
Al- Farabi Kazakh National 

University,Almaty

Валиолда Динара, Джансейтов Д.М., Мележик В.С.

The influence of low-lying resonances in the 

Coulomb breakup of 11Be

Вклад низко-лежащих резонансных состояний

в Кулоновский развал гало ядра 11Be

24-30 апреля, г.Алматы, Казахстан



Overview:
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 Halo nuclei
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 Theoretical description: Stationary and  Time-dependent SE

 Results: the contribution of resonance states into breakup cross section:

a) for intermediate beam energies (69 & 72 MeV/nucleon)

b) for low beam energies (<30 MeV/nucleon)

 Contribution to breakup of nuclear interaction between projectile and target

 How good is linear-trajectory approach for projectile motion at low energies
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• The aim of work

Investigation of low-lying resonances in the Coulomb breakup of 11Be halo
nuclei on heavy target (208Pb) from intermediate (70 MeV/nucleon) to low energies
(5 MeV/nucleon) within non-perturbative time-dependent approach.

• Relevance of the research topic

The halo is one of the most intensively studied objects in modern nuclear
physics. Coulomb breakup is one of the main tools for studying the halo nuclei.
The breakup could be considered as a transition of a neutron from halo nucleus to
the continuum, due to varying Coulomb field between the nucleus and the target
in collisions. The breakup cross section provides a useful information about the
structure of the halo.
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HALO

The neutron halo effect is caused by the presence of weakly bound states of neutrons located near the continuum. The small
value of the binding energy of a neutron (or a group of neutrons) and the short-range nature of nuclear forces lead to the
tunneling of neutrons into the outer peripheral region over large distances from the core of the nucleus. The mean radii of the
orbits of certain nucleons of these nuclei may be larger than the range of nuclear interaction with other nucleons.
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Among the halo nuclei, the 11Be nucleus is of particular importance, since the
relative simplicity of its structure allows accurate theoretical studies. In fact, the
bound states of the 11Be nucleus can be described quite well as a 10Be core and a
weakly bound neutron.
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There were a number of techniques developed for the calculation of Coulomb 
breakup for high energies ≳ 70 MeV/nucleon:

 perturbative expansion 
[S. Typel and G. Baur, Phys. Rev. C 50, 2104 (1994)], 
[T. Kido, K. Yabana, and Y. Suzuki, Phys. Rev. C 50, R1276 (1994)]

 adiabatic approximation 
[J.A. Tostevin, S. Rugmai, and R.C. Johnson, Phys. Rev. C 57, 3225 (1998)] 

 coupled-channels with a discretized continuum (CDCC)
[M. Kamimura, M. Yahiro, Y. Iseri, H. Kameyama,et al., Prog. Theor. Phys. Suppl. 89, 1 (1986)]
[J. A. Tostevin, F. M. Nunes, and I. J. Thompson, Phys. Rev. C 63, 024617 (2001)] 

 Coulomb wave Born approximation (CWBA)
[P. Banerjee,G.Baur, et.al., Phys. Rev. C 65, 064602 (2002)]

 dynamical eikonal approximation (DEA) 
[D. Baye, P. Capel, and G. Goldstein, Phys. Rev. Lett. 95, 082502 (2005)] 

 Non-perturbative: integration of 3D time-dependent Schrodinger equation (TDSE) 
[V. S. Melezhik and D. Baye, Phys. Rev. C 59, 3232 (1999)]
[V. S. Melezhik and D. Baye, Phys. Rev. C 64, 054612 (2001)]
[P. Capel, D. Baye and V. S. Melezhik, Phys. Rev. C 68, 014612 (2003)]
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Formulation and scheme of the solving problem

STATIONARY PROBLEM

𝐻ψ = 𝐸ψ

Numerical methods of solving stationary SE:

• Inverse iteration method in the subspace,
sweep method, finite-difference method

NON-STATIONARY PROBLEM

𝑖ħ
𝜕ψ

𝜕𝑡
= 𝐻ψ

Numerical resolution of 3D time-dependent SE (TDSE):
• Solution of TDSE on 2D angular grid (discrete-variable

representation (DVR) or Lagrange mesh) and 1D
radial grid (quasiuniform finite-difference
approximation).

