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© Short reminder of the Kaluza - Klein
programme

@ Higher-Dimensional Unified Gauge Theories
and Coset Space Dimensional Reduction
(CSDR)

© The model
@ Embedding in the heterotic 10D Superstring
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Further Research Activity

@ Fuzzy extra dimensions —
realistic 4-d GUTs

@ Reduction of couplings in /' = 1 gauge
theories — GUTs, Finite Unified
Theories, reduced MSSM

@ Noncommutative (fuzzy) Gravity
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o Kaluza-Klein observation: of a
pure gravity theory on M* x S! leads to a U(1) gauge
theory coupled to gravity in four dimensions. The

gravity provided
of gravitation and electromagnetism.

e Generalization to MP = M* x B, with B a compact
Riemannian space with a non-abelian isometry group S
leads after dim. reduction to gravity coupled to Y-M in 4
dims.

Kerner '68
Cho - Freund '75
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Problems

@ No classical ground state corresponding to the assumed
MP.

@ Adding fermions in the original action, it is impossible to

obtain chiral fermions in four dims.
Witten '85

@ However by adding suitable matter fields in the original
action, in particular Y-M one can have a classical stable
ground state of the required form and massless chiral

fermions in four dims.
Horvath - Palla - Cremmer - Scherk 77
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Coset Space Dimensional Reduction (CSDR)

Original motivation

Use higher dimensions

e to the and sectors

e to the with and
fields

* provides further (fermions

in adj. reps)

Forgacs - Manton '79, Manton '81, Chapline - Slansky '82
Kubyshin - Mourao - Rudolph - Volobujev '89
Kapetanakis - Z'92, Manousselis - Z'01 —' 08
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Further successes

(a) chiral fermions in 4 dims from vector-like reps in the
higher dim theory

(b) the metric can be deformed (in certain non-symmetric
coset spaces) and more than one scales can be
introduced

(c) Wilson flux breaking can be used

(d) Softly broken susy chiral theories in 4 dims can
result from a higher dimensional susy theory

G. Zoupanos N = 1, 10D, Eg gauge theory reduction



Theory in D dims — Theory in 4 dims

MP = M* x B

Mooxt oy

1. Compactification

a

B - a compact space
dimB=D—-4=d
2. Dimensional Reduction
Demand that £ is independent of the extra y* coordinates
e One way: Discard the field dependence on y* coordinates

¢ An elegant way: Allow field dependence on y* and employ
a symmetry of the Lagrangian to compensate

Obvious choice: Gauge Symmetry
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Allow a non-trivial dependence on y%, but the condition
that a symmetry transformation by an element of the isometry
group S of B is compensated by a gauge transformation.

L independent of y® just because is gauge invariant.

Integrate out extra coordinates

B=S/R S: Qa={9i,Qa}
|

R S/R

(O, 9 = £ O+ (Ot Qa] = SO
[Qar O] = fup 91 +

where fS vanishes in symmetric S/R
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Consider a Yang-Mills-Dirac theory in D dims based on group G
defined on MP — M* x S/R, D=4 +d

pv 0
g = ("O _gab) " = diag(1,-1,~1,-1)
d = dimS — dimR gab — coset space metric

1 i—
A= /d4xddy\/ —g [ - ZTT(FMNFKA)QMKQNA + 5¢FMDM¢
A _ 1 NA
Dy=0u—0u—Au , Ou= 2HMNAZ

where 0y is the spin connection of MP and 4 is in rep F of G

We require that any transformation by an element of S acting
on S/R is compensated by gauge transformations.

G. Zoupanos N = 1, 10D, Eg gauge theory reduction



Au(x,y) =g(s)A ( y)g ()
Aa(x,Y) =g(5)J, ( s y)g ()
+9(5)0ag 1(S)
Y(xy) =F(5)W(x, s "yl H(s)
g,f - gauge transformations in the adj, F of G corresponding to
the s transformation of S acting on S/R
J,P - Jacobian for s

() - Jacobian + local Lorentz rotation in tangent space

Above conditions imply constraints that D-dims fields
should obey.

