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Further Research Activity

1 Fuzzy extra dimensions→ renormalizable
realistic 4-d GUTs

2 Reduction of couplings in N = 1 gauge
theories→ predictive GUTs, Finite Unified
Theories, reduced MSSM

3 Noncommutative (fuzzy) Gravity
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Kaluza - Klein

Kaluza-Klein observation: Dimensional Reduction of a
pure gravity theory on M4 × S1 leads to a U(1) gauge
theory coupled to gravity in four dimensions. The extra
dimensional gravity provided a geometrical unified picture
of gravitation and electromagnetism.
Generalization to MD = M4 × B, with B a compact
Riemannian space with a non-abelian isometry group S
leads after dim. reduction to gravity coupled to Y-M in 4
dims.

Kerner ′68
Cho - Freund ′75
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Problems

No classical ground state corresponding to the assumed
MD.

Adding fermions in the original action, it is impossible to
obtain chiral fermions in four dims.

Witten ′85

However by adding suitable matter fields in the original
action, in particular Y-M one can have a classical stable
ground state of the required form and massless chiral
fermions in four dims.

Horvath - Palla - Cremmer - Scherk ′77
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Coset Space Dimensional Reduction (CSDR)

Original motivation
Use higher dimensions

to unify the gauge and Higgs sectors
to unify the fermion interactions with gauge and
Higgs fields

⋆ Supersymmetry provides further unification (fermions
in adj. reps)

Forgacs - Manton ′79, Manton ′81, Chapline - Slansky ′82
Kubyshin - Mourao - Rudolph - Volobujev ′89

Kapetanakis - Z ′92, Manousselis - Z ′01 −′ 08
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Further successes
(a) chiral fermions in 4 dims from vector-like reps in the

higher dim theory
(b) the metric can be deformed (in certain non-symmetric

coset spaces) and more than one scales can be
introduced

(c) Wilson flux breaking can be used
(d) Softly broken susy chiral theories in 4 dims can

result from a higher dimensional susy theory

G. Zoupanos N = 1, 10D, E8 gauge theory reduction



Theory in D dims→ Theory in 4 dims

1. Compactification
MD → M4 × B

| | |
xM xµ ya

B - a compact space
dimB = D − 4 = d

2. Dimensional Reduction
Demand that L is independent of the extra ya coordinates
• One way: Discard the field dependence on ya coordinates
• An elegant way: Allow field dependence on ya and employ

a symmetry of the Lagrangian to compensate

Obvious choice: Gauge Symmetry
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Allow a non-trivial dependence on ya , but impose the condition
that a symmetry transformation by an element of the isometry
group S of B is compensated by a gauge transformation.

⇒ L independent of ya just because is gauge invariant.

Integrate out extra coordinates

CSDR: B = S/R S : QA = {Qi ,Qa}
| |

R S/R

[Qi ,Qj] = f k
ĳ Qk , [Qi ,Qa ] = f b

iaQb ,

[Qa ,Qb] = f i
abQi + f c

abQc ,

where f c
ab vanishes in symmetric S/R
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Consider a Yang-Mills-Dirac theory in D dims based on group G
defined on MD → M4 × S/R, D = 4 + d

gMN =

(
ηµν 0
0 −gab

)
d = dimS − dimR

ηµν = diag(1,−1,−1,−1)

gab − coset space metric

A =

∫
d4xddy

√
−g

[
− 1

4
Tr(FMNFKΛ)g

MKgNΛ +
i

2
ψΓMDMψ

]
DM = ∂M − θM − AM , θM =

1
2
θMNΛΣ

NΛ

where θM is the spin connection of MD and ψ is in rep F of G

We require that any transformation by an element of S acting
on S/R is compensated by gauge transformations.
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Aµ(x, y) =g(s)Aµ(x, s
−1y)g−1(s)

Aa(x, y) =g(s)J b
a Ab(x, s

−1y)g−1(s)

+ g(s)∂ag−1(s)

ψ(x, y) =f (s)Ωψ(x, s−1y)f −1(s)

g, f - gauge transformations in the adj, F of G corresponding to
the s transformation of S acting on S/R

J b
a - Jacobian for s

Ω - Jacobian + local Lorentz rotation in tangent space

Above conditions imply constraints that D-dims fields
should obey.
Solution of constraints:

4-dim fields
Potential
Remaining gauge invariance
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Taking into account all the constraints and integrating out the
extra coordinates, we obtain in 4 dims:

