

JOINT INSTITUTE FOR NUCLEAR RESEARCH

Preliminary results of measurements with a prototype setup for studying (investigation) the angular correlation of gamma quanta in reactions with neutrons

Conference «Alushta-2022»

Yergashov Almat *E-mail: ergashov@jinr.ru*

June 05-12 2022

P-even angular correlations

$$\sigma^{\perp} = \sigma_{0}(1 \pm P \mathbf{s}_{n} \mathbf{k}_{n})$$

$$A(E) = \frac{2H_{ps} x_{1/2}}{E - E_{s}} \left(\frac{\Gamma_{n}^{s}}{\Gamma_{n}^{p}}\right)^{1/2}; \leftarrow Asymmetry$$

$$x_{1/2} = \frac{(\Gamma_{n1/2})^{1/2}}{(\Gamma_{n1/2} + \Gamma_{n3/2})^{1/2}}; \quad x_{3/2} = y; \quad x^{2} + y^{2} = 1;$$

$$\sigma(\theta, \varphi) = \frac{\lambda^{2}}{4} \left[a_{0} + \sum_{k \neq 0} (a_{k} P_{k}(\cos \theta) + b_{k} P_{y} P_{k}^{1}(\theta, \varphi))\right]$$

$$P_{1}(\cos \theta) = \cos \theta; \quad P_{2}(\cos \theta) = (1/2)(3\cos^{2} \theta - 1);$$

1

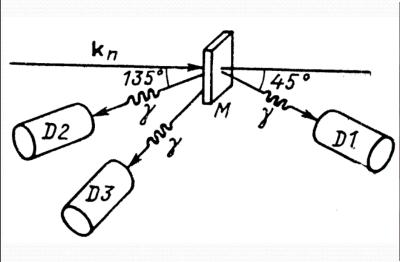
 H_{ps} – is the weak matrix element, E_s and Γ_n^s – energy and widths of the s – resonance. Γ_n^p – widths of the p – resonance, P_k – Legendre polynomials. June 05 – 12 2022

The effect of forward-backward asymmetry in an unpolarized

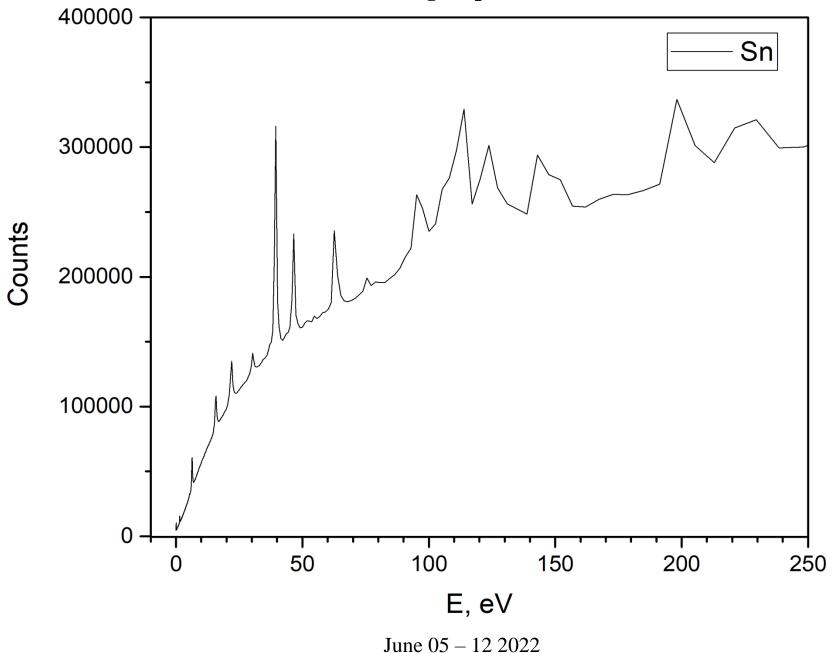
neutron beam is expressed as follows:

$$\varepsilon^{f-b}(\theta) = \frac{\sigma(\theta) - \sigma(\pi - \theta)}{\sigma(\theta) + \sigma(\pi - \theta)} = \frac{a_1 \cos \theta}{a_0 + a_2 P_2(\cos \theta)}$$

if


$$\varepsilon^{f-b} = \frac{\left(-x + y/2^{1/2}\right) 4t_{\theta} \cos \theta \left(E/E_{0}\right)^{1/2} \left(E/E_{0}\right) / \Gamma}{\left[1 - P_{2}(\cos \theta) \left(xy/2^{1/2} + y^{2}/4\right)\right]^{1/2} \left[4\Delta E^{2}/\Gamma^{2} + 1 + t_{\theta}^{2}E/E_{0}\right]}$$

Parameters of a pulse source of resonance neutrons of IREN


Peak current (A)	2
Repetition rate (Hz)	25-50
Pulse width (ns)	100
Energy of electrons (MeV)	30
Beam power (kW)	0.5

A prototype setup

Time-of-flight spectrum of Sn

Summary

The elemental and isotopic composition of the tin plate was determined. The plate consists of an admixture of tin, antimony and indium.

The measurements were carried out with 8 BGO detectors, tin was chosen as a sample. The time-of-flight spectra were measured. Due to the large background and impurities in the sample, it is impossible to determine the p-wave resonances of tin.

Future work

Determine the position and density of the neutron beam
 Lay a neutron guide to reduce the background
 Build shield for detectors

Nazarlarinizga Rakhmet Thank you for your attention Спасибо за внимание

June 05 - 12 2022