• Splitting-up method for time evolution of the system

ቊ
𝝍 𝟎, 𝒕 = 𝝍 𝒓𝒎, 𝒕 = 𝟎, 𝒓𝒎 → ∞

𝝍 𝒓, 𝒕𝒊𝒏 = 𝝋𝟏𝒔 𝒓

Solving the boundary value problem is the initial step of TDSE.
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Stationary Schrodinger equation:

𝑯𝝍𝑵𝒍𝒎 = 𝑬𝑵𝝍𝑵𝒍𝒎 (1)

with boundary conditions: ൞
𝜓
𝑁𝑙𝑚

𝒓 = 𝟎 = 𝒄𝒐𝒏𝒔𝒕;

𝜓
𝑁𝑙𝑚

𝒓 → ∞ =𝟎

The Hamiltonian of the interaction:        𝐻0 𝒓 = −
ħ2

2𝜇
∆ + 𝑉 𝒓 (2)

𝜇 =
𝑚𝑛∙𝑚𝑐

𝑀
- reduced mass;

𝜓𝑁𝑙𝑚 𝑟 = 𝑅𝑁𝑙 𝑟 𝑌𝑙𝑚 𝜃, 𝜑 (3)

the radial SE:   −
ħ2

2𝜇
∆ + 𝑉 𝒓 +

ħ2𝑙 𝑙+1

2𝜇 𝑟2
𝑅𝑙 𝒓 = 𝐸 𝑅𝑙 𝒓 (4)

Internal interaction:  𝑉 𝒓 = 𝑉𝑙 𝒓 + 𝑉𝑙
𝑠 𝒓 𝒍 ⋅s (5)

Wood-Saxon potential:  𝑉𝑙 𝒓 = −𝑉𝑙 𝑓(𝒓, 𝑅0, 𝑎)

where 𝑓 𝒓, 𝑅0, 𝑎 = 1 + 𝑒𝑥𝑝
𝒓−𝑅0

𝑎

−𝟏
(6)

Spin-orbit interaction:   𝑉𝑙
𝑠 𝒓 = 𝑉𝑙𝑠

𝟏

𝒓

𝒅

𝒅𝒓
𝑓(𝒓, 𝑅0, 𝑎) (6’)

[P.Capel, D.Baye and V. S. Melezhik, Phys. Rev. C 68, 014612 (2003)]
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Parameters of potential 

Veff(𝐫) = Vl 𝐫 + Vl
s 𝐫 𝐥 ⋅ s +

ℏ2l l+1

2μ𝐫2
,

Woods-Saxon form  Vl 𝐫 = −Vl f 𝐫, R0, a ; f 𝐫, R0, a = [1 + exp(
𝐫−R0

a
)]−1

Spin-orbit interaction Vl
s 𝐫 = Vls

𝟏

𝐫

𝐝

𝐝𝐫
f(𝐫, R0, a)

Vl even

(MeV)

Vl odd 

(MeV)

Vls

(MeV fm2)

a (fm) R0 (fm) States

62.52 39.74 21.0 0.6 2.585 1/2+, 1/2-, 

5/2+, 3/2+

[1]

- 6.8* 21.0 0.35* 2.5* 3/2- It was found in the 
present investigation
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Influence of resonance states to the breakup cross section of 11 Be 

5/2+ 3/2- 3/2+

E, MeV Г, keV E, MeV Г, keV E, MeV Г, keV

Theory [1] 1.230 100 2.789 240 3.367 3

Exp. [2] 1.281 120 2.898 122 2.387 < 8

[1] S.N. Ershov, J.S. Vaagen and M.V. Zhukov, Phys. of Atomic Nucl. 77(8), 989 (2014).
[2] National Nuclear Data Center, https://www.nndc.bnl.gov/

Experimental data of breakup cross sections of
11Be+208Pb →10Be+n+208Pb at 69 МeV/nucleon
[N. Fukuda, et. al., Phys. Rev. C 70, 054606 (2004)]
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Time dependent Sсhrodinger equation

In order to describe the breakup reaction 11Be+208Pb →10Be+n+208Pb we write TDSE:

𝑖ℏ
𝜕

𝜕𝑡
Ψ 𝒓, 𝑡 = 𝐻 𝒓, 𝑡 Ψ 𝒓, 𝑡 = [𝐻0 𝒓 + 𝑉𝐶 𝒓, 𝑡 ]Ψ(𝒓, 𝑡) (7)