A = C

∫
d4x

(
−1

4
TrFµνFµν +

1
2

∑
a

Tr(DµϕaDµϕa)

+V (ϕ) +
i

2
ψ̄ΓµDµψ −

i

2
ψ̄ΓaDaψ

)
| |

kinetic terms mass terms

Dµ = ∂µ − Aµ , Da = ∂a − θa − ϕa , θa =
1
2
θabcΣ

bc

C− volume of cs , θa− spin connection of cs

V (ϕ) = −1
4

gacgbdTr
{
(f C

abϕC − [ϕa , ϕb])(f
D
cdϕD − [ϕc, ϕd])

}
A = 1, . . . ,dimS , f− structure constants of S.
Still V (ϕ) only formal since ϕa must satisfy f D

aiϕD − [ϕa , ϕi ] = 0.
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1) The 4-dim gauge group

H = CG(RG)

i.e. G ⊃ RG × H

where G is the higher-dim group and H is the 4 dim group.

2) Scalar fields

S ⊃ R

adjS = adjR + υ

G ⊃ RG × H

adjG ⊃ (adjR,1) + (1, adjH) + Σ(ri ,hi)

If v = Σsi

when si = ri ⇒ hi survives in 4 dims.
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3) Fermions

G ⊃ RG × H

F =
∑

(ti ,hi)

spinor of SO(d) under R

σd =
∑

σi

for every ti = σi ⇒ hi survives in 4 dims.

Possible to obtain a chiral theory in 4 dims starting from
Weyl fermions in a complex rep.
However, even starting with Weyl (+ Majorana) fermions
in vector-like reps of G in D = 4n + 2 dims we are also led
to a chiral theory.
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If D is even:

ΓD+1Ψ± = ±Ψ± Weyl condition
Ψ = Ψ+ ⊕Ψ− = σD + σ′D ,

where σD, σ
′
D are non-self conjugate spinors of SO(1,D − 1) .

The (SU(2)× SU(2))× SO(d) branching rule is:

σD = (2,1;σd) + (1,2;σ′d)
σ′D = (2,1;σ′d) + (1,2;σd)

Starting with Dirac fermions

⇝
equal number of left and right-handed
reps of the 4-dim group H

Weyl condition selects either σD or σ′D
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Weyl condition cannot be applied in odd dims. In that case:

σD = (2,1;σd) + (1,2;σd) ,

where σd is the unique spinor of SO(d)

⇝
equal number of left and right-handed
reps in 4 dims

Most interesting case is when D = 4n + 2 and we start with a
vectorlike rep. In that case σd is non-self-conjugate and σ′

d = σ̄d.

Then the decomposition of σd , σ̄d of SO(d) under R is:

σd =
∑

σk , σ̄d =
∑

σ̄k .

Then:

G ⊃ RG × H

vectorlike ← F =
∑

i

(ri ,hi)→ either self-conjugate or

have a partner (r̄i , h̄i).
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Then according to the rule from σd we will obtain in 4 dims
left-handed fermions fL =

∑
hL

k .

Since σd is non-self-conjugate, fL is non-self-conjugate.

Similarly, from σ̄d, we obtain the right-handed rep∑
h̄R

k =
∑

hL
k .

Moreover since F vectorlike, h̄R
k ∼ hL

k , i.e. H is chiral theory
with double spectrum.

We can still impose Majorana condition (Weyl and Majorana are
compatible in 4n + 2 dims) to eliminate the doubling of the
fermion spectrum.

Majorana condition (reverses the sign of all int. qu. nos) forces
fR to be the charge conjugate of fL .

If F complex→ chiral theory just h̄R
k is different from hL

k .
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An easy case in calculating the potential, its minimization and
SSB:

If G ⊃ S ⇒ H breaks to K = CG(S):

G ⊃ S × K ← gauge group after SSB
∪ ∩

G ⊃ R × H ← gauge group in 4 dims

But

fermion masses

M2Ψ = DaDaΨ− 1
4

RΨ− 1
2
ΣabFab︸ ︷︷ ︸Ψ > 0

=0 , if S ⊂ G

= (Cs + CR)Ψ

comparable to the compactification scale.
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Supersymmetry breaking by dim reduction over
symmetric CS (e.g SO(7)/SO(6))

Consider G = E8 in 10 dims with Weyl-Majorana fermions in
the adjoint rep of E8, i.e. a susy E8.
Embedding of R = SO(6) in E8 is suggested by the
decomposition:

E8 ⊃ SO(6)× SO(10)
248 = (15,1) + (1,45) + (6,10) + (4,16) + (4,16)

adjS = adjR + υ

21 = 15 + 6 ← vector

Spinor of SO(6): 4
In 4 dims we obtain a gauge theory based on:

H = CE8(SO(6)) = SO(10) ,

with scalars in 10 and fermions in 16.
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• Theorem: When S/R symmetric, the potential necessarily
leads to spontaneous breakdown of H.