Solution of constraints:
@ 4-dim fields
@ Potential

@ Remaining gauge invariance
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Taking into account all the constraints and integrating out the
extra coordinates, we obtain in 4 dims:

1 1
4 §
A= C/d X (—4TI'FMVF‘WJ + 5 a TI‘(DMQZ)aD‘ugf)a)

+V () + éq/?F”Duw - %&FaDa@b)

1
D;L = 8;L _A,ua Dy = 6a_ea - ¢a7 Ha = EeabczbC
C— volume of cs, 6,;— spin connection of cs

V() = =561 {(f5.6c — (b0, 06]) 50> — (00 6]}

A=1,...,dimS, f— structure constants of S.
Still V(¢) only formal since ¢, must satisfy f2¢p — [pq, ¢;] = 0

G. Zoupanos N = 1, 10D, Eg gauge theory reduction



1) The 4-dim gauge group

H = Cs(Rg)
i.e. GDRg xXH

where G is the higher-dim group and H is the 4 dim group.
2) Scalar fields

SDOR
adjS = adjR+ v
G DO Rg XH
adjG D (adjR, 1) + (1,adjH) + X(r;, hy)

Ifo=1Xs;
when s; =r; = survives in 4 dims.
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3) Fermions

GDORg xXH
F:Z(ti, hl)

spinor of SO(d) under R

Od = E (o]

for every t; = 0; = h; survives in 4 dims.

Possible to obtain a chiral theory in 4 dims starting from
Weyl fermions in a complex rep.

However, even starting with Weyl (4 Majorana) fermions
in vector-like reps of G in D = 4n + 2 dims we are also led
to a chiral theory.
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If D is even:

| R VS
V=0, 9V _ =op+o0p,

where op, 0, are non-self conjugate spinors of SO(1,D — 1).
The (SU(2) x SU(2)) x SO(d) branching rule is:

op = (2, 1;04) + (1,2;07)

O—;) = (27 1;0{1) + (I,Z;O'd)

Starting with fermions

equal number of left and right-handed
reps of the 4-dim group H

s

condition either op or o},
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Weyl condition cannot be applied in odd dims. In that case:
Op = (23 I;Jd) + (172;0—11) )

where o4 is the unique spinor of SO(d)

equal number of left and right-handed
~ reps in 4 dims

Most interesting case is when D = 4n + 2 and we start with a
vectorlike rep. In that case o4 is non-self-conjugate and o), = 74.

Then the decomposition of 04,54 of SO(d) under R is:

O'd:ZO'k, 6d225k~
Then:

GDORs XH

vectorlike < F = Z(ri, h;) — either self-conjugate or

13

have a partner (7, hy).
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Then according to the rule from o4 we will obtain in 4 dims
left-handed fermions f;, = Y hE.

Since o4 is non-self-conjugate, f;, is non-self-conjugate.

Similarly, from o4, we obtain the right-handed rep
Yo hE =y

Moreover since F vectorlike, hf ~ hg, i.e. H is chiral theory
with double spectrum.

We can still impose Majorana condition (Weyl and Majorana are
compatible in 4n 4 2 dims) to eliminate the doubling of the
fermion spectrum.

Majorana condition (reverses the sign of all int. qu. nos) forces
Jfr to be the charge conjugate of f.

If F complex — chiral theory just ﬁ,f is different from h{; .
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An easy case in calculating the potential, its minimization and
SSB:

If G DS = H breaks to K = Cg(S):

G D S X K < gauge group after SSB
u N
G D R X H < gauge group in 4 dims

But
fermion masses
1 1
M2V = D,D*V — —RU — — XPF, ¥ >0
4 2 N——
=0,ifSCG
== (CS + CR)\I/

comparable to the compactification scale.
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Supersymmetry breaking by dim reduction over

symmetric CS (e.g SO(7)/SO(6))

Consider G = Eg in 10 dims with Weyl-Majorana fermions in
the adjoint rep of Eg, i.e. a susy Eg.
Embedding of R = SO(6) in Eg is suggested by the
decomposition:
Es D SO(6) x SO(10)
248 = (15,1) + (1,45) + (6, 10) + (4, 16) + (4, 16)

adjS = adjR+v
21 = 15+ 6 <+ vector

Spinor of SO(6):
In 4 dims we obtain a gauge theory based on:

H = Cg,(S0(6)) = SO(10),

with scalars in 10 and fermions in 16.
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Theorem: When S/R symmetric, the potential
leads to spontaneous breakdown of H.

