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* The aim of work

Investigation of low-lying resonances in the Coulomb breakup of !!Be halo
nuclei on heavy target (?°8Pb) from intermediate (70 MeV/nucleon) to low energies
(5 MeV/nucleon) within non-perturbative time-dependent approach.

* Relevance of the research topic

The halo is one of the most intensively studied objects in modern nuclear
physics. Coulomb breakup is one of the main tools for studying the halo nuclei.
The breakup could be considered as a transition of a neutron from halo nucleus to
the continuum, due to varying Coulomb field between the nucleus and the target
in collisions. The breakup cross section provides a useful information about the
structure of the halo.



HALO

The neutron halo effect is caused by the presence of weakly bound states of neutrons located near the continuum. The small
value of the binding energy of a neutron (or a group of neutrons) and the short-range nature of nuclear forces lead to the
tunneling of neutrons into the outer peripheral region over large distances from the core of the nucleus. The mean radii of the
orbits of certain nucleons of these nuclei may be larger than the range of nuclear interaction with other nucleons.
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Among the halo nuclei, the *Be nucleus is of particular importance, since the
relative simplicity of its structure allows accurate theoretical studies. In fact, the
bound states of the 11Be nucleus can be described quite well as a 1%Be core and a
weakly bound neutron.

In halo nucleus

®
11Be n 1OBe

S,=504 keV

N=20




There were a number of techniques developed for the calculation of Coulomb
breakup for high energies = 70 MeV /nucleon:

» perturbative expansion

[S. Typel and G. Baur, Phys. Rev. C 50, 2104 (1994)],
[T. Kido, K. Yabana, and Y. Suzuki, Phys. Rev. C 50, R1276 (1994)]

» adiabatic approximation
[J.A. Tostevin, S. Rugmai, and R.C. Johnson, Phys. Rev. C 57, 3225 (1998)]
» coupled-channels with a discretized continuum (CDCC)
[M. Kamimura, M. Yahiro, Y. Iseri, H. Kameyama,et al., Prog. Theor. Phys. Suppl. 89, 1 (1986)]
[J. A. Tostevin, F. M. Nunes, and I. J. Thompson, Phys. Rev. C 63, 024617 (2001)]
» Coulomb wave Born approximation (CWBA)
[P. Banerjee,G.Baur, et.al., Phys. Rev. C 65, 064602 (2002)]
» dynamical eikonal approximation (DEA)
[D. Baye, P. Capel, and G. Goldstein, Phys. Rev. Lett. 95, 082502 (2005)]

» Non-perturbative: integration of 3D time-dependent Schrodinger equation (TDSE)
[V. S. Melezhik and D. Baye, Phys. Rev. C 59, 3232 (1999)]

[V. S. Melezhik and D. Baye, Phys. Rev. C 64, 054612 (2001)]
[P. Capel, D. Baye and V. S. Melezhik, Phys. Rev. C 68, 014612 (2003)]



Formulation and scheme of the solving problem

NON-STATIONARY PROBLEM STATIONARY PROBLEM
in ¥ _ Hy :
ot Hy = EY
Numerical resolution of 3D time-dependent SE (TDSE): Numerical methods of solving stationary SE:

e Solution of TDSE on 2D angular grid (discrete-variable
representation (DVR) or Lagrange mesh) and 1D
radial  grid  (quasiuniform finite-difference
approximation).

* Inverse iteration method in the subspace,
sweep method, finite-difference method

» Splitting-up method for time evolution of the system

{tp(o, D =9PImt) =0, T, >
II)(T', tin) — (pls(r)

Solving the boundary value problem is the initial step of TDSE.



Stationary Schrodinger equation:

HYyim = ENUNim (1)

‘/)sz(r = 0) = const;

with boundary conditions:
lem(r - oo):O

2
The Hamiltonian of the interaction:  Hy(r) = — Z—A + V(r) (2)

Mnp-Mc g

p=—"- reduced mass;
Ynim (1) = Ry ()Y (6, @) (3)
. h?2 h21(1+1)

the radial SE: [—ZA V) + ] R,(r) = E R,(r) (4)
Internal interaction: V(r) =V, (r) +V(r)l:s (5)

Wood-Saxon potential: V;(r) = =V, f(r,Ry, a)
_pa1-1
where f(r,Ry, a) = ll + exp (r RO)] (6)

a

Spin-orbit interaction: V(r) = st% % f(r, Ry, a) (6’) 8

[P.Capel, D.Baye and V. S. Melezhik, Phys. Rev. C 68, 014612 (2003)]



