False vacuum Skrymions revisited

Phys. Rev. D 105, 125019 (2022)

Leandro R. Livramento with Y. Shnir

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research

Supersymmetries and Quantum Symmetries – SQS'22 **BLTP, JNIR**

(8/9/2022)

Outline

Standard Skyrme model

The Skyrme model is a nonlinear effective field theory at the low energy regime for the triplet of pions defined in the 3+1 Minkowski space, defined by the Lagrangian

$$L_{\rm Skyrme} = \int d^3x \left[-\frac{1}{2} \operatorname{Tr} \left(R_{\mu} R^{\mu} \right) + \frac{1}{16} \operatorname{Tr} \left([R_{\mu}, R_{\nu}] \left[R^{\mu}, R^{\nu} \right] \right) \right]$$

where the energy and length units are $f_{\pi}/(4 e)$ and $2/(e f_{\pi})$, respectively.

Mauer Cartan form $R_{\mu} = \partial_{\mu}UU^{\dagger} \in su(2)$ triplet of pion fields **Skyrme field** is an SU(2)-valued scalar field $U(\mathbf{x}, t) = \phi_0 + i \vec{\phi} \cdot \vec{\tau} \in SU(2)$ \rightarrow triplet of Pauli matrices \longrightarrow field constraint $(\phi_0^2 + \vec{\phi} \cdot \vec{\phi} = 1)$ Neutron Proton **Internal symmetries**

Global $SU(2)_L \times SU(2)_R$ chiral symmetry $U \to g_L U g_R, \quad \forall g_L, g_R \in SU(2)$

Topological charge and pion mass potential

$U(\mathbf{x}, t_{\text{fixo}}) : \mathbb{R}^3 \cup \{\infty\} \cong S^3 \to SU(2) \cong S^3$ Homotopy group $\pi_3(S^3) = \mathbb{Z}$

Topological charge and pion mass potential

Usual pion mass potential $V(U) = m^2 \operatorname{Tr} (1 - U) \ge 0$ \square Vacuum conf. U = 1The $SU(2)_L \times SU(2)_R$ symmetry breaks to its SU(2) diagonal subgroup $U \to g U g^{-1}, \forall g \in SU(2)$

 $U(\mathbf{x}, t_{\text{fixo}}) : \mathbb{R}^3 \cup \{\infty\} \cong S^3 \to SU(2) \cong S^3$ Homotopy group $\pi_3(S^3) = \mathbb{Z}$

$Q = -\frac{1}{24 \pi^2} \int d^3 x \,\varepsilon_{ijk} \,\mathrm{Tr} \left(R_i \,R_j \,R_k\right)$

Standard Skyrmions

By convenience, let us denote the static energy in topological charge units, i.e. $E \to E/(12 \pi^2)$.

Isosurfaces of topological charge density

Q	Sym.	E/Q
1	$\overline{O}(3)$	1.232
2	$D_{\infty h}$	1.1791
3	T_d	1.1462
4	O_h	1.1201
5	O_{2d}	1.1172
6	D_{4d}	1.1079

*Binding energy per topological charge unit: $E_{\rm B} \equiv E_{Q=1} - E/Q$

$\sim 10 \% E/Q$

False vacuum potential

$$V(U) = \frac{1}{4} \left[\underbrace{m_1^2 \operatorname{Tr} (\mathbb{1} - U)}_{\text{usual mass term}} + \underbrace{m_2^2 \operatorname{Tr} (\mathbb{1} - U^2)}_{\text{quadratic in } U} \right] = \frac{m_1^2}{2} \left[(1 - \phi_0) + 2 \left(\frac{m_2}{m_1} \right) \right] = \frac{m_1^2}{2} \left[(1 - \phi_0) + 2 \left(\frac{m_2}{m_1} \right) \right] = \frac{m_1^2}{2} \left[(1 - \phi_0) + 2 \left(\frac{m_2}{m_1} \right) \right] = \frac{m_1^2}{2} \left[(1 - \phi_0) + 2 \left(\frac{m_2}{m_1} \right) \right] = \frac{m_1^2}{2} \left[(1 - \phi_0) + 2 \left(\frac{m_2}{m_1} \right) \right] = \frac{m_1^2}{2} \left[(1 - \phi_0) + 2 \left(\frac{m_2}{m_1} \right) \right] = \frac{m_1^2}{2} \left[(1 - \phi_0) + 2 \left(\frac{m_2}{m_1} \right) \right] = \frac{m_1^2}{2} \left[(1 - \phi_0) + 2 \left(\frac{m_2}{m_1} \right) \right] = \frac{m_1^2}{2} \left[(1 - \phi_0) + 2 \left(\frac{m_2}{m_1} \right) \right] = \frac{m_1^2}{2} \left[(1 - \phi_0) + 2 \left(\frac{m_2}{m_1} \right) \right] = \frac{m_1^2}{2} \left[(1 - \phi_0) + 2 \left(\frac{m_2}{m_1} \right) \right] = \frac{m_1^2}{2} \left[(1 - \phi_0) + 2 \left(\frac{m_2}{m_1} \right) \right] = \frac{m_1^2}{2} \left[(1 - \phi_0) + 2 \left(\frac{m_2}{m_1} \right) \right] = \frac{m_1^2}{2} \left[(1 - \phi_0) + 2 \left(\frac{m_2}{m_1} \right) \right] = \frac{m_1^2}{2} \left[(1 - \phi_0) + 2 \left(\frac{m_2}{m_1} \right) \right] = \frac{m_1^2}{2} \left[(1 - \phi_0) + 2 \left(\frac{m_2}{m_1} \right) \right] = \frac{m_1^2}{2} \left[(1 - \phi_0) + 2 \left(\frac{m_2}{m_1} \right) \right]$$

