
Coupled channel method for heavy ion fusion reactions

S.I. Vinitsky

In collaboration with:
A.A. Gusev, O. Chuluunbaatar,
R.G. Nazmitdinov,

(JINR, Dubna)
P.W. Wen,

(CIAE, Beijing)
P.M. Krassovitskiy

(INP, Almaty)

Contents

Introduction on deep sub-barrier
fusion hindrance

The modi�ed CC theoretical
framework

Results and discussions

The International Workshop on Nuclear and Particles Physics, 24�30 April 2022,
INP, Almaty, Kazakhstan



Time independent sub-barrier quantum tunneling

There are generally two ways to get the tunneling probability:

Semi-classical approaches: WKB et al.

PWKB
l (E) = exp[−2

∫ rmax
rmin

√
2µ[Vl (r)− E ]/~2dr ],

Schr�odinger equation under certain boundary conditions.

[− ~2

2µ
d2

dr2 + l(l+1)~2

2µr2 + V (0)
N (r) +

ZP ZT e2

r − E ] ψ(r) = 0



Explanations: adiabatic approximation & deep potential

T. Ichikawa, K. Hagino and A. Iwamoto, Phys Rev C 75, 064612 (2007); Phys Rev Lett 103, 202701
(2009); T. Ichikawa, Phys Rev C 92 (6), 064604 (2015).

On top of the conventional CC method, an extra one-dimensional adiabatic potential barrier is
assumed after the reacting nuclei contact with each other, considering the formation of the composite
system.

K. Hagino, A. B. Balantekin, N. W. Lwin et al, Phys Rev C 97, 034623 (2018).

Two Woods-Saxon potentials with di�erent slopes.

σfus(E)=
π~2

2µE

∑
L=0

(2L+1)TL(E)P(L, E)



Adiabatic representation KANTBP
To obtain an appropriate adiabatic representation known in computational
mathematics as the Kantorovich method [L.V. Kantorovich and V.I. Krylov,
Approximate methods of higher analysis (Intersci. Publ., NY, 1958)] � reduction of a
BVP to a system of ODEs of the second order that explains the above abbreviation
for the proposed method KANTBP one needs to make a gauge transformation
Unn′(r) depending on parameter r [S. I. Vinitsky, B. L. Markovski, and A. A. Suz'ko,
Sov. J. Nucl. Phys. 55, 371 (1992)]:

ψnno (r) =
∑N

n′=1
Unn′(r)yn′no (r), yn′no (r) =

∑N

n=1
U−1

n′n (r)ψnno (r), (1)

that transforms Eq. (11) to the following system of ODEs

N∑
n′=1

((
− d2

dr 2 − (Ẽ − W̃nn(r)

)
δnn′ + Unn′(r)

)
yn′no (r) = 0. (2)

Here Ẽ=(2µ/~2)E and e�ective potentials Unn′(r) reads as

Unn′(r) = Hnn′(r) + Qnn′(r)
d
dr

+
dQnn′(r)

dr
(3)

Hnn′(r)=Hn′n(r)=
N∑

n′′=1

d(U(r))−1
nn′′

dr
dUn′′n′(r)

dr
, (4)

Qnn′(r)=−Qn′n(r)=−
N∑

n′′=1

(U(r))−1
nn′′

dUn′′n′(r)

dr
. (5)



Adiabatic representation KANTBP
In the above formula U(r) is orthogonal matrix U(r)−1

nn′ = U(r)T
nn′ composed by

eigenvectors of the parametric algebraic eigenvalue problem at each value of
parameter r ∈ [rmin, rmax ]:∑N

n′=1
(Wnn′(r)− δnn′W̃n′n′(r))Un′n(r) = 0. (6)

∑N

n′′=1
UT

nn′′(r)Un′′n′(r) = δnn′ ,
∑N

n′′=1
Unn′′(r)UT

n′′n′(r) = δnn′ . (7)