Parameters of potential

VI even VI odd Vls a (fm) R0 (fm) States
(MeV) (MeV) (MeV fm?)
62.52 39.74 21.0 0.6 2.585 1/2+, 1/2-, [1]
512+, 3/2*
: 6.8* 21.0 0.35% 2.5% 32 it was found in the
present investigation
[1] P. Capel, G. Goldstein, and D. Baye, Phys. Rev. C 70, 064605 (2004).
2
Verr(r) = Vi(r) + VE()L - s + 520

2ur

Woods-Saxon form Vi(r) = —V; f(r, Ry, a); f(r,Rq,a) = [1 + eXp(r_Ro)]_1

Spin-orbit interaction V{’ (r) = Vls% % f(r,Ry,a)
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Influence of resonance states to the breakup cross section of 1! Be

5/2* 3/2 3/2¢
E, MeV I, keV E, MeV I, keV E, MeV I, keV
Theory [1] 1.230 100 2.789 240 3.367 3
Exp. [2] 1.281 120 2.898 122 2.387 <8
1,6 4
] ii
1,4 - u 5/2- —— 4.753
_ . I'=45keV
1,2 4
_ b2 8
3 10
= ] 5 _ I'=10keV
2 ] : apr s ——— 1 - - - 32— 3367
w 0,8 EE HE s~ ['<8keV - I'=3keV
S 3/2 — 2808 .
& 061 "a . = 122 keV 32 e 2,789
i 32— 2152~
%47 ﬁiii =206 keV &
0.2 - + e 32 32" =
: 512 ue L S/ ——— 1281 o
1 | !.ii I ili | i. = 120 keV 53] 5/2 o0 ey 1.230
0 1 1.23 2 2.78 3 3.3
E (MeV)
: : 1) —— Toas2 12— ~0.185
Experimental data of breakup cross sections of JT 0500 1j2+ 0502
11Be+208Pb - 10Be+n+2%8Pb at 69 MeV/nucleon Experiment Theory

[N. Fukuda, et. al., Phys. Rev. C 70, 054606 (2004)]

[1] S.N. Ershov, J.S. Vaagen and M.V. Zhukov, Phys. of Atomic Nucl. 77(8), 989 (2014).
[2] National Nuclear Data Center, https://www.nndc.bnl.gov/ 10



Time dependent Schrodinger equation
In order to describe the breakup reaction 11Be+2%8Pb ->1°Be+n+2%8Pb we write TDSE:

(= W(r,t) = H(r, W(r,t) = [Ho(r) + Ve(r, D]¥(r, ) (7)

2
Internal Hamiltonian: Hy(r) = _Z_MA’” + V(1) (8)

ZCZTeZ ZCZTeZ (9)
"2t RO

TD Coulomb potential: V. (r,t) =

here Z. and Zt - charge numbers of the core and target

R(t) = b+ vyt T (*°®Pb)

R(t) — relative coordinate between the target and projectile

As an initial condition at t= —oo, the system is in its ground state [, j,mq With
energy Ey<0,

c (1°Be

lpmo (r’ —OO): golojomo (EO,r)

[V. S. Melezhik and D. Baye, Phys. Rev. C 59, 3232 (1999)] T



Angular-subspace discretization

For solving 3D TDSE we seek a solution Y (r, t) in spherical coordinates (r,Q)= (r, 8, @) as an expansion

W(r,t) ==X TN 0y (W (01 05 (-, 8) (10)

@, (Q)-is a 2D basis, they are related with spherical harmonics at lower | values
0@ = > ChMPH (B)eim? (1)
v'={lr,mr}
Cll,fnm’ =0/ 0mm'; = (9j9,<pj(p) is equal to the basis functions in (10).
The sum over v is equivalent to the double sum
N =t S, (12)

» 0;, —is chosen from the zeros of P (cos6;, ), for <pj(p=7r(2j(p —1)/VN (where N = Ny X Ny)
> (<p‘1)\,j-are the elements of the matrix NxN inverse to the matrix with the elements cpjv=<pV(Qj).
> (p\,(ﬂj) functions are orthogonal at the Gauss approximation:

J o3 @)@, ()AL =345 @)@, = 8, (13)