•• Moreover in this case we have:

E8 ⊃ SO(7)× SO(9)
∪ ∩

E8 ⊃ SO(6)× SO(10)

⇒ Final gauge group after breaking:

K = CE8(SO(7)) = SO(9)

CSDR over symmetric coset spaces breaks completely original
supersymmetry.
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Soft Supersymmetry Breaking by CSDR over
non-symmetric CS.

We have examined the dim reduction of a supersymmetric E8
over the 3 existing 6−dim CS:

G2/SU(3) , Sp(4)/(SU(2)×U(1))non-max , SU(3)/U(1)×U(1)

⇒
Softly Broken Supersymmetric
Theories in 4 dims without any
further assumption

Non-symmetric CS admit torsion and the two latter more than
one radii.

G. Zoupanos N = 1, 10D, E8 gauge theory reduction



Consider supersymmetric E8 in 10 dims and S/R = G2/SU(3).

We use the decomposition:

E8 ⊃ SU(3)× E6

248 = (8,1) + (1,78) + (3,27) + (3,27)

and choose R = SU(3)

adjS = adjR + υ

14 = 8 + 3 + 3̄︸ ︷︷ ︸
vector

Spinor: 1 + 3 under R = SU(3)

⇒ In 4 dim theory: H = CE8(SU(3)) = E6 with:
scalars in 27 = β and fermions in 27,78

i.e.: spectrum of a supersymmetric E6 theory in 4 dims.
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The Higgs potential of the genuine Higgs β:

V (β) = 8− 40
3
β2 − [4dĳkβ

iβjβk + h.c.]

+ βiβjdĳkdkℓmβℓβm

+
11
4

∑
α

βi(Gα)j
iβjβ

k(Gα)ℓkβℓ

which obtains F-terms contributions from the superpotential:

W (B) =
1
3

dĳkBiBjBk

D-term contributions:

1
2

DαDα , Dα =

√
11
2
βi(Gα)j

iβj

The rest terms belong to the SSB part of the Lagrangian:

LSSB
scalar = −

1
R2

40
3
β2 − [4dĳkβ

iβjβk + h.c.]
g

R

Mgaugino = (1 + 3τ)
6√
3

1
R
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Reduction of 10-dim, N = 1, E8 over
S/R = SU(3)/U(1)× U(1)× Z3

Irges - Z ’11

We use the decomposition:

E8 ⊃ E6 × SU(3) ⊃ E6 × U(1)A × U(1)B

and choose R = U(1)A × U(1)B,

⇝ H = CE8(U(1)A × U(1)B) = E6 × U(1)A × U(1)B

E8 ⊃ E6 × U(1)A × U(1)B

248 = 1(0,0) + 1(0,0) + 1(3,1/2) + 1(−3,1/2)

1(0,−1) + 1(0,1) + 1(−3,−1/2) + 1(3,−1/2)

78(0,0) + 27(3,1/2) + 27(−3,1/2) + 27(0,−1)

27(−3,−1/2) + 27(3,−1/2) + 27(0,1)
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adjS = adjR + υ ← vector
⇓

8 = (0,0) + (0,0) + (3,1/2) + (−3,1/2)
+ (0,−1) + (0,1) + (−3,−1/2) + (3,−1/2)

SO(6) ⊃ SU(3) ⊃ U(1)A × U(1)B

4 = 1 + 3 = (0,0) + (3,1/2) + (−3,1/2) + (0,−1)
↖ ↗

spinor
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4-dim theory
N = 1,E6 × U(1)A × U(1)B with chiral supermultiplets:

Ai : 27(3,1/2) , Bi : 27(−3,1/2) , Ci : 27(0,−1) , A : 1(3,1/2) , B : 1(−3,1/2) , C : 1(0,−1)