These eigenvectors Un′n(r) and eigenvalues W̃n′n′(r) have the bounded and continuous

derivatives
dUnn′ (r)

dr and
dW̃nn′ (r)

dr with respect to the parameter r , that are calculated
by solving the nonhomogeneous parametric algebraic problem at each value of
parameter r ∈ [rmin, rmax ]:∑N

n′=1
(Wnn′(r)− δnn′W̃n′n′(r))

∂Un′n(r)

∂r

= −
∑N

n′=1
(
∂Wnn′(r)

∂r
− δnn′

∂W̃n′n′(r)

∂r
)Un′n(r). (8)

These problems are solved by means of the adapted symbolic-numerical algorithms
and programs [S.I. Vinitsky et al, Progr. Comput. Soft. 33 105 (2007)].
Further application of the adiabatic representation for study of the the BVP under
consideration is beyond scope of the present talk and will be done elsewhere.



Explanations: sudden approximation & shallow potential

�S. Mi�sicu and H. Esbensen, Phys Rev Lett 96 (11), 112701 (2006); Phys Rev C 75, 034606 (2007); ....

Hindrance of Heavy-Ion Fusion due to Nuclear Incompressibility. Double-folding potential with M3Y
forces supplemented by a repulsive core.

C. Simenel, A. S. Umar, K. Godbey, et al, Phys Rev C 95, R031601 (2017).

Density constrained time dependent Hartree-Fock model. It is concluded that: �...to explain
experimental fusion data at deep sub-barrier energies, then cannot be justi�ed by an e�ect of
incompressibility. It is more likely that it simulates other e�ects such as Pauli repulsion.�

V. V. Sargsyan, G. G. Adamian, N. V. Antonenko et al, Eur Phys J A 56, 19 (2020).

Extended quantum di�usion approach + Double folding potential.



Some open questions

About deep sub-barrier fusion hindrance:

Whether could the CC calculation of the fusion cross section be stable at the
deep sub-barrier energy region?
Some works used an extra imaginary potential around the potential minimum to
eliminate the �uctuations of the conventional CC calculation. However, one has
to add more parameters.

Is Woods-Saxon potential able to describe the deep sub-barrier fusion hindrance
phenomenon well enough?
It is said that it is not able to describe it in many works. And hybrid potential
model, other potential models, and reaction mechanisms are widely used now.

What's the mechanism of the fusion hindrance?
The shallow potential or deep potential.



Import gradients for solving the coupled-channels equation

There are several parts to construct the coupled-channels approach:

1 Nuclear potential:
real potential (double folding, proximity, Woods-Saxon potential), complex
potential: Extended Optical Model(EOM)

2 Coupled potential:
full order coupling, linear coupling, or the quadratic coupling

3 Boundary condition:
regular boundary condition, incoming wave boundary condition

4 Numerical method:
�nite di�erence method (Numerov , three-point di�erence), �nite element
method (KANTBP), R-matrix method.

O. Chuluunbaatar, A. A. Gusev, et al, CPC. 177, 649 (2007)
A. A. Gusev, O. Chuluunbaatar, S. I. Vinitsky et al, CPC 185, 3341 (2014)



Extended Optical Model(EOM) [B. Buck et al, Phil. Mag.(1963)]

(
−

~2

2µ
d2

dr2
+ VL(r)− E

)
Ψ(r) = 0, VL(r) = VN (r)− ıg(E)

dVN (r)

dr
+ VC (r) +

~2

2µ
L(L + 1)

r2
,

16O +144 Sm : AP = 16, AT = 144.0, ZP = 8, ZT = 62, µ = AP AT/(AP + AT )

V0 = 105, R00 = 1.1, A0 := 0.75; R0 = R00(A1/3
P + A1/3

T ) in zero approximation:

VN (r) = −
V0

1 + exp((r − R0)/a)
,VC (r) = ZP ZT

{
1/r r > RC
(3R2

C − r2)/(2R3
C ) r < RC

,RC = R0.



