Applications of particle accelerators

Applications

- Science
- Industry
 - Sterilization of medical and pharmaceutical products
 - Phytosanitary processing of products
 - Cold pasteurization of food
 - Sanitization of correspondence
 - Safety
 - Modification of polymers/crosslinking (pipes, wires and cable sheaths)
 - Oil cracking
 - Coloring glass and gems
 - Ecology
 - Doping of semiconductors
 - Filters production
- Medicine
 - Diagnostics
 - Therapy

INDUSTRIAL APPLICATION

Sterilization

Gemstones

Semiconductor Doping

Sterile Insect

Filters

Crosslinking

Sterilization and bacteria deactivation

Wire & cable Crosslinking

Utilities

- Underground EHV, HV dc/ac
- Submarine EHV dc/ac (extruded, laminated, PPL, O.F.)

- MV "P-Laser^R"
- Network components (from MV to EHV joints and terminations)

T&I Trade & Installers

- LV cable for residential and non residential construction
- Wide range of product including:
 - Fire retardant
 - Environmental friendly
 - Application specific products
 - Low smoke-zero halogen (LS0h)

Telecom

- Coaxial cables (CATV)
- Last mile micro duct optical cables (Jet Net^R)
- Bend bright optical fiber
- EPFU (Enhanced Performance Fibre Units) telecom cables, data cables
- Micro modules based tlc cables
- Connectivity (FTTH)

High-end Industrials

- On-shore and off-shore wind farm
- Aerospace and automotive
- Umbilicals, flexible pipes
- Elevators cables
- Oil & gas, erane, mining cables and solar
- Railway & rolling stock

Crosslinking in tires industry

- Benefits of E-beam for tires
 - Reduction in material hence in the weight of the tire
 - Relatively low cost synthetic rubber can be used instead of costly natural rubber without a loss in strength
 - The radiation pre-vulcanization of body ply is achieved by simply passing the body ply sheet under the scan horn of an electron accelerator to expose the sheet to high-energy electrons
 - Higher production rates
 - Construction of green tires
 - Reduction of production defects

Food irradiation

Alternative to chemical banned fumigation such as ethylene dibromide

IRRADIATED (3 KGy)