Scalar potential:
2
g2

V =
2
5

(
1

R4
1
+

1
R4

2
+

1
R4

3

)
+

(
4R2

1
R2

2R2
3
−

8
R2

1

)
αiαi +

(
4R2

1
R2

2R2
3
−

8
R2

1

)
ᾱα

+

(
4R2

2
R2

1R2
3
−

8
R2

2

)
βiβi +

(
4R2

2
R2

1R2
3
−

8
R2

2

)
β̄β +

(
4R2

3

R2
1R2

2
−

8
R2

3

)
γ iγi +

(
4R2

3

R2
1R2

2
−

8
R2

3

)
γ̄γ

+
√

280
[(

R1

R2R3
+

R2

R1R3
+

R3

R2R1

)
dĳkα

iβjγk +

(
R1

R2R3
+

R2

R1R3
+

R3

R2R1

)
αβγ + h.c

]
+

1
6

(
αi(Gα)j

iαj + βi(Gα)j
iβj + γ i(Gα)j

iγj

)2

+
10
6

(
αi(3δj

i)αj + ᾱ(3)α+ βi(−3δj
i)βj + β̄(−3)β

)2

+
40
6

(
αi( 1

2 δ
j
i)αj + ᾱ( 1

2 )α+ βi( 1
2 δ

j
i)βj + β̄( 1

2 )β + γ i(−1δj
i)γ

j + γ̄(−1)γ
)2

+ 40αiβjdĳkdklmαlβm + 40βiγ jdĳkdklmβlγm + 40αiγ jdĳkdklmαlγm

+ 40(ᾱβ̄)(αβ) + 40(β̄γ̄)(βγ) + 40(γ̄ᾱ)(γα)

where αi , β i , γ i , α, β, γ are the scalar components of Ai ,Bi ,Ci ,A,B,C .
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Superpotential: W (Ai ,Bj,Ck ,A,B,C) =
√

40dĳkAiBjCk +
√

40ABC

D-terms: 1
2 DαDα + 1

2 D1D1 +
1
2 D2D2 where:

Dα =
1
√

3

(
αi(Gα)j

iαj + βi(Gα)j
iβj + γ i(Gα)j

iγj
)

D1 =

√
10
3

(
αi(3δj

i)αj + ᾱ(3)α+ βi(−3δj
i)βj + β̄(−3)β

)
D2 =

√
40
3

(
αi(

1
2
δj

i)αj + ᾱ(
1
2
)α+ βi(

1
2
δj

i)βj + β̄(
1
2
)β + γ i(−1δj

i)γj + γ̄(−1)γ
)

Soft scalar supersymmetry breaking terms, LSSB
scalar :(

4R2
1

R2
2R2

3
−

8
R2

1

)
αiαi +

(
4R2

1
R2

2R2
3
−

8
R2

1

)
ᾱα+

(
4R2

2
R2

1R2
3
−

8
R2

2

)
βiβi+(

4R2
2

R2
1R2

3
−

8
R2

2

)
β̄β +

(
4R2

3

R2
1R2

2
−

8
R3

2

)
γ iγi +

(
4R2

3

R2
1R2

2
−

8
R2

3

)
γ̄γ+

√
280

[(
R1

R2R3
+

R2

R1R3
+

R3

R2R1

)
dĳkα

iβjγk +

(
R1

R2R3
+

R2

R1R3
+

R3

R2R1

)
αβγ + h.c.

]
,

Gaugino mass, M = (1 + 3τ) R2
1+R2

2+R2
3

8
√

R2
1R2

2R2
3

, τ torsion coeff.

Potential, V = VF + VD + Vsoft
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The Wilson flux breaking

M4 × Bo → M4 × B, B = Bo/FS/R

FS/R - a freely acting discrete symmetry of Bo.
1. B becomes multiply connected
2. For every element g ∈ FS/R,

⇝ Vg = Pexp

(
−i

∫
γg

TaAa
M(x)dxM

)
∈ H

3. If the contour is non-contractible⇝ Vg ̸= 1 and then
f (g(x)) = Vgf (x), which leads to a breaking of H to
K ′ = CH(TH), where TH is the image of the homomorphism
of FS/R into H.

4. Matter fields invariant under FS/R ⊕ TH .
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In the case of SU(3)/U(1)× U(1) a freely acting discrete group
is:

FS/R = Z3 ⊂ W ,W =
WS

WR
,

WS,R: Weyl group of S,R.