EOM B. Buck et al, Phil. Mag.(1963)&IWBC Hagino et al CPC (1999)

Boundary conditions IWBC at g(E) = 0

IWBC : Ψas(rmin
L )=

exp(−ı
√

E−VL(rmin
L ))

√
k

TL(E), k =
√

E

Ψas(rmax
L )=

1
√

k
(Ĥ−L (kr)−Ĥ+

L (kr)RL(E)), |TL(E)|2=1−|RL(E)|2

Boundary conditions EOM with unknown g(E) > 0

EOM :
dΨas(r min

L )

dr
|r=rmin

L
= 0,

Ψas(r max
L )=

1√
k

(Ĥ−L (kr)− Ĥ+
L (kr)SL(E)), |TL(g(E))|2 = 1− |SL(g(E))|2,

constrains : g(E)>0 : SL(g(E))=RL(E), |SL(g=0,E)|2=1, |TL(g=0,E)|2=0,

for calculating g(E)>0 using known RL(E) from solving IWBC at g(E) = 0

σel (E)=
π

k2

∑
L=0

(2L+1)|(1−SL(g))|2, σfus(E)=
π

k2

∑
L=0

(2L+1)(1−|SL(g)|2),

σtot (E) = σel (E) + σfus(E) =
2π
k2

∑
L=0

(2L+1)(1−<SL(g)).



Eigenfunctions of scattering states IWBC in comparison with EOM at
g = 0.00429, L = 0 and nonresonance energy E = 61MeV

IWBC

EOM



Eigenfunctions of scattering states in vicinity of resonance energy
E ≈ 57.7330MeV at g = 0.001 in vicinity of second peak of g(E) plot
and L = 0 (EOM) in comparison with g = 0



Eigenfunctions of the three metastable states E16 = 53.773 − 0.0001i ,
E17 = 57.733 − 0.014i and E18 = 61.170 − 0.162i in vicinity of �rst,
second and third peaks of g(E) plot, below maximum V B

max = 62 MeV of
potential barrier at g = 0.001 and g = 0.00001, and L = 0(EOM) in
comparison with g = 0



The nuclear potential

The Aky�uz-Winther (AW) type Woods-Saxon potential as starting point:

V (0)
N (r) = − V0

1 + exp((r − R0)/a0)
.

=
−16πγa0R̄

1 + exp[(r − RP − RT )/a0]
,

A. Winther, Nucl. Phys. A 594, 203 (1995)

with

1
a0

= 1.17[1 + 0.53(A−1/3
P + A−1/3

T )]

R̄ =
RPRT

RP + RT
Ri = 1.2A1/3

i − 0.09, i = P,T

γ = 0.95
(

1− 1.8
(NP − ZP)(NT − ZT )

APAT

)

No free parameters and widely used for fusion reaction.



The coupled potential (full order coupling)

The nuclear coupling Hamiltonian can be generated by changing the potential radius
to a dynamical operator R0 + Ô with Ô|α〉 = λα|α〉

Ô =
∑

i=P,T

βλ√
4π

rcoup A1/3
i (a†λ0 + aλ0)

The nuclear coupling potential is given on top of the potential as

V ′N(r , Ô) = − V0

1 + exp((r − R0 − Ô)/a0)
.

It is considered with full order by diagonalizing the matrix Ô

Onm =
∑

i=P,T

βλ√
4π

rcoup A1/3
i (
√

mδn,m−1 +
√

nδn,m+1)

The nuclear coupling matrix elements between phonon state |n〉 and |m〉 is

V (N)
nm = 〈n|V ′N(r , Ô)|m〉 − V (0)

N δn,m =
∑
α

〈n|α〉〈α|m〉V ′N(r , λα)− V (0)
N δn,m

H. Hagino et al, Comput. Phys. Commun. 123 143 (1999);

Bohr, A. and Mottelson, B. R.

Nuclear Structure II, (1969)



The incoming wave boundary condition

The incoming wave boundary conditions (IWBC)

ψn(r) =

{
Tn exp (−ikn(rmin)r) , r ≤ rmin
H−l (knr)δn,0 − RnH+

l (knr), r ≥ rmax

Here kn = kn(r → +∞), and kn(r) is the local wave
number for n-th channel

kn(r) =

√√√√ 2µ

~2

(
E − εn −

l(l + 1)~2

2µr2
−V (0)

N (r)−
ZP ZT e2

r
− Vnn(r)

)

There are problems in the previous boundary condition.