HEATED 10 MIN CONTROL

Food irradiation

MEDICAL APPLICATIONS

Treatment

Diagnosis

Diagnosis applications - Radiopharmaceutical

	Время	Тип ядерной	Энергия	Выход,	
Изотоп	жизни	реакции	протонов,	мКи/мкА∙ч	Применение
	изотопа		MəB		
¹¹ C	20 мин	14 N(p, α) 11 C	10	20	ПЭТ
¹³ N	10 мин	${}^{16}{ m O}(p, \alpha){}^{13}{ m N}$	11		ПЭТ
¹⁵ O	2 мин	$^{15}N(p,n)^{15}O/^{14}N(d,n)^{15}O$	10	21	ПЭТ
¹⁸ F	1,8ч	$^{18}\mathrm{O}(p,n)^{18}\mathrm{F}$	10	30	ПЭТ
⁴⁴ Sc	60 мин	⁴⁵ Sc(<i>p</i> , <i>n</i>) ⁴⁴ Ti (48 лет)→ → ⁴⁴ Sc	30		ПЭТ-генератор
⁵² Fe	8,3 ч	${}^{55}Mn(p, 4n){}^{52}Fe$	$80 \rightarrow 50$		Гематология
		${}^{52}Cr({}^{3}He, 3n){}^{52}Fe$	$36 \rightarrow 25$		
⁶⁴ Cu	12,7 ч	${}^{64}\text{Ni}(p,n){}^{64}\text{Cu}$	$14 \rightarrow 9$	6,5	Молекул. ПЭТ
⁶⁷ Ga	78,3 ч	${}^{66}Zn(p,n){}^{66}Ga \rightarrow {}^{67}Ga$	$15 \rightarrow 10$		Диагностика
1					опухолей
⁶⁸ Ga	68 мин	${}^{69}\text{Ga}(p, 2n){}^{68}\text{Ge}$	35		-
		(генератор 270 сут)→ ⁶⁸ Ga			
⁷³ Se	7,1 ч	75 As $(p, 3n)^{73}$ Se	$40 \rightarrow 30$		Селенофарм.
⁷⁶ Br	16 ч	⁷⁵ As(³ He,2 <i>n</i>) ⁷⁶ Br	$25 \rightarrow 15$		Бромофарм.
		76 Se $(p, n)^{76}$ Br	$16 \rightarrow 8$		ПЭТ
⁷⁷ Br	2,8 сут	78 Kr $(p, 2n)^{77}$ Rb \rightarrow	30		SPECT-
		\rightarrow^{77} Kr \rightarrow^{77} Br			диагностик а
⁷³ Se	7,1 ч	75 As $(p, 3n)^{73}$ Se	$40 \rightarrow 30$	38	
⁸¹ Rb	4,6 ч	82 Kr $(p, 2n)^{81}$ Rb	30		SPECT
⁸² Rb	1,3 мин	⁸² Sr (reнер. 25,5 сут)→ → ⁸² Rb			ПЭТ коронарные
⁸⁶ Y	14,7 ч	86 Sr (p, n) 86 Y	$14 \rightarrow 10$	54	ПЭТ
¹⁰³ Pd	17 сут	103 Rh $(p, n)^{103}$ Pd	$14 \rightarrow 7$	0,18	Брахитерания
¹¹¹ In	2,8 сут	112 Cd $(p, 2n)^{111}$ In	22		Диагност. метка
¹²³ I	13,2 ч	$ \overset{124}{\rightarrow} \overset{\text{123}}{\text{Xe}}(p,2n)^{123}\text{Cs} \rightarrow \\ \overset{123}{\rightarrow} \overset{123}{\text{Xe}} \overset{123}{\rightarrow} \text{I} $	30	0,19	SPECT-тироид
^{124}I	4,18 сут	124 Te $(d, 2n)^{124}$ I	$14 \rightarrow 10$	0,47	Дозиметрия
		124 TeO ₂ $(p, n)^{124}$ I	$13 \rightarrow 9$	0,45	Эндотерапия
		125 Te $(p, 2n)^{124}$ I	$21 \rightarrow 15$	2,19	ПЭТ
¹⁴⁰ Nd	3,4 сут	140 Pr $(p, 2n)^{140}$ Nd	$10 \rightarrow 30$		Радиотерания
^{195m} Pt	4 сут	192 Os $(\alpha, n)^{195m}$ Pt	$10 \rightarrow 25$		Радиотерания
²⁰¹ Tl	3,06 сут	203 Tl $(p, 3n)^{201}$ Pb \rightarrow^{201} Tl	29		Диагн. кардиолог.
²²⁵ Ac	10 сут	226 Ra $(p, 2n)^{225}$ Ac	15	$\sim 0,19$	Радиотерания
				1	· · ·

Obtaining of radiopharmaceuticals

PET research

Visualization

Radiation therapy

Dose field distribution for different types of radiation

Depth distribution of the absorbed dose in water for different types of ionizing radiation Qualitative comparison of doses generated in different areas by beams of photons and protons

Proton therapy

ПРОЦЕДУРНАЯ С КОМПАКТНОЙ ГАНТРИ 220°

КОМПАКТНЫЙ СИНХРОЦИКЛОТРОН

Innovative Research Proton Center of Radiation Biology and Medicine

Innovative Research Proton Center of Radiation Biology and Medicine

Flash method of proton therapy

 The study of dose rates, total single doses and other parameters of the proton beam, which lead to the appearance of a flash effect in pathological tissues and their surrounding structures in vivo.

JINR

• Flash detectors, ionization chambers.

Radio modifiers and radio protectors

• The study of the action of existing and well-known radiomodifiers (amino acids, for example) and physical effects (hyperthermia) in combination with proton beam therapy.

• Gamma imaging for protons

• Creation of devices and methods for measuring gamma radiation fluxes arising from the interaction of therapeutic proton beams with the patient's body.

Quality control of treatment

• Program methods for quality control of treatment plans for irradiation, as well as the quality of work of all nodes and elements of the proton beam therapy system.

Thank you for your attention!