1 − n − 2)(−2α2 + n + 2)

4(x − 4)x2

d

dx

+
(α1 + α2 − n + 1)(α1 + α2 − n + 2)(2(α1 + α2)− n)

2(x − 4)x3 ,

The final answer for bubble FI with equal masses could be expressed
through hypergeometric function 3F2 and polynomial expression.
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