Internal Hamiltonian: 𝐻0 𝒓 = −
ħ2

2𝜇
∆𝑟 + 𝑉(𝒓) (8)

TD Coulomb potential: 𝑉𝐶 𝒓, 𝑡 =
𝑍𝐶𝑍𝑇𝑒

2

𝑚𝑛𝒓

𝑀
+𝑹(𝑡)

-
𝑍𝐶𝑍𝑇𝑒

2

𝑹(𝒕)
(9)

here 𝑍𝐶 and ZT - charge numbers of the core and target

𝑹 𝑡 = 𝒃 + 𝒗𝟎𝑡
R(t) – relative coordinate between the target and projectile

[V. S. Melezhik and D. Baye, Phys. Rev. C 59, 3232 (1999)]

As an initial condition at t= −∞, the system is in its ground state 𝑙0𝑗0𝑚0 with 

energy E0<0,

𝜓𝑚0(𝒓,−∞)= 𝜑𝑙0𝑗0𝑚0
(𝐸0,𝒓)
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Angular-subspace discretization

For solving 3D TDSE we seek a solution 𝜓 𝒓, 𝑡 in spherical coordinates (r,Ω)≡ 𝑟, 𝜃, 𝜑 as an expansion

Ψ 𝒓, 𝑡 =
1

𝑟
σ𝑠σ𝜈𝑗

𝑁 𝜑𝜈(Ω)(𝜑
−1)𝜈𝑗𝜓𝑗

𝑠(𝑟, 𝑡) (10)

𝜑ν Ω -is a 2D basis, they are related with spherical harmonics at lower l values 

𝜑𝜈 Ω = ෍

𝜈′={𝑙′,𝑚′}

𝐶𝑙𝑚
𝑙′𝑚′

𝑃𝑙′
𝑚′

𝜃 𝑒𝑖𝑚
′𝜙 (11)

𝐶𝑙𝑚
𝑙′𝑚′

= 𝛿𝑙𝑙′𝛿𝑚𝑚′ ; Ω𝑗 = 𝜃𝑗𝜃 , 𝜑𝑗𝜑 is equal to the basis functions in (10). 

The sum over ν is equivalent to the double sum

σ𝜈=1
𝑁 = σ𝑙=0

𝑁−1 σ𝑚=−𝑙
𝑙 (12)

 𝜃𝑗𝜃 −is chosen from the zeros of 𝑃 𝑁(cos𝜃𝑗𝜃) , for 𝜑𝑗𝜑= Τ𝜋(2𝑗𝜑 − 1) 𝑁 (𝑤ℎ𝑒𝑟𝑒 𝑁 = 𝑁𝜃 × 𝑁𝜑)

 (𝜑−1)ν𝑗-are the elements of the matrix NxN inverse to the matrix with the elements 𝜑𝑗ν=𝜑ν Ω𝑗 .

 𝜑ν Ω𝑗 functions are orthogonal at the Gauss approximation:

𝜑𝜈׬
∗ Ω 𝜑𝜈′ Ω 𝑑Ω = σ𝑗 𝜆𝑗 𝜑𝜈𝑗

∗ 𝜑𝜈′𝑗 = 𝛿𝜈𝜈′ (13)

 𝜆𝑗 =2𝜋/ 𝑁 are the products of the standard Gauss−Legendre weights. [1] [V. S. Melezhik and D. Baye, Phys. Rev. C 59, 3232 (1999)]
[2] Numerical recipes in Fortran 77 : the art of scientific computing/
William H. Press I.,[et al.]. – 2nd ed.1992 12



The components 𝜓𝑗
𝑠(𝑟, 𝑡) correspond to 𝜓 𝑟, Ω𝑗 , 𝑡 |𝑠 > where |𝑠 >=|±

1

2
> is a spin state and 𝜓 𝑟, Ω𝑗 , 𝑡 is a complex 

function defined on the angular grid Ω𝑗. Let us introduce the 2N-component vector 𝚿 𝑟, 𝑡 = {𝜆
1

2
𝑗
𝜓𝑗
𝑠(𝑟, 𝑡)}. 