⇝ γ3 = diag(1l, ω1l, ω21l), ω = e2iπ/3 ∈ Z3

The fields that are invariant under FS/R ⊕ TH survive, i.e.:

Aµ = γ3Aµγ
−1
3

Ai = γ3Ai , Bi = ωγ3Bi , Ci = ω2γ3Ci

A = A , B = ωB , C = ω2C

⇝ N = 1 , SU(3)c × SU(3)L × SU(3)R ,

Recall that 27 = (1,3,3) + (3,1,3) + (3,3,1)
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with matter superfields in:

(1,3,3)(3,1/2), (3,1,3)(−3,1/2), (3,3,1)(0,−1)

↕ ↕ ↕

L =

H0
d H+

u νL

H−
d H0

u eL

νc
R ec

R S

 , qc =

dc1
R uc1

R Dc1
R

dc2
R uc2

R Dc2
R

dc3
R uc3

R Dc3
R

 , Q =

−d1
L −d2

L −d3
L

u1
L u2

L u3
L

D1
L D2

L D3
L


and the surviving singlet

θ → (1,1,1)(3,1/2) .

Introducing non-trivial windings in R can appear 3 identical flavours
in each of the bifundamental matter superfields and singlet
superfield.
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Further Gauge Breaking of SU(3)3

Babu - He - Pakvasa ’86; Ma - Mondragon - Z ’04;
Leontaris - Rizos ’06; Sayre - Wiesenfeldt - Willenbrock ’06

Two generations of L acquire vevs that break the GUT:

⟨L(3)
s ⟩ =

 0 0 0
0 0 0
V 0 0

 , ⟨L(2)
s ⟩ =

 0 0 0
0 0 0
0 0 V


each one alone is not enough to produce the (MS)SM gauge group:

SU(3)c × SU(3)L × SU(3)R → SU(3)c × SU(2)L × SU(2)R × U(1)
SU(3)c × SU(3)L × SU(3)R → SU(3)c × SU(2)L × SU(2)′R × U(1)′

Their combination gives the desired breaking:

SU(3)c × SU(3)L × SU(3)R → SU(3)c × SU(2)L × U(1)Y

Electroweak breaking then proceeds by:

⟨L(3)
s ⟩ =

 υd 0 0
0 υu 0
0 0 0
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Choice of Radii
− Soft trilinear terms ∼ 1

Ri
Manolakos - Patellis - Z ’20

− Soft scalar masses ∼ 1
R2

i

Two main possible directions:

Large Ri → calculation of the Kaluza-Klein contributions of the
4D theory
× Eigenvalues of the Dirac and Laplace operators unknown.

Small Ri → high scale SUSY breaking

• Small Ri ∼ 1
MGUT

with R1 slightly different such that

m2
1 ∼ −O(TeV 2), m2

2,3 ∼ −O(M2
GUT ), aabc ∼ MGUT

where m2
1,2,3 are the squared soft scalar masses and aabc are the

soft trilinear couplings.

− supermassive squarks
− TeV-scale sleptons

Reminder: in this scenario MComp = MGUT
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Lepton Yukawas and µ terms
At the GUT scale

SU(3)3 V−→ SU(3)c × SU(2)L × U(1)Y

vu,d−−→ SU(3)c × U(1)em

⟨θ(3)⟩ ∼ O(TeV ) , ⟨θ(1,2)⟩ ∼ O(MGUT )

The GUT breaking vevs and the < θ(1,2) > vevs break the two U(1)s,
which remain only as global symmetries.

• The two global U(1)s forbid Yukawa terms for leptons

→ higher-dimensional operators: LeHd

(
K
M

)3

• µ terms for each generation of Higgs doublets are absent

→ solution through higher-dim operators: H(3)
u H(3)

d θ
(3) K

M

− K is the vev of the conjugate scalar component of either S, νR or θ,
or any combination of them
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Approximate Scale of Parameters

Parameter Scale
soft trilinear couplings O(GUT)
squark masses O(GUT)
slepton masses O(TeV )

µ(3) O(TeV )

µ(1,2) O(GUT)
unified gaugino mass MU O(TeV )
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Gauge Unification
There exist three basic scales: MGUT , Mint and MTeV . Squarks,

Higgsinos and the singlets of the two first families and the new
exotic (s)quarks and (s)leptons decouple at an intermediate scale Mint