Local minimum at $\phi_0 = -1$ (U = -1) iff $m_1^2 < 4 m_2^2$. Global maximum at $\phi_0 = 1$ (U = 1).

 $\left. \begin{array}{c} \frac{2}{\tau} \\ \frac{2}{\tau} \end{array} \right|^2 \left(1 - \phi_0^2 \right) \\ 1 \ge 0 \\ \vec{\tau}, \quad \phi_0^2 + \vec{\phi} \cdot \vec{\phi} = 1 \end{array}$

6

False vacuum potential

$$V(U) = \frac{1}{4} \left[\underbrace{m_1^2 \operatorname{Tr} (\mathbb{1} - U)}_{\text{usual mass term}} + \underbrace{m_2^2 \operatorname{Tr} (\mathbb{1} - U^2)}_{\text{quadratic in } U} \right] = \frac{m_1^2}{2} \left[(1 - \phi_0) + 2 \left(\frac{m_2}{m_1} \right) \right] = \frac{m_1^2}{2} \left[(1 - \phi_0) + 2 \left(\frac{m_2}{m_1} \right) \right] = \frac{m_1^2}{2} \left[(1 - \phi_0) + 2 \left(\frac{m_2}{m_1} \right) \right] = \frac{m_1^2}{2} \left[(1 - \phi_0) + 2 \left(\frac{m_2}{m_1} \right) \right] = \frac{m_1^2}{2} \left[(1 - \phi_0) + 2 \left(\frac{m_2}{m_1} \right) \right] = \frac{m_1^2}{2} \left[(1 - \phi_0) + 2 \left(\frac{m_2}{m_1} \right) \right] = \frac{m_1^2}{2} \left[(1 - \phi_0) + 2 \left(\frac{m_2}{m_1} \right) \right] = \frac{m_1^2}{2} \left[(1 - \phi_0) + 2 \left(\frac{m_2}{m_1} \right) \right] = \frac{m_1^2}{2} \left[(1 - \phi_0) + 2 \left(\frac{m_2}{m_1} \right) \right] = \frac{m_1^2}{2} \left[(1 - \phi_0) + 2 \left(\frac{m_2}{m_1} \right) \right] = \frac{m_1^2}{2} \left[(1 - \phi_0) + 2 \left(\frac{m_2}{m_1} \right) \right] = \frac{m_1^2}{2} \left[(1 - \phi_0) + 2 \left(\frac{m_2}{m_1} \right) \right] = \frac{m_1^2}{2} \left[(1 - \phi_0) + 2 \left(\frac{m_2}{m_1} \right) \right] = \frac{m_1^2}{2} \left[(1 - \phi_0) + 2 \left(\frac{m_2}{m_1} \right) \right] = \frac{m_1^2}{2} \left[(1 - \phi_0) + 2 \left(\frac{m_2}{m_1} \right) \right] = \frac{m_1^2}{2} \left[(1 - \phi_0) + 2 \left(\frac{m_2}{m_1} \right) \right] = \frac{m_1^2}{2} \left[(1 - \phi_0) + 2 \left(\frac{m_2}{m_1} \right) \right]$$

Local minimum at $\phi_0 = -1$ (U = -1) iff $m_1^2 < 4 m_2^2$. Global maximum at $\phi_0 = 1$ (U = 1).

 $\left. \begin{array}{c} \frac{2}{\tau} \\ \frac{2}{\tau} \\ \tau, \quad \phi_0^2 + \vec{\phi} \cdot \vec{\phi} = 1 \end{array} \right| \ge 0$

Hamiltonian inside the rational map ansatz.

Effective potential

Static energy density
$$\mathcal{E} = -\frac{1}{2} \operatorname{Tr} (R_i R_i) - \frac{1}{16} \operatorname{Tr} ([R_i, R_j] [R_i, R_i])$$

To have $\mathcal{E}(\infty) = 0$ with $U(\infty) = -1$: $V \to V - m_1^2$ $\frac{1}{\mathbf{x} \to \infty}$
 $V_{\text{eff}} \equiv \begin{cases} V, & U(\infty) = +1 \text{ (Skyrmions)} \\ V - m_1^2, & U(\infty) = -1 \text{ (False vacuum Skyrmions, for response)} \end{cases}$