With respect to expansion 𝜓 𝒓, 𝑡 =
1

𝑟
σ𝜈𝑗
𝑁 𝜑𝜈 𝛺 (𝜑−1)𝜈𝑗 𝜓𝑗

𝑠(𝑟, 𝑡) the problem is reduced to a system of SE:

𝑖ħ
𝜕

𝜕𝑡
𝚿 𝑟, 𝑡 = ෡𝐻0 𝑟 + ෠ℎ 𝑟, 𝑡 𝚿(𝑟, 𝑡) (14)

෡𝐻0 𝑟 and ෠ℎ 𝑟, 𝑡 are 2Nx2N matrix operators on the grid. 

The elements of ෡𝐻0 𝑟 are defined as:

𝐻0𝑘𝑗
𝑠𝑠′ 𝑟 = ቊ−

ℏ2

2𝜇

𝜕2

𝜕𝑟2
𝛿𝑘𝑗 + (𝜆𝑘𝜆𝑗)

−
1

2σ𝜈= 𝑙,𝑚
𝑁 (𝜑−1)𝑘𝜈

× 𝑉𝑙
𝑠 𝑟 + 𝑉𝑙 𝑟 + ቃ

ℏ2𝑙 𝑙+1

2𝜇𝑟2
(𝜑−1)𝜈𝑗 𝛿𝑠𝑠′ (15)

TD Coulomb operator is diagonal:

ℎ𝑘𝑗
𝑠𝑠′ 𝑟, 𝑡 = [𝑉𝐶 𝑟, Ω𝑘 , 𝑡 𝛿𝑠𝑠′]𝛿𝑘𝑗 (16)

and does not require multipole expansion as in some approaches.
[1] V. S. Melezhik and D. Baye, Phys. Rev. C 59, 3232 (1999).
[2] P.Capel, D.Baye and V. S. Melezhik, Phys. Rev. C 68, 014612 (2003). 13



The breakup component is obtained by eliminating the bound states from the calculated wave packet

ۧ|Ψbu(𝒓, 𝑡) = 1 − ෍

ϑ∈bound

| ۧ𝜙ϑ 𝒓 𝜙ϑۦ 𝒓 | | ۧΨ 𝒓, 𝑡 , (17)

where the sum runs over two bound states of 11Be obtained from 𝐻0𝜙𝑙𝑗𝑚 𝐸, 𝐫 = 𝐸𝜙𝑙𝑗𝑚(𝐸, 𝐫).

The total breakup cross section is calculated as a function of the energy E of the relative motion
between the emitted neutron and the core nucleus by the formula

𝑑𝜎𝑏𝑢

𝑑𝐸
𝐸 =

4𝜇𝑘

ℏ2
𝑏𝑚𝑖𝑛׬

𝑏𝑚𝑎𝑥σ𝑗=𝑙+𝑠σ𝑙𝑚 | ׬ 𝑗𝑙(𝑘𝑟)𝑌𝑙𝑚( Ƹ𝑟)Ψbu(𝐫, 𝑇out)𝑑𝒓|
2 𝑏𝑑𝑏 (18)

• The integral is calculated numerically over the whole interval from bmin=12 fm to bmax=400 fm.
The choice of edges of integration bmin and bmax must be carefully tested.

• 𝑗𝑙(𝑘𝑟)- spherical Bessel functions, 𝑘-is the wave number, 𝑘=
2𝜇𝐸

ℏ
;

[V. S. Melezhik and D. Baye, Phys. Rev. C 59, 3232 (1999).]
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𝑑𝜎𝑏𝑢

𝑑𝐸
𝐸 =

4𝜇𝑘

ℏ2
𝑏𝑚𝑖𝑛׬

𝑏𝑚𝑎𝑥σ𝑗=𝑙+𝑠σ𝑙𝑚 | ׬ 𝑗𝑙(𝑘𝑟)𝑌𝑙𝑚( Ƹ𝑟)Ψbu(𝐫, 𝑇out)𝑑𝒓|
2 𝑏𝑑𝑏 (18)

 Time evolution starts at initial time Tin and stops at final time Tout by iteration over NT time steps Δt
as explained in [1]. The initial (final) time Tin (Tout) has to be sufficiently big 𝑇𝑖𝑛 , 𝑇𝑜𝑢𝑡 → +∞ so as to
allow the time-dependent potential 𝑉𝐶(𝒓, 𝑡) to be negligible at the beginning (end) of the evolution
process: Tin=-20ℏ/MeV and Tout=20ℏ/MeV. The time step Δt is fixed equal to 0.01 ℏ/MeV.