> A =2m/V/N are the products of the standard Gauss-Legendre weights. [1] [V. 5. Melezhik and D. Baye, Phys. Rev. C 59, 3232 (1999)]

[2] Numerical recipes in Fortran 77 : the art of scientific computing/
William H. Press |.,[et al.]. — 2nd ed.1992 12



1. : :
The components 1/)15(7‘, t) correspond to w(r, Q;, t)ls > where |s >=|% > > isaspin state and w(r, Q, t) is a complex

1
function defined on the angular grid €);. Let us introduce the 2N-component vector W(r,t) = {Aijl/)f(r, t)}.
With respect to expansion Y (r, t)=% ﬁlj @, () (<p_1)vj I/Jf(r, t) the problem is reduced to a system of SE:
h=W(r,t) = [Ho(r) + h(r, )] ¥(r, ©) (14)

H,(r) and h(r, t) are 2Nx2N matrix operators on the grid.

The elements of Hy(r) are defined as:

Hok; i) = { ZZ aazz Okj + (A4 )__ Yo=my (@ Diew
x [V2 @) + Vi) + 520 (07 (15)
TD Coulomb operator is diagonal:
35, 0) = [Ve(r, Qg )85 18, (16)

and does not require multipole expansion as in some approaches. [1] V. S. Melezhik and D. Baye, Phys. Rev. C 59, 3232 (1999).

[2] P.Capel, D.Baye and V. S. Melezhik, Phys. Rev. C 68, 014612 (2003).



The breakup component is obtained by eliminating the bound states from the calculated wave packet

[Ppu(r, 1)) = (1 - I¢e(r))(¢s(1‘)l> ¥, 1)), (17)

9€bound

where the sum runs over two bound states of *'Be obtained from Hy¢;j, (E, 1) = E¢; iy (E, T).

The total breakup cross section is calculated as a function of the energy E of the relative motion
between the emitted neutron and the core nucleus by the formula

d u 4uk bmax . A
;Z (E) - %fbmin Zj:l+s Zlm | f]l(kr)ylm(r)quu(r; Tout)drlz bdb (18)

* The integral is calculated numerically over the whole interval from b,
The choice of edges of integration b_,.. and b_ . must be carefully tested.

,/Z[LE'

h 4

=12 fm to b,,,=400 fm.

* j;(kr)- spherical Bessel functions, k-is the wave number, k=

[V. S. Melezhik and D. Baye, Phys. Rev. C 59, 3232 (1999).]



>

d u 4uk bmax . A
Gb (E) = fbmin Zj:l+s Zlm | f]l(kr)ylm(r)q]bu(rr Tout)drl2 bdb (18)

Time evolution starts at initial time T, and stops at final time T, by iteration over N; time steps At
as explained in [1]. The initial (final) time T, (T,,) has to be sufficiently big |T;,|, Tpys = +° so as to
allow the time-dependent potential V (7, t) to be negligible at the beginning (end) of the evolution
process: T; =-20h/MeV and T, =207 /MeV. The time step At is fixed equal to 0.01 7;/MeV.

For discretizing with respect to the radial variable r, a sixth-order (seven point) finite-difference
approximation on a quasiuniform grid has been used on the interval r € [0, ;,,] with r,,=1200 fm. The
grid has been realized by the mapping r - x of the initial interval onto x € [0,1] by the formula
r=rpy(e”*—-1)/(e“—-1), a=8 [2].

The lower bound b, is a cutoff related to the range of nuclear effects. The upper bound is in
practice replaced by some value b, ., whose choice must be carefully tested. In our calculations the edges
of integration are chosen as b,,;,=12 fm, b, =400 fm numerically, which give convergent result for this
integral with accuracy about few percent.

[1] P. Capel, D. Baye, and V. S. Melezhik, Phys. Rev. C 68, 014612 (2003).

