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Time independent sub-barrier quantum tunneling

Tunneling
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There are generally two ways to get the tunneling probability:

o Semi-classical approaches: WKB et al.

PVKB(E) — exp[—2 [ \/2u[V/(r) — E]/R2dr],

Tmin

o Schrédinger equation under certain boundary conditions.
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Explanations: adiabatic approximation & deep potential
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Adiabatic representation KANTBP

To obtain an appropriate adiabatic representation known in computational
mathematics as the Kantorovich method [L.V. Kantorovich and V.I. Krylov,
Approximate methods of higher analysis (Intersci. Publ., NY, 1958)] — reduction of a
BVP to a system of ODEs of the second order that explains the above abbreviation
for the proposed method KANTBP one needs to make a gauge transformation

U (r) depending on parameter r [S. I. Vinitsky, B. L. Markovski, and A. A. Suz’ko
Sov. J. Nucl. Phys. 55, 371 (1992)]:

N
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that transforms Eq. (11) to the following system of ODEs
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Adiabatic representation KANTBP

In the above formula U(r) is orthogonal matrix U(r) ), = U(r)},, composed by
eigenvectors of the parametric algebraic eigenvalue problem at each value of
parameter r € [Imin, Fmax]:

S (W (r) = Sy W (7)) = 0. (6)

N N
D Unr (VUi (1) = S0 > Ut (DU (1) = S (7)

These eigenvectors Z/ln/,,( ) and eigenvalues W,y (r) have the bounded and continuous

derivatives dujj"r' and "’}/(r) with respect to the parameter r, that are calculated

by solving the nonhomogeneous parametric algebraic problem at each value of
parameter ' € [Imin, lmax]:

S W (1) — S W (1)) el
__an 1 aWnn’(r) 5,7 %:/(r))un/n(r). (8)

These problems are solved by means of the adapted symbolic-numerical algorithms
and programs [S.I. Vinitsky et al, Progr. Comput. Soft. 33 105 (2007)].

Further application of the adiabatic representation for study of the the BVP under
consideration is beyond scope of the present talk and will be done elsewhere.



Explanations: sudden approximation & shallow potential
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Some open questions

About deep sub-barrier fusion hindrance:

o Whether could the CC calculation of the fusion cross section be stable at the
deep sub-barrier energy region?
Some works used an extra imaginary potential around the potential minimum to
eliminate the fluctuations of the conventional CC calculation. However, one has
to add more parameters.

o Is Woods-Saxon potential able to describe the deep sub-barrier fusion hindrance
phenomenon well enough?

It is said that it is not able to describe it in many works. And hybrid potential
model, other potential models, and reaction mechanisms are widely used now.

What’s the mechanism of the fusion hindrance?
The shallow potential or deep potential.



Import gradients for solving the coupled-channels equation

There are several parts to construct the coupled-channels approach:

@ Nuclear potential:
real potential (double folding, proximity, Woods-Saxon potential), complex
potential: Extended Optical Model(EOM)

© Coupled potential:
full order coupling, linear coupling, or the quadratic coupling

@ Boundary condition:
regular boundary condition, incoming wave boundary condition

@ Numerical method:
finite difference method (Numerov , three-point difference), finite element
method (KANTBP), R-matrix method.

O. Chuluunbaatar, A. A. Gusev, et al, CPC. 177, 649 (2007)
A. A. Gusev, O. Chuluunbaatar, S. I. Vinitsky et al, CPC 185, 3341 (2014)



Extended Optical Model(EOM) [B. Buck et al, Phil. Mag.(1963)]
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EOM B. Buck et al, Phil. Mag.(1963)&IWBC Hagino et al CPC (1999)

Boundary conditions IWBC at g(E) =0
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Boundary conditions EOM with unknown g(E) > 0
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Eigenfunctions of scattering states IWBC in comparison with EOM at

g = 0.00429, L = 0 and nonresonance energy E = 61MeV
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Eigenfunctions of scattering states in vicinity of resonance energy
E ~ 57.7330MeV at g = 0.001 in vicinity of second peak of g(E) plot
and L =0 (EOM) in comparison with g =0
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Eigenfunctions of the three metastable states Ejg = 53.773 — 0.0001/,
Ei7 =57.733 — 0.014/ and E1g = 61.170 — 0.162/ in vicinity of first,
second and third peaks of g(E) plot, below maximum V2., = 62 MeV of
potential barrier at g = 0.001 and g = 0.00001, and L = 0O(EOM) in
comparison with g = 0
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The nuclear potential