 For discretizing with respect to the radial variable r, a sixth-order (seven point) finite-difference
approximation on a quasiuniform grid has been used on the interval 𝑟 ∈ 0, 𝑟𝑚 with 𝒓𝒎=1200 fm. The
grid has been realized by the mapping 𝑟 → 𝑥 of the initial interval onto 𝑥 ∈ 0, 1 by the formula
𝒓 = 𝒓𝒎(𝒆

α𝒙 − 𝟏)/(𝒆α − 𝟏) , α=8 [2].

 The lower bound bmin is a cutoff related to the range of nuclear effects. The upper bound is in
practice replaced by some value bmax whose choice must be carefully tested. In our calculations the edges
of integration are chosen as bmin=12 fm, bmax=400 fm numerically, which give convergent result for this
integral with accuracy about few percent.

[1] P. Capel, D. Baye, and V. S. Melezhik, Phys. Rev. C 68, 014612 (2003).
[2] V. S. Melezhik, Phys. Lett. A 230, 203 (1997). 15



bmax E=0.1 E=0.4 E=0.8 E=1.2 E=1.6 E=2.0 E=2.7 E=2.8 E=3.0 E=3.3

12 0.021 0.052 0.046 0.032 0.019 0.013 0.007 0.006 0.005 0.004

20 0.183 0.397 0.309 0.200 0.122 0.080 0.040 0.037 0.030 0.023

50 0.561 1.024 0.689 0.407 0.234 0.143 0.066 0.060 0.048 0.035

100 0.816 1.335 0.819 0.456 0.254 0.151 0.067 0.061 0.049 0.036

200 0.950 1.436 0.841 0.461 0.255 0.151 0.067 0.061 0.049 0.036

300 0.972 1.443 0.841 0.461 0.255 0.151 0.067 0.061 0.049 0.036

400 0.976 1.444 0.841 0.461 0.255 0.151 0.067 0.061 0.049 0.036

Convergence of the method for the breakup cross section 𝐝𝛔(𝐄, 𝐛𝐦𝐚𝐱)/𝐝𝐄 in (b/MeV) as 
a function of the upper bound of impact parameter 𝐛𝐦𝐚𝐱 (𝐟𝐦) and relative energy  𝐄 (MeV)

The total breakup cross section calculated for energy of 72 MeV/nucleon taking into account three
resonance states . As it can be seen, the increasing of the value bmax gives a good convergence of
cross section. The calculation is performed with N=25 (𝑁𝜃 = 5,𝑁𝜑 = 5 ).
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The convergence of the calculated breakup cross

section 𝐝𝛔( 𝐄, 𝒃𝒎𝒂𝒙)/𝐝𝐄 over the number N of

angular grid points with including three

resonance states at 69, 20 and 5 MeV/nucleon.
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Energy, 

MeV

𝒅𝝈( 𝑬, 𝒃𝒎𝒂𝒙)/𝒅𝑬, b/MeV

72 MeV/nucleon 69 MeV/nucleon
bound 

states

b.s.+

3 res

bound 

states 

(b.s.)

b.s.+5/2+ b.s. +

5/2++3/2+

b.s. +

5/2++3/2-

b.s. + 3 res

E=0.1 0.903 0.976   0.936 0.936 1.007 1.011 1.011

E=0.3 1.369 1.549   1.420 1.421 1.595 1.606 1.606

E=0.8 0.676 0.841   0.704 0.708 0.865 0.875 0.875

E=1.0 0.534  0.623 0.555 0.562 0.639 0.647 0.648

E=1.2 0.368 0.461   0.383 0.378 0.473 0.479 0.479

E=2.0 0.133 0.151   0.138 0.137 0.155 0.156 0.156

E=2.7 0.054 0.067 0.056 0.056 0.07 0.069 0.069

E=2.8 0.060  0.061 0.061 0.062 0.064 0.063 0.063

E=3.0 0.042  0.049   0.043 0.044 0.051 0.050 0.050

E=3.3 0.035  0.036   0.036 0.036 0.037 0.037 0.037

E=3.4 0.032 0.033 0.032 0.033 0.035 0.034 0.034

Theoretical calculations of breakup cross sections with taking into account

only bound states, with including one 5/2+ , two 3/2- and 5/2+ and three

resonances (5/2+, 3/2-, 3/2+) in comparison with experimental data at

72 МeV/nucleon [1] and 69 МeV/nucleon [2] .