[2] V. S. Melezhik, Phys. Lett. A 230, 203 (1997).
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Convergence of the method for the breakup cross section do(E, b,,,4)/dE in (b/MeV) as
a function of the upper bound of impact parameter b, (fm) and relative energy E (MeV)

The total breakup cross section calculated for energy of 72 MeV/nucleon taking into account three
resonance states . As it can be seen, the increasing of the value b, gives a good convergence of
cross section. The calculation is performed with N=25 (Ny = 5, N, = 5).

b E=0.1 E=0.4 E=08 E=1.2 E=1.6 E=2.0 E=2.7 E=2.8 E=3.0 E=3.3

max

12 0.021 0.052 0.046 0.032 0.019 0.013 0.007 0.006 0.005 0.004
20 0.183 0.397 0.309 0.200 0.122 0.080 0.040 0.037 0.030 0.023
50 0.561 1.024 0.689 0.407 0.234 0.143 0.066 0.060 0.048 0.035
100 0.816 1.335 0.819 0.456 0.254 0.151 0.067 0.061 0.049 0.036
200 0.950 1.436 0.841 0.461 0.255 0.151 0.067 0.061 0.049 0.036
300 0.972 1.443 0.841 0.461 0.255 0.151 0.067 0.061 0.049 0.036
400 0.976 1.444 0.841 0.461 0.255 0.151 0.067 0.061 0.049 0.036




do,,/dE (b/MeV)

do,,/dE (b/MeV)

= N=9;
—— N=25;
= = =« N=49;

E=69 MeV/nucleon

0.0

2.5 3.0 3.5

-_— N:9,
—_— N=25;
= = = N=49;
—o— N=81,

E=20 MeV/nucleon

The convergence of the calculated breakup cross
section do( E, b,,,,,)/dE over the number N of
angular grid points with including three
resonance states at 69, 20 and 5 MeV/nucleon.

- N:9,
.\. — N=25;
i B RN - = = N=49;
— ‘ =—o== N=81;
2 I \ - =N=121:
= 34 ’
= I \ E=5 MeV/nucleon
W
©
o}
g 27
©
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Influence of resonance states to the breakup cross section of ! Be

at 69 and 72 MeV/nucleon. : } o boundstates; s
=] m  exp data
do(E,b,,,;,)/dE, b/MeV .
Energy, 72 MeV/nucleon 69 MeV/nucleon %1,2_
MeV Zf;tZS : :e:, Zfalizg e 5/;':37? 5/2i3+/2- e gao’g'-
(b.s.) 3 0,6
E=0.1 0.903 0.976 | 0.936 | 0.936 1.007 1.011 1.011 034
E=0.3 1.369 1.549 | 1.420 | 1.421 1.595 1.606 1.606 | | . |
E=0.8 0.676 0.841 | 0.704 | 0.708 0.865 0.875 0.875 0 1123 c o V)2 2183 33
e
E=1.0 0.534 0.623 | 0.555 | 0.562 0.639 0.647 0.648 [1] T- Nakamura, et.al., Phys. Lett. B 331, 296 (1994).
E=1.2 0.368 0.461 @ 0.383 | 0.378 0.473 0.479 0.479
E=2.0 0.133 0.151 | 0.138 | 0.137 0.155 0.156 0.156 161 + bound states:
E=2.7 0.054 0.067 @ 0.056 A 0.056 0.07 0.069 0.069 14 — bound + 3 reson. states;
— =bound + 2 reson. states (5/2"+ 3/27);
E=2.8 0.060 0.061 | 0.061 | 0.062 0.064 0.063 0.063 121 - - -bound + 1 reson. states (5/2°;
E=3.0 0.042 | 0.049 | 0.043 | 0.044 | 0.051 | 0.050 | 0.050 $ 10l "expdan
E=3.3 0.035 0.036 | 0.036 @ 0.036 0.037 0.037 0.037 f’ 0.8
E=3.4 0.032 0.033 | 0.032 | 0.033 0.035 0.034 0.034 :;8 0,6 -
Theoretical calculations of breakup cross sections with taking into account :z )
only bound states, with including one 5/2* , two 3/2- and 5/2* and three - | i . |
resonances (5/2*, 3/2-, 3/2*) in comparison with experimental data at 0 1123 2 278 3 33
72 MeV/nucleon [1] and 69 MeV/nucleon [2] . E (MeV)

The calculations are performed for angular grid N=25 (Ng = 5, N, = 5). [2] N. Fukuda, et. al., Phys. Rev. C 70, 054606 (2004).