Moreover in this case we have:

Es D SO(7) x SO(9)
U N
Es D SO(6) x SO(10)

= Final gauge group after breaking:
K = Cg,(SO(7)) = SO(9)

CSDR over symmetric coset spaces original
supersymmetry.
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Soft Supersymmetry Breaking by CSDR over

non-symmetric CS.

We have examined the dim reduction of a supersymmetric Eg
over the 3 existing 6—dim CS:

Gy/SU(3), Sp(4)/(SU(2) X U(1))non-max, SU(3)/U(1)x U(1)

Non-symmetric CS admit torsion and the two latter more than
one radii.
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Consider supersymmetric Eg in 10 dims and S/R = G /SU(3).

We use the decomposition:

Eg D SU(3) X Es
248 = (8,1) + (1,78) + (3,27) + (3,27)

and choose R = SU(3)

adjS = adjR+ v
14 =8+

vector

Spinor: under R = SU(3)

= In 4 dim theory: with:
scalars in 27 = [ and fermions in 27,78

ie.:

G. Zoupanos N = 1, 10D, Eg gauge theory reduction



The Higgs potential of the genuine Higgs :
40 5 i oj gl
+ B0 dyged ™ B B
11 i
+ 5 BB E )
which obtains F-terms contributions from the superpotential:
1 o
W(B) = 5alng‘Bka
D-term contributions:
1 11 . .
SDD", D" =/ - BU(G)S
The rest terms belong to the SSB part of the Lagrangian:
SsB 40 o inj pk
ﬁscalar = - ?6 - [4dykﬂ ﬂjﬂ + hC}

Mgaugino = (1 + 37—)

Sl
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Reduction of 10-dim, A/ = 1, Eg over

S/R=SU(3)/U(1) x U(1) X Z

Irges-Z’11
We use the decomposition:
Eg D Eg X SU(S) D Eg X U(l)A X U(l)B
and choose R= U(1)a x U(1)g,
~ H = Cgy(U(1)a x U(1)p) =
Eg D Eg X U(l)A X U(I)B
248 = l(0,0) T L0,0) T 1(3,1/2) T 1(=3,1/2)
Lo—1) + Lo * 1(-3-1/2) T 13-1/2)
78(0,0) + 27(3,1/2) + 27(-3,1/2) T 27(0,-1)
27(-3,-1/2) +27(3,-1/2) +27(0,)
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adjS = adjR + < vector

4
8 =(0,0) +(0,0) +

SO(6) D SU(3) D U(1)a x U(1)5
=1+3=
N /

spinor
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4-dim theory
N =1,Es x U(1)a x U(1)s with chiral supermultiplets:

Al 27(3,1/2) B : 27(-3,1/2) c': 270,-1), At 13,172), B 1(=3,1/2), C: 1(0,-1)

Scalar potential:

2.,_2 1+1+1 n 4R? 8 l.a+<4R§ 8)&
2y_? .1 _ 8 , ~ % \aa
¢ s\ R R\ ) e

4R2 8) i 4R 8\ 5 4RZ
+<——— B%’ﬁ(——— BB+ Y+ ¥y

RR; R RR R RYRS Rs B

Rl R2 Rs i A7 Rl R2
\/580[( + + )d~ al "+( + )a +hc}

- RoRs T RiRs T ok )P T (rs T RiRs T &

2
+ é (a‘(G“ Yoy + B1(G)8 + 'yi(Ga){fyj)

2
+ 5 (atoaa + a@)a+ 8 (-38) + B(-2)5)

2
+2 (a"(%éi)og +a(z)a+ B (08 + B(3)B ++' (-18) + 7(—1)7)
+ 400 fdyed™"™ 01 Bm + 403"y dyied "™ Brym + 400 dged™™ ury
+40(ap)(aB) + 40(87)(Bv) + 40(3d)(va)

where o, 8,7, a, 3,7 are the scalar components of A", B', C', A, B, C.
’ 77 ) ) fy p
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Superpotential: W(A', B/, C*, A, B, C) = v/40dsxA'B' C* 4 /40ABC
D-terms: %DO‘DO‘ + %DIDI + %DQDQ where:

D% = = (a'(6" oy + B'(Gh + (G ))
vio

Dy = (o (38D)ay + &(3)a + B'(—30) 3 + B(—3)8)