The plane wave boundary condition at the left boundary rmin involves only the diagonal
part. This requires that the o�-diagonal matrix elements tend to zero.

However, at rmin, the distance between two nuclei is so short that the o�-diagonal
matrix elements are usually not zero. There can be sudden noncontinuous changes in
the left boundary.

A linear transformation should be done at the left boundary.

V.V. Samarin, V.I. Zagrebaev, 2004 NPA 734 E9;
V.I. Zagrebaev, V.V. Samarin, 2004 Phys. Atom. Nucl. 67 1462;



The new method KANTBP

The coupled-channels Schr�odinger equation

[
−

~2

2µ
d2

dr2
+

l(l + 1)~2

2µr2
+V (0)

N (r) +
ZP ZT e2

r
+εn−E

]
ψnno +

N∑
n′=1

Vnn′ (r)ψn′no (r)=0, (9)

with

no is a number of the open entrance channel with a positive relative energy Eno = E − εno > 0,
no = 1, ...,No ≤ N.

{ψnno (r)}N
n=1 are components of a desirable matrix solution.

Let W is the symmetric matrix of dimension N × N

Wnm = Wmn =
2µ
~2

[(
l(l + 1)~2

2µr2
+ V (0)

N (r) +
ZP ZT e2

r
+ εn

)
δnm + Vnm(r)

]
. (10)

Then the equation can be expressed as

−ψ
′′
nm(r)+

∑
m′

Wnm′ψm′m(r)=
2µE
~2

ψnm(r), (11)



The new method KANTBP

Diagonalize the matrix at r = rmin

WA = AW̃, {W̃}nm = δnmW̃mm, W̃11 ≤ W̃22 . . . ≤ W̃NN . (12)

The functions ym(r) are solutions of the uncoupled equations

y ′′m (r) + K 2
mym(r) = 0, K 2

m =
2µE
~2
− W̃mm. (13)

In open channels at K 2
m > 0, m = 1, ...,Mo ≤ N the solutions ym(r) have the form:

ym(r) =
exp(−ıKmr)
√

Km
. (14)

In this case ψnno (r) expressed by the linear combinations of the linear independent solutions

ψnno (r) =

Mo∑
m=1

Anmym(r)T̂mno , r = rmin. (15)

In this way, the o�-diagonal matrix elements have been considered in the calculation.



The new method KANTBP

Summary of the boundary conditions for open channels

ψ
as
nno (r) =

{∑Mo
m=1 Anm

exp(−ıKmr)√
Km

T̂mno , r = rmin,

Ĥ−l (knr)δn,no − Ĥ+
l (knr)R̂nno , r = rmax.

(16)

In this case the partial tunneling probability from the
ground state (no = 1) is

Pl (E) ≡ T (l)
nono (E). (17)

At �xed orbital momentum l, it is given by summation over all possible intrinsic states:

T (l)
nono (E) =

Mo∑
m=1

∣∣∣T̂mno

∣∣∣2 , R(l)
nono (E) =

No∑
n=1

∣∣∣R̂nno

∣∣∣2 , T (l)
nono (E) = 1− R(l)

nono (E) (18)

The condition T (l)
nono (E) + R(l)

nono (E)− 1 = 0 ful�lls with ten signi�cant digits by the element method
KANTBP.

O. Chuluunbaatar, A. A. Gusev, A.G. Abrashkevich et al, CPC. 177, 649 (2007)
A. A. Gusev, O. Chuluunbaatar, S. I. Vinitsky et al, CPC 185, 3341 (2014)

A. A. Gusev, O. Chuluunbaatar, S. I. Vinitsky et al, Math. Mod. Geom. 3, 2 22 (2015)
V. I. Zagrebaev, Phys. Rev. C 78 047602 (2008)



32S+182W: the coupled potential

S. I. Vinitsky, P. W. Wen, A. A. Gusev, O. Chuluunbaatar, R. G. Nazmitdinov, A. K. Nasirov, C.
J. Lin, H. M. Jia and A. G�o�zd�z, Acta Phys. Pol. B Proc. Suppl. 13 (3), 549 (2020).