The calculations are performed for angular grid N=25 (𝑁𝜃 = 5,𝑁𝜑 = 5).
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Comparing of our results of differential breakup cross
section with the calculations of [1], where authors
investigated the breakup cross section of 11Be by Coulomb
wave Born approximation (CWBA) (resonance states were
not including). Our calculations for the bound state coincide
with that of the finite range CWBA of [1] at the beam
energy of 30 MeV/nucleon.

Calculations of breakup cross section taking into account
only bound states and with adding three resonances at a
beam energy of 20 MeV/nucleon. Also, the points of total
differential cross section at E=0.3 MeV from [2] and E=0.5
MeV from the calculation of [3] is presented, which was
calculated within dynamic eikonal approximation (without
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Alternative formula for the breakup cross section including neutron interaction
with the core in the final state of the breakup process :

𝑑𝜎𝑏𝑢

𝑑𝐸
𝐸 =

4𝜇𝑘

ℏ2
𝑏𝑚𝑖𝑛׬

𝑏𝑚𝑎𝑥σ𝑗=𝑙+𝑠σ𝑙𝑚 | ,𝜑𝑙𝑗𝑚(𝑘׬ 𝑟)𝑌𝑙𝑚( Ƹ𝑟)𝛹(𝐫, 𝑇out)𝑑𝒓|
2 𝑏𝑑𝑏 (19)

 Here 𝜑𝑙𝑗𝑚(𝑘, 𝑟) is the radial part of the eigenfunction of the Hamiltonian H0(r)

(𝐻0𝜙𝑙𝑗𝑚 𝐸, 𝐫 = 𝐸𝜙𝑙𝑗𝑚(𝐸, 𝐫)) in the continuum spectrum (𝐸 =
𝑘2ℏ2

2𝜇
> 0), normalized to

jl(kr) as kr →∞ if V(r)=0.

 To find the states of the continuous spectrum of problem , we used the method of

reducing the scattering problem to a boundary value problem, described in the work [V. S.

Melezhik and Chi-Yu Hu, PRL 90, 083202 (2003)].

 Summation over (l,m) in (19) includes all 16 partial waves up to lmax = 3 inclusive, as

in (18). Since the wave functions 𝜑𝑙𝑗𝑚(𝑘, 𝑟) of the continuum spectrum of the Hamiltonian

are orthogonal to the states of the discrete spectrum of the same Hamiltonian, the

elimination (17) of the bound states from the neutron wave packet after collision with the

target is not required here.
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The contribution to the breakup cross section of the resonant states and the neutron interaction 
with the core in the continuum at beam energies of 5 and 10 MeV/nucleon, a and b sides, 
respectively. The calculations are performed at N = 81.
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2 𝑏𝑑𝑏 (18)
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𝐸 =

4𝜇𝑘

ℏ2
𝑏𝑚𝑖𝑛׬

𝑏𝑚𝑎𝑥σ𝑗=𝑙+𝑠σ𝑙𝑚 | ,𝜑𝑙𝑗𝑚(𝑘׬ 𝑟)𝑌𝑙𝑚( Ƹ𝑟)𝛹(𝐫, 𝑇out)𝑑𝒓|
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Contribution to breakup of nuclear interaction between projectile and target

Following the approach of optical potential for the nuclear part 𝛥𝑉𝑁 𝒓 = 𝑉𝐶𝑇 𝑟𝐶𝑇 + 𝑉𝑛𝑇(𝑟𝑛𝑇) between the 
target and projectile nuclei interaction:

𝑉 𝒓, 𝑡 = 𝑉𝐶 𝒓, 𝑡 + 𝛥𝑉𝑁(𝒓) (20)

Here 𝑟с𝑇 𝑎𝑛𝑑 𝑟𝑛𝑇 are the core-target 𝒓 с𝑇 (𝑡) = 𝑹 𝑡 +𝑚𝑛𝒓/𝑀 and neutron-target 𝒓𝑛𝑇 = 𝑹 (𝑡) − 𝑚𝐶𝒓/𝑀 и

relative variables and optical potentials 𝑉𝑐𝑇 и 𝑉𝑛𝑇 have the form:

𝑉𝑥𝑇 𝑟𝑥𝑇 = −𝑉𝑥𝑓 𝑟𝑥𝑇 , 𝑅𝑅, 𝑎𝑅 − 𝑖 𝑊𝑥𝑓 𝑟𝑥𝑇 , 𝑅𝐼 , 𝑎𝐼 (21)

with Woods−Saxon form factors 𝑓 𝑟𝑥𝑇 , 𝑅𝑅, 𝑎𝑅 = 1/(1 + exp(𝑟𝑥𝑇 − 𝑅)/𝑎), where x stands for either core or 
neutron. We use here the parameters of the optical potentials (21) from the paper [Capel P, Baye D and Melezhik

V (2003) PRC 68 014612], which are given in Table:
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How good is linear-trajectory approach for projectile motion at low energies

In the hybrid quantum-quasiclassical approach simultaneously with the time-dependent 
Schrödinger equation (7) for the halo-nucleon wave function Ψ(r, t) we integrate the set of 
Hamilton equations: 

𝑑

𝑑𝑡
𝑷 = −

𝜕

𝜕𝑹
𝐻𝐵𝑃 𝑷,𝑹, 𝑡 ,

𝑑

𝑑𝑡
𝑹 = −

𝜕

𝜕𝑷
𝐻𝐵𝑃 𝑷,𝑹, 𝑡 (22)

describing relative projectile-target dynamics. Here, the classical Hamiltonian HBP(P, R, t) is given 
by 

𝐻𝐵𝑃 𝑷,𝑹, 𝑡 =
𝑷2

2𝑀
+ Ψ 𝒓, 𝑡 ቇ

𝑍𝐶𝑍𝑇𝑒
2

ቁ
𝑚𝑛𝒓

𝑀
+𝑹(𝑡

+ ∆𝑉𝑁(𝒓, 𝑡 Ψ 𝒓, 𝑡 (23)

where the last term ۦΨ(r, t)|...|Ψ(r, t)ۧ represents the quantum-mechanical average
of the projectile-target interaction over the halo-nucleon density instantaneous distribution

)Ψ(𝐫, t 2 during the collision.

The inclusion of the strong coupling between the projectile and the target in the 
computational scheme insures that the effect of deformation and “vibration” of the projectile 
trajectory, as well as the transfer of energy from the target to the projectile and vice versa, are 
taken into account at the moment of collision.
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Breakup cross sections calculated with semiclassical approach using
linear trajectories of the projectile and with quantum-quasiclassical approach 

for beam energies 30 (side a), 20 (side b), 10 (side c) and 5 MeV/nucleon (side d).

0 1 2 31.23

0.5

1.0

1.5

2.0

5/2
+

d


B
U
d

E
 (

b
/M

e
V

)

E (MeV)

 Coulomb (linear traj.)

 Coulomb+Nuclear (linear traj.)

 Coulomb+Nuclear (real. traj.)

              5 MeV/nucleon

d)



The relative energy spectra of the fragments (neutron and core) were calculated for the Coulomb
breakup of 11Be on a 208Pb target at the range of beam energies 5-70 MeV/nucleon. We presented
new calculations taking into account an influence of resonance states (5/2+, 3/2- and 3/2+) to the
breakup cross section of 11Be nucleus.

Summary

In the numerical calculations
performed for the incident beam
energies at 5–30 MeV/nucleon
region, the contribution of the 5/2+

resonance state of 11Be to the
breakup cross sections is clearly
visible, while at energies of 69 and
72 MeV/nucleon, resonant states
3/2- and 3/2+ make the largest
contribution to breakup cross
sections of 11Be.
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Conclusion and further research

 A quantitative model has been developed to describe the Coulomb breakup of one-neutron halo
nuclei in a wide range of collision energies, including both excited and low-lying resonant states of
11Be within the non-perturbative semiclassical and quantum quasiclassical time-dependent
approaches. The obtained results are in good agreement with existing experimental data at 72 and
69 MeV/nucleon.

 The convergence of the computational scheme is demonstrated in all considered range of the energy
including the low-lying resonances in different partial and spin states of 11Be. The numerical
technique allows an accurate and straightforward modelling of the nuclear interaction between the
nucleon and the 10Be - core in a wide range of beam energies (5 - 70 MeV/nucleon).

 The developed computational scheme opens new possibilities in investigation of Coulomb, as well as
nuclear, breakup of other halo nuclei on heavy, as well as, light targets. This theoretical model can
potentially be useful for interpretation and planning of low-energy experiments in studying the halo
structure of the nuclei.
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