Breakup cross section of 1Be at low beam energies

—— first order calc. by CWBA [1]; Comparing of our results of differential breakup cross

‘ ==+ higher order calc. by CWBA [1];_ . ) .
I - = = bound states; - section with the calculations of [1], where authors
20H "W \\ — . - . . .
ff* "\~ Dound s 3reson. states; _ investigated the breakup cross section of 1'Be by Coulomb

30 MeV/nucleon

wave Born approximation (CWBA) (resonance states were
not including). Our calculations for the bound state coincide
with that of the finite range CWBA of [1] at the beam
energy of 30 MeV/nucleon.

dG/dE (b/MeV)
[E
()]

0 11.23 2 3
E (MeV)
Calculations of breakup cross section taking into account
. - . - . only bound states and with adding three resonances at a
i o, states: | beam energy of 20 MeV/nucleon. Also, the points of total
[, . o5 mev from 31 - differential cross section at E=0.3 MeV from [2] and E=0.5
2L F 20 MeVinucleon MeV from the calculation of [3] is presented, which was

calculated within dynamic eikonal approximation (without
including resonances).

do, /dE (b/MeV)

0 11.23 2 3 [1] P. Banerjee, G.Baur, et.al. Phys. Rev. C 65, 064602 (2002).
£ (MeV) [2] G. Goldstein, D. Baye, and P. Capel, Phys. Rev. C 73, 024602 (2006).
[3] D. Baye, P. Capel, and G. Goldstein, Phys. Rev. Lett. 95, 082502 (2005). 1°



Alternative formula for the breakup cross section including neutron interaction
with the core in the final state of the breakup process :

dopy 4uk rbmax A
(B =5 Ly T jmres Zim | | @jm (e 1Y (P (1, Touddr|* bdb - (19)

> Here ¢, (k,7) Is the radial part of the eigenfunction of the Hamiltonian Hg(r)

k2h?

(Ho@1jm(E,x) = E¢yjm(E, 1)) in the continuum spectrum (E = > > 0), normalized to

jy(kr) as kr —o0 if V(r)=0.

> To find the states of the continuous spectrum of problem , we used the method of
reducing the scattering problem to a boundary value problem, described in the work [V. S.
Melezhik and Chi-Yu Hu, PRL 90, 083202 (2003)].

> Summation over (I,m) in (19) includes all 16 partial waves up to | .. = 3 inclusive, as
In (18). Since the wave functions ¢, ;,, (k,r) of the continuum spectrum of the Hamiltonian
are orthogonal to the states of the discrete spectrum of the same Hamiltonian, the
elimination (17) of the bound states from the neutron wave packet after collision with the
target is not required here.
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2 (E) =

N
&

do, /dE (b/MeV)
P =
o ()]

o
o

The contribution to the breakup cross section of the resonant states and the neutron interaction
with the core in the continuum at beam energies of 5 and 10 MeV/nucleon, a and b sides,

Breakup cross section of 'Be at low beam energies

N
o

=== bound sltates (18);

= =pound + 3 res. states (18);__
—— bound + 3 res. states (19);]

5 MeV/nucleon

11,23 2
E (MeV)

do, /dE (b/MeV)

respectively. The calculations are performed at N = 81.

4uk
i

4uk
]

bm

bm

e e
o u o

=
o

o
&

 Ljztes Zim | [ Ju(kr)Yim (F)Wpu (¥, Toue)dr|* bdb

ix Zj=l+s Zlm | f QDij(k: T)Ylm(f)llu(r: Tout)drl2 bdb

—
o

= = = bound states (18);

= = hound + 3 res. states (18);
— bound + 3 res. states (19);-

5/2%
1

10 MeV/nucleon

11,23 2
E (MeV)

21



Contribution to breakup of nuclear interaction between projectile and target

Following the approach of optical potential for the nuclear part AVy (1) = Ve (rer) + Vup () between the
target and projectile nuclei interaction:

V(r,t) = Ve(r,t) + AVy (1) (20)

Here r.r and r,r are the core-targetr . (t) = R(t) + m,r/M and neutron-target r,r = R (t) —mcr/M n
relative variables and optical potentials V. u V,,7- have the form:

Ver(rxr) = —Vif (7yr, Rr, ag) — i W f (ryr, Ry, ay) (21)

with Woods-Saxon form factors f(r,r,Rg, agr) = 1/(1 + exp(r,r — R)/a), where x stands for either core or
neutron. We use here the parameters of the optical potentials (21) from the paper [Capel P, Baye D and Melezhik

V (2003) PRC 68 014612], which are given in Table:

corn Vi(MeV) W (MeV) Rg(fm) Ri(fm) ag(fm) ai(fm)