The Akyiiz-Winther (AW) type Woods-Saxon potential as starting point:

©) _ Vo
Wi = 1+ exp((r — Ro)/a0)"
—16myaR

1+ exp[(r— Rp — RT)/ao]’

A. Winther, Nucl. Phys. A 594, 203 (1995)
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No free parameters and widely used for fusion reaction.




The coupled potential (full order coupling)

The nuclear coupling Hamiltonian can be generated by changing the potential radius
to a dynamical operator Ry + O with Ola) = Ao |a)

A 5)\ 1/3 Bohr, A. and Mottelson, B. R.
0= E = al,+a
=P, T \/4m cow A" (830 + @)

Nuclear Structure 11, (1969)

The nuclear coupling potential is given on top of the potential as

Vo

Vn(r, O) _1+exp((r—RO_©)/ao).

It is considered with full order by diagonalizing the matrix o)

Omm = Z/ T \/—rcoup A1/3(\/>6nm i ar fén m+1)

The nuclear coupling matrix elements between phonon state |n) and |m) is

Vim = (n|Va(r, ©)lm) = V8nm = > (nla)(alm) Va(r, Aa) — V) nm

[e3

H. Hagino et al, Comput. Phys. Commun. 123 143 (1999);




The incoming wave boundary condition

The incoming wave boundary conditions (IWBC)
Yn(r) = Tnexp (—iKn(fmin)r) s 7 < hnin .
H™ (knr)én,0 — RaH" (Knr), r > fnax Tunneling

Here Kn = Kn(r — +00), and Kn(r) is the local wave
number for n-th channel

2 2
kn(r) = \J %‘2‘ (E ep— MM v - sze = Vnn(l’))J

Potential

2ur2

There are problems in the previous boundary condition.

o The plane wave boundary condition at the left boundary ry;, involves only the diagonal
part. This requires that the off-diagonal matrix elements tend to zero.

@ However, at nyi,, the distance between two nuclei is so short that the off-diagonal
matrix elements are usually not zero. There can be sudden noncontinuous changes in
the left boundary.

@ A linear transformation should be done at the left boundary.

V.V. Samarin, V.I. Zagrebaev, 2004 NPA 734 E9;
V.I. Zagrebaev, V.V. Samarin, 2004 Phys. Atom. Nucl. 67 1462;



The new method KANTBP

The coupled-channels Schrédinger equation

R P+ DR ZpZré? 3
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@ 1, is a number of the open entrance channel with a positive relative energy Ep, = E —€p, > 0,
no=1,...,No <N.

@ {tnn, (r)}y:1 are components of a desirable matrix solution.

Let W is the symmetric matrix of dimension N x N

2 I+ 1)R2 ZpZré?
Wom = Wi = 2 {(u + V() + % +en | Som + Vam(r) | - (10)

h2 2ur2

Then the equation can be expressed as

1" 2 E
V(1 32 W Y ()= o (1), (11)




The new method KANTBP

Diagonalize the matrix at r = fmin

WA = AW, {W}nn = 6mWinm, Wa1 < Woo ... < Win. (12)

The functions ym(r) are solutions of the uncoupled equations

2uE -
V(1) + Kiym(r) = 0, K = =5= — W, (13)
In open channels at K,i >0, m=1,...,M, < N the solutions yn(r) have the form:
exp(—tKmr)
r= ——=. 14
Ym(r) N o (14)
In this case ¥pn,(r) expressed by the linear combinations of the linear independent solutions
Mo
Yo (1) = ZAnm.Vm(")Tmnov I = Imin- (15)
m=1

In this way, the off-diagonal matrix elements have been considered in the calculation.




The new method KANTBP

Summary of the boundary conditions for open channels
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The condition T,(,Q,,D(E) + Ff,,ano(E) — 1 =0 fulfills with ten significant digits by the element method
KANTBP.