P2 = \/:)A,E( (%‘Vz)aﬁa( Ja+ (= 6{)/63'+B(%)ﬂ+’yi(*l5{)w+ﬁ(71)7)

Soft scalar supersymmetry breaking terms, £om,.:

4R2 8\ 4R 8 _ 4R2 8\
(R%R%_R7%>aai+(R%R2_R7%>aa+(R2R2_@ B'Bi+
4R? 8 ) 4R2 8 4R2 8\ _
- = Bﬂ+( f—)vvﬁ(—ff v+
<R%R2 R R R R R
R1 Rz R3 i Rl R2 R3
\/ESOK + + )d-» alfIN + ( + + )a +h.c.] ,
Rk TRk T Rer ) P ory T RiRs T Rery )
2 2 2
Gaugino mass, M = (1 + 37) 3428+ torsion coeff.

222
84/ RIR;R3

Potential, V = V¢ + Vp + Viop
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The Wilson flux breaking

M* x B, — M* x B, B= B,/FS/R
FS/R_a freely acting discrete symmetry of B,.
B becomes multiply connected

For every element g € F S/R,
~~ Vy = Pexp (—i/ TaAI‘{‘,,(x)dxM> €H
Yg

If the contour is non-contractible ~ V; # 1 and then
f(g(x)) = Vy4f(x), which leads to a breaking of H to

K' = Cy(TH), where TH is the image of the homomorphism
of FS/R into H.

Matter fields under FS/R g TH.
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In the case of SU(3)/U(1) x U(1) a freely acting discrete group

1S:
1%
FS'R=7s Cc W,W=—2,
Wr

Ws r: Weyl group of S, R.
w3 = diag(1, wll, w?1), w=e*"/3cZ;

The fields that are under FS/R o TH , i.e.:

Ay = 'YSA/NL?I

Al = v3A", B'=wysB', C'=w?ysC
A=A, B=wB, C=uw’C

~ N'=1, SU(3)x SU(3). x SU(3)k.,

Recall that 27=1(1,3,3)+(3,1,3) + (3,3,1)
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with matter superfields in:

(153a§)(3,1/2)7 (57173)(73,1/2)7 (3a§a1)(o,—1)

HY HI v dgt ug Dg —d} -d& -d
L=|H; H e |, ¢=(d? u? DZ|, @=| u} u? u?

v ooes S dg ug® Dg D} D? D

and the surviving singlet
9 — (1, ].7 1)(371/2) .

Introducing non-trivial windings in R can appear 3 identical flavours
in each of the bifundamental matter superfields and singlet

superfield.
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Further Gauge Breaking of SU(3)?

Babu - He - Pakvasa ‘86; Ma - Mondragon - Z 04;
Leontaris - Rizos ’06; Sayre - Wiesenfeldt - Willenbrock 06

Two generations of L acquire vevs that

0 0 0 0 0 0
=10 0 o0 |, P =[0 0 o
V 0 0 00 V

each one alone is not enough to produce the (MS)SM gauge group:
SU(3). x SU(3). X SU(3)r — SU(3). x SU(2). x SU(2)g x U(1)
SU(3). x SU(3)L x SU(3)g — SU(3). x SU(2). x SU(2)g x U(1)’
Their gives the desired breaking:
SU(3). x SU(3) x SU(3)r — SU(3). x SU(2). x U(1)y

then proceeds by:

Va 0 0
L =1 o v, 0
0 0 0
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Choice of Radii

— Soft terms ~ % Manolakos - Patellis - Z 20
— Soft ~ R—lz

Two main possible directions:

o R; — calculation of the Kaluza-Klein contributions of the
4D theory
x Eigenvalues of the and operators unknown.
° R; — SUSY breaking
Ri ~ ﬁ with R, such that

m? ~ —0O(TeV?), mzz’3 ~ —=O(Mgyr);  Qabe ~ Maur

where miZ,S are the squared soft scalar masses and agy. are the
soft trilinear couplings.