There are many non-diagonal elements of Ônm(r) at rmin. Ô|α〉 = λα|α〉

V (N)
nm = 〈n|V ′N(r , Ô)|m〉 − V (0)

N δn,m

=
∑
α

〈n|α〉〈α|m〉V ′N(r , λα)− V (0)
N δn,m



32S+182W, 28Si+178Hf: Near barrier fusion

S. I. Vinitsky, P. W. Wen, A. A. Gusev, O. Chuluunbaatar, R. G. Nazmitdinov, A. K. Nasirov, C. J. Lin,
H. M. Jia and A. G�o�zd�z, Acta Phys. Pol. B Proc. Suppl. 13 (3), 549 (2020).

There are obvious di�erences in sub-barrier energy region.



64Ni+100Mo: Deep sub-barrier fusion

New calculations are more stable and
agree with experimental data better



64Ni+100Mo, 64Ni+64Ni, 28Si+64Ni

P. W. Wen, C. J. Lin, R. Nazmitdinov, S. I. Vinitsky, et al. PRC, 103, 054601, 2021.

Woods-Saxon potential and multiphonon coupling are enough.

S(E) = Eσfus exp(2π(η − η0), η0 = 105.74, 75.23, 71.25 resp.

η is the Sommerfeld parameter.



64Ni+100Mo: Potential details
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〈l〉 could be used as a probe to separate these two mechanisms.

Ichikawa, T. (2015). Phys Rev C 92: 064604.



Summary

Potential answers to the previous questions based on sudden approximation:

Whether could the calculation of the fusion cross section be stable at the deep
sub-barrier energy region?
The calculations are stable now with the coupled-channels approach adopting
the �nite element method KANTBP with the improved boundary condition.

Is Woods-Saxon potential able to describe the deep sub-barrier fusion hindrance
phenomenon well enough?
The deep sub-barrier fusion cross sections, as well as the S facotr, of several
typical reactions have been successfully described by using the most simple 3
parameter WS potential and multiphonon couplings.

What's the mechanism of the fusion hindrance?
〈l〉 could be used to clarify shallow or deep potential.



Perspective

What's the systematics of the maximum of fusion hindrance and S(E) factor
with respect to di�erent reaction systems?
We have �tted several reactions with hindrance feature at deep sub-barrier
energy region, and are trying to see the systematics by �tting more reactions.
We �nd that our current results for medium nuclei manifest the hindrance factor
for system with ZT ZP

√
MT MP/(MT + MP) ≥ 2000. However, for the lightest

systems ZT ZP
√

MT MP/(MT + MP) ≤ 200 the logarithmic slopes of the S∗(E)
factor exhibit resistance to increasing tendency with the energy. It is supported
by the empirical trends, discussed for hindrance factor in C.L.Jiang, et al.
Phys.Rev.C. 73,014613 (2006).

The impact of the �nite elements method on complex potential and regular
boundary condition?
Further adaptation of KANTBP code is possible.

Open questions: The role of other mechanisms like transfer and etc. on deep
sub-barrier fusion hindrance?



Resume

We analyzed sub-barrier heavy ion fusion reactions based on the
coupled-channels description with the correct incoming wave boundary
conditions, implemented by means of the �nite element method.

With the aid of the Woods-Saxon potential the experimental cross sections and
the so-called S factors of these reactions are remarkably well reproduced within
the sudden approximation approach with the correct incoming wave boundary
conditions.

We found that accounting for the nondiagonal matrix elements of the coupling
matrix, traditionally neglected in the conventional coupled-channels approaches
in setting the entangled left boundary conditions inside the potential pocket,
and its minimal value are crucially important for the interpretation of
experimental data.

Thank you for your attention !