O. Chuluunbaatar, A. A. Gusev, A.G. Abrashkevich et al, CPC. 177, 649 (2007

A. A. Gusev, O. Chuluunbaatar, S. I. Vinitsky et al, CPC 185, 3341 (2014

A. A. Gusev, O. Chuluunbaatar, S. I. Vinitsky et al, Math. Mod. Geom. 3, 2 22 (2015
V. 1. Zagrebaev, Phys. Rev. C 78 047602 (2008

RN NN




825 1182\ the coupled potential

S. I. Vinitsky, P. W. Wen, A. A. Gusev, O. Chuluunbaatar, R. G. Nazmitdinov, A. K. Nasirov, C.
J. Lin, H. M. Jia and A. G6zd%, Acta Phys. Pol. B Proc. Suppl. 13 (3), 549 (2020).
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3291182y 2851 178Hf: Near barrier fusion

S. I. Vinitsky, P. W. Wen, A. A. Gusev, O. Chuluunbaatar, R. G. Nazmitdinov, A. K. Nasirov, C. J. Lin,
H. M. Jia and A. G62dz, Acta Phys. Pol. B Proc. Suppl. 13 (3), 549 (2020).
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There are obvious differences in sub-barrier energy region.




64Ni+ 1900\ o: Deep sub-barrier fusion
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New calculations are more stable and
agree with experimental data better




B4Ni+100Mo, 84Ni+54Ni, 28Si4-64Ni

P. W. Wen, C. J. Lin, R. Nazmitdinov, S. I. Vinitsky, et al. PRC, 103, 054601, 2021.
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Woods-Saxon potential and multiphonon coupling are enough.

S(E) = Eopsexp(2m(n — no),

no = 105.74,75.23,71.25 resp.




64Ni+ 1900\ o: Potential details

2
TABLE L. Woods-Saxon potential parameters Vy (MeV), ao (fm), 10 T
and Ry (fm) for *Ni+ Mo, *Ni+ *Ni, and *Si + *Ni reaction " (a)
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(I) could be used as a probe to separate these two mechanisms.

Ichikawa, T. (2015). Phys Rev C 92: 064604.




Summary

Potential answers to the previous questions based on sudden approximation:

@ Whether could the calculation of the fusion cross section be stable at the deep
sub-barrier energy region?
The calculations are stable now with the coupled-channels approach adopting
the finite element method KANTBP with the improved boundary condition.

o Is Woods-Saxon potential able to describe the deep sub-barrier fusion hindrance
phenomenon well enough?

The deep sub-barrier fusion cross sections, as well as the S facotr, of several
typical reactions have been successfully described by using the most simple 3
parameter WS potential and multiphonon couplings.

o What’s the mechanism of the fusion hindrance?
(I) could be used to clarify shallow or deep potential.



Perspective

e What’s the systematics of the maximum of fusion hindrance and S(E) factor
with respect to different reaction systems?
We have fitted several reactions with hindrance feature at deep sub-barrier
energy region, and are trying to see the systematics by fitting more reactions.
We find that our current results for medium nuclei manifest the hindrance factor
for system with ZTZP\/MTMP/(MT + Mp) > 2000. However, for the lightest
systems ZrZp\/MrMp/(Mr + Mp) < 200 the logarithmic slopes of the S*(E)
factor exhibit resistance to increasing tendency with the energy. It is supported
by the empirical trends, discussed for hindrance factor in C.L.Jiang, et al.
Phys.Rev.C. 73,014613 (2006).

e The impact of the finite elements method on complex potential and regular
boundary condition?
Further adaptation of KANTBP code is possible.

@ Open questions: The role of other mechanisms like transfer and etc. on deep
sub-barrier fusion hindrance?




o We analyzed sub-barrier heavy ion fusion reactions based on the
coupled-channels description with the correct incoming wave boundary
conditions, implemented by means of the finite element method.

o With the aid of the Woods-Saxon potential the experimental cross sections and
the so-called S factors of these reactions are remarkably well reproduced within
the sudden approximation approach with the correct incoming wave boundary
conditions.

o We found that accounting for the nondiagonal matrix elements of the coupling
matrix, traditionally neglected in the conventional coupled-channels approaches
in setting the entangled left boundary conditions inside the potential pocket,
and its minimal value are crucially important for the interpretation of
experimental data.