— squarks
— sleptons

: in this scenario Mcomp = Mgur
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Lepton Yukawas and p terms

At the GUT scale

su(3)® % suU(3). x SU(2), x U(1)y
29y SU(3)e X U(1)em
(01 ~ , (00) ~
The GUT breaking vevs and the < 612 > vevs the two ,

which remain only as symmetries.

e The two global U(1)s forbid Yukawa terms for

—\ 3
— operators: LeHy ( 1%)
° for each generation of Higgs doublets are absent
3 3)73) K
— solution through operators: HL(L )Hc(l )9( )%
— K is the of the conjugate scalar component of either S, vg or 6,

or any combination of them
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Approximate Scale of Parameters

Parameter Scale
soft trilinear couplings O(GUT)
squark masses O(GUT)
slepton masses O(TeV)
1 O(TeV)
A0 o(GUT)
unified gaugino mass My | O(TeV)
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Gauge Unification

There exist three basic scales: Mgyr, Minr and Mrey. Squarks,

Higgsinos and the singlets of the two first families and the new
exotic (s)quarks and (s)leptons decouple at an intermediate scale M,

Concerning the gauge couplings:
@ o are used as input to determine Mgyr

@ «j is found within of the experimental value

as( MZ) = Scale GeV
Mgur ~
EXP M ~
aFXP(My) = 0.1187-+0.0016 o T

No proton decay problem due to the global symmetries.

@ promising preliminary analysis

@ large
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CSDR and the Einstein-Yang-Mills system

EYM theory with cosmological constant in 4 + d dimensions:

1
L= V—gR? fgzx/ngﬁNFaMN —V-gA

167G
The corresponding equations of motion are:
N 1
DyF™ =0, Run— ERQMN = —8nGTun

Solutions of the coupled EYM
system corresponding to M* x B - B a coset space and a, 3
coset indices + demanding M* to be

1
A= ZTr(FaﬁFO‘B)
A is absent in 4 dims: eliminates the vacuum energy of the

gauge fields
A equal to the of the theory
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The potential of the reduced low-energy limit of 10-d

heterotic string over SU(3)/U(1) x U(1)

Low-energy effective action of Eg X Eg heterotic string (bos part):

; —1p
o e 2
- Tr FMNFMN>

T ok2 4

Snet = —— [ @°x/—[g] (R L 0u0"B — " Fa B 1+
2 12
o k2 = 81G19 the 10-d gravitational constant
e o the Regge slope parameter
@ R the Ricci scalar of the 10-d (target) space
o ® the dilaton scalar field
e H the field strength tensor of the 2-form By field
@ F the field strength tensor of the Eg x Eg gauge field

Also, gﬁ = 2% s the string coupling constant (<i>o is the
constant mode of the dilaton)
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Application of the CSDR over SU(3)/U(1) x U(1) leads to a

4 — d scalar potential Chatzistavrakidis - Z 09
The contributions of the three sectors after the CSDR:
1 3(6 6 6 R R} R
Vor = —75€ +7+7_ 202 | p2R2 | RZR2
4K? R, Ry RR RR REK

1 3 (b?+b2+b3)2 1 9 ) ) -
" (RIR.R:)2 2 RR.Re by + bs + b3)(d; — hec.
H= 53 e [ (RiRsRs)? + V2 1R2R3( 1 > 3) (dgeed' By c)

R " T AR B A

" 82 e r)"“T\rerR r)"7T\rRr rR)T
R2+R +R inj 1 i a\j i a\j i a\j 2
\TSOW( et 37k+h-c~)+g (o (G™Yiey + BUG 1B +7(G™)oy)

i i 10 i i i
+5(040éi—/35t) +§(aai+ﬁﬂt—277i)2

+40aiﬂjdgkdklmazﬁm =+ 405i’)’jdgkdklmﬁl’ym + 40ai'yjdgkdklmarym]

Possible to the gravity contribution by the
presence of and sectors.

Gibbons ’84; De Wit - Smit - Dass '87;
Maldacena - Nunez 01, Manousselis - Prezas - Z 06
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Work in Progress

e Indicative results for the case

b>1073¢ GeV 2 ‘

Es D Gy X Fy
U N
Eg D SUs X Eg

where [ is the vev-acquiring scalar and b is a parameter of the
3-form potential.

e Working on the case

we find similar behaviour

Eg D SUs X Eg for ¥b; > 10733GeV—2 ,
U N i.e. before the Wilson flux
Es O U12 X Eg X U12 and other breakings.
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