WBe  70.0 58.9 7.43 7.19 1.04 1.00
n 28.18 14.28 6.93 7.47 0.75 0.58




How good is linear-trajectory approach for projectile motion at low energies

In the hybrid quantum-quasiclassical approach simultaneously with the time-dependent
Schrodinger equation (7) for the halo-nucleon wave function W(r, t) we integrate the set of

Hamilton equations:
d 0 d 0
—P=—— Hgp (P,Rt), - R= — — Hpp (P,R, 1) (22)

describing relative projectile-target dynamics. Here, the classical Hamiltonian Hgp(P, R, t) is given
by

_ZcZre®
|%+R(t)| + AVy (T, t)

2
Hgp (P,R,t) = -+ (¥(r,0)

Y(r, t)> (23)

where the last term (W(r, t)|...|W(r, t)) represents the quantum-mechanical average
of the projectile-target interaction over the halo-nucleon density instantaneous distribution
|W(r, t)|? during the collision.

The inclusion of the strong coupling between the projectile and the target in the
computational scheme insures that the effect of deformation and “vibration” of the projectile
trajectory, as well as the transfer of energy from the target to the projectile and vice versa, are
taken into account at the moment of collision.
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do, /dE (b/MeV)

do, /dE (b/MeV)

for beam energies 30 (side a), 20 (side b), 10 (side c) and 5 MeV/nucleon (side d).

dG, /dE (b/MeV)

N
o

T T T T
= = = Coulomb (linear traj.) |
= = Coulomb+Nuclear (linear traj.)
—— Coulomb+Nuclear (real. traj.)

20 MeV/nucleon

a).' . = = =Coulomb (linear traj.)
20 u, \“ = = Coulomb+Nuclear (linear traj.) T
N = Coulomb+Nuclear (real. traj.) |
15 30 MeV/nucleon .
1.0 .
0.5 .
52"
1 I 1 1 L
0 11.23 2 3
E (MeV)
3.0+C) . 'Coulomlb (Iinea} traj.) I i
I = = Coulomb+Nuclear (linear traj.)
25L 7 Coulomb+Nuclear (real. traj.) -
+
20" 10 MeV/nucleon §
15H -
1.0H .
05} ]
! 52"
] 1

0 11.23 2 3

E (MeV)

do, /dE (b/MeV)

o
&

=
o

=
o

= = =Coulomb (linear traj.)
= = Coulomb+Nuclear (linear traj.)
= Coulomb+Nuclear (real. traj.)

5 MeV/nucleon 4

1123 2 3

E (MeV)

Breakup cross sections calculated with semiclassical approach using
linear trajectories of the projectile and with quantum-quasiclassical approach
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Summary

The relative energy spectra of the fragments (neutron and core) were calculated for the Coulomb
breakup of 'Be on a ?%®Pb target at the range of beam energies 5-70 MeV/nucleon. We presented
new calculations taking into account an influence of resonance states (5/2*, 3/2-and 3/2%) to the
breakup cross section of 11Be nucleus.

I . I . I In the numerical calculations

performed for the incident beam
:_;gmxmg:ggz energies at 5-30 MeV/nucleon
- = +30 MeV/nucleon 1 region, the contribution of the 5/2*
—— 69 MeV/nucleon ] resonance state of !'Be to the
breakup cross sections is clearly
visible, while at energies of 69 and
72 MeV/nucleon, resonant states
3/2- and 3/2* make the largest
contribution to breakup cross
sections of ''Be.
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Conclusion and further research

v' A quantitative model has been developed to describe the Coulomb breakup of one-neutron halo

nuclei in a wide range of collision energies, including both excited and low-lying resonant states of
11Be within the non-perturbative semiclassical and quantum quasiclassical time-dependent
approaches. The obtained results are in good agreement with existing experimental data at 72 and
69 MeV/nucleon.

The convergence of the computational scheme is demonstrated in all considered range of the energy
including the low-lying resonances in different partial and spin states of !Be. The numerical
technique allows an accurate and straightforward modelling of the nuclear interaction between the
nucleon and the °Be - core in a wide range of beam energies (5 - 70 MeV/nucleon).

The developed computational scheme opens new possibilities in investigation of Coulomb, as well as
nuclear, breakup of other halo nuclei on heavy, as well as, light targets. This theoretical model can
potentially be useful for interpretation and planning of low-energy experiments in studying the halo
structure of the nuclei.
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