Concerning the 1-loop gauge couplings:

α1,2 are used as input to determine MGUT

α3 is found within 2σ of the experimental value

as(MZ) = 0.1218

aEXP
s (MZ ) = 0.1187±0.0016

Scale GeV
MGUT ∼ 1015

Mint ∼ 1014

MTeV ∼ 1500

✓No proton decay problem due to the global symmetries.

promising preliminary 1-loop analysis

large tanβ
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CSDR and the Einstein-Yang-Mills system
EYM theory with cosmological constant in 4 + d dimensions:

L = − 1
16πG

√
−gR(D) − 1

4g2

√
−gFa

MNFaMN −
√
−gΛ

The corresponding equations of motion are:

DMFMN = 0 , RMN −
1
2

RgMN = −8πGTMN

Spontaneous compactification: Solutions of the coupled EYM
system corresponding to M4 × B - B a coset space and α, β
coset indices + demanding M4 to be flat Minkowski:

Λ =
1
4

Tr(FαβFαβ)

Λ is absent in 4 dims: eliminates the vacuum energy of the
gauge fields
Λ equal to the minimum of the potential of the theory
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The potential of the reduced low-energy limit of 10-d
heterotic string over SU(3)/U(1)× U(1)

Low-energy effective action of E8 × E8 heterotic string (bos part):

Shet =
1

2κ2

∫
d10x

√
−|g|

(
R − 1

2
∂M Φ̃∂

M Φ̃− e−Φ̃

12
H̃MNΛH̃MNΛ +

α′e− 1
2 Φ̃

4
Tr FMN FMN

)

κ2 = 8πG(10) the 10-d gravitational constant
α′ the Regge slope parameter
R the Ricci scalar of the 10-d (target) space
Φ̃ the dilaton scalar field
H̃ the field strength tensor of the 2-form BMN field
F the field strength tensor of the E8 × E8 gauge field

Also, g2
s = e2Φ̃0 is the string coupling constant (Φ̃0 is the

constant mode of the dilaton)
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Application of the CSDR over SU(3)/U(1)× U(1) leads to a
4− d scalar potential Chatzistavrakidis - Z ’09

The contributions of the three sectors after the CSDR:

Vgr = − 1
4κ2 e−ϕ̃

(
6
R2

1
+

6
R2

2
+

6
R2

3
− R2

1

R2
2R2

3
− R2

2

R2
1R2

3
− R2

3

R2
1R2

2

)
VH =

1
2κ2 e−ϕ̃

[
(b2

1 + b2
2 + b2

3)
2

(R1R2R3)2 +
√

2iα′ 1
R1R2R3

(b2
1 + b2

2 + b2
3)(dĳkα

iβ jγk − h.c.)

]
VF =

α′

8κ2 e− ϕ̃
2

[
c +

(
4R2

1

R2
2R2

3
− 8

R2
1

)
αiαi +

(
4R2

2

R2
1R2

3
− 8

R2
2

)
β iβi +

(
4R2

3

R2
1R2

2
− 8

R2
3

)
γ iγi

+
√

280
R2

1 + R2
2 + R2

3

R1R2R3
(dĳkα

iβ jγk + h.c.) +
1
6
(
αi(Gα)j

iαj + β i(Gα)j
iβj + γ i(Gα)j

iγj

)2

+ 5 (αiαi − β iβi)
2
+

10
3

(αiαi + β iβi − 2γ iγi)
2

+40αiβ jdĳkdklmαlβm + 40β iγ jdĳkdklmβlγm + 40αiγ jdĳkdklmαlγm

]
Possible compensation to the negative gravity contribution by the
presence of gauge and 3-form sectors.

Gibbons ’84; De Wit - Smit - Dass ’87;
Maldacena - Nuñez ’01, Manousselis - Prezas - Z ’06
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Work in Progress

• Indicative results for the case

E8 ⊃ G2 × F4

∪ ∩
E8 ⊃ SU3 × E6

where β is the vev-acquiring scalar and b is a parameter of the
3-form potential.

• Working on the case

E8 ⊃ SU3 × E6

∪ ∩
E8 ⊃ U2

1 × E6 × U2
1

we find similar behaviour
for Σbi > 10−33GeV−2 ,
i.e. before the Wilson flux
and other breakings.

G. Zoupanos N = 1, 10D, E8 gauge theory reduction



THANK YOU!
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