$R_{j}]) + V(U)$ $\longrightarrow 0$ $m_{1}^{2} < 4 m_{2}^{2})$

Effective potential

Static energy density
$$\mathcal{E} = -\frac{1}{2} \operatorname{Tr} (R_i R_i) - \frac{1}{16} \operatorname{Tr} ([R_i, R_j] [R_i, R_j] [R_i, R_j]$$

To have $\mathcal{E}(\infty) = 0$ with $U(\infty) = -1$: $V \to V - m_1^2$ $\frac{1}{\mathbf{x} \to \infty}$
 $V_{\text{eff}} \equiv \begin{cases} V, & U(\infty) = +1 \text{ (Skyrmions)} \\ V - m_1^2, & U(\infty) = -1 \text{ (False vacuum Skyrmions, for matrix)} \end{cases}$

Euler-Lagrange eq
$$0 = \partial_{\mu} \left(R^{\mu} + \frac{1}{4} \left[R_{\nu}, \left[R^{\nu}, R^{\mu} \right] \right] \right) + \frac{1}{8} m_1^2 \left(U - U^{\dagger} \right) + \frac{m_2^2}{4} \left(U^2 - U^{\dagger 2} \right)$$

Field excitations arround the vacuum and false vacuum:

$$U \sim (-1)^l \ \mathbb{1} + i \, \vec{v} \cdot \vec{\tau} + \mathcal{O}\left(v_a^2\right) \qquad l \equiv \begin{cases} 0, & U(\infty) = +\\ 1, & U(\infty) = - \end{cases}$$

the pion fields

Excitations of t

 $-1 \quad (m_1^2 < 4 \, m_2^2)$

Effective potential

Static energy density
$$\mathcal{E} = -\frac{1}{2} \operatorname{Tr} (R_i R_i) - \frac{1}{16} \operatorname{Tr} ([R_i, R_j] [R_i, R_i])$$

To have $\mathcal{E}(\infty) = 0$ with $U(\infty) = -1$: $V \to V - m_1^2$ $\frac{1}{\mathbf{x} \to \infty}$
 $V_{\text{eff}} \equiv \begin{cases} V, & U(\infty) = +1 \text{ (Skyrmions)} \\ V - m_1^2, & U(\infty) = -1 \text{ (False vacuum Skyrmions, for)} \end{cases}$

Euler-Lagrange eq
$$0 = \partial_{\mu} \left(R^{\mu} + \frac{1}{4} \left[R_{\nu}, \left[R^{\nu}, R^{\mu} \right] \right] \right) + \frac{1}{8} m_1^2 \left(U - U^{\dagger} \right) + \frac{m_2^2}{4} \left(U^2 - U^{\dagger 2} \right)$$

Field excitations arround the vacuum and false vacuum:

$$U \sim (-1)^l \ \mathbb{1} + i \, \vec{v} \cdot \vec{\tau} + \mathcal{O}\left(v_a^2\right) \qquad l \equiv \begin{cases} 0, & U(\infty) = +\\ 1 & U(\infty) = - \end{cases}$$

Excitations of the pion fields \checkmark

$$\partial_{\mu}\partial^{\mu}\vec{v} + m_{\text{eff}}^{2}(l) \ \vec{v} = 0, \qquad m_{\text{eff}}(l) \equiv \sqrt{m_{2}^{2} + (-1)^{l} \frac{m_{1}^{2}}{4}} > 0 \ \text{iff} \ \begin{cases} l = 0 \\ l = 1 \end{cases}$$

If $m_1^2 > 4 m_2^2$, then m_{eff} is a pure imaginary number.

$\begin{cases} 0, & U(\infty) = +1 \\ 1, & U(\infty) = -1 \\ (m_1^2 < 4 m_2^2) \end{cases}$

3D simulations

Static sector: $E_{\text{static}} = -L_{\text{static}}$ (metric $\eta = \text{diag} (1, -1, -1, -1)$) **Minimize** E_{static} using 3D simulated annealing (SA)

Colletive rotation in the target space of points belonging to an random box in physical space

Singular rotation in the target space of random points (not neighbors) of the physical space

$efficiency_1$

3D simulations

Derrick's factor

$$\frac{E_4 - E_2 - 3E_0}{E_4 + E_2 + E_0}$$

False vacuum Skyrmions $(m_1 = 0.5)$

E/Q decreases $\sqrt{\langle r^2 \rangle}$ increases

 $m_2, m_{\rm eff}, E/Q$ increases and $\sqrt{\langle r^2 \rangle}$ decreases

$m_2 = 0.5$					n	$n_2 = 2.5$			$m_2 = 10$			
Q	E/Q	${\cal D}$	$\sqrt{\langle r^2 \rangle}$	Q	E/Q	${\cal D}$	$\sqrt{\langle r^2 \rangle}$	\overline{Q}	E/Q	\mathcal{D}	$\sqrt{\langle r^2 \rangle}$	
1*	1.2716	-0.0016	0.9655	1*	1.6384	0.0001	0.6288	1*	2.6055	0.0000	0.3609	
1	1.2761	0.0213	0.9510	1	1.6381	-0.0025	0.6332	1	2.6047	-0.0022	0.3634	
2	1.2146	0.0155	1.3204	2	1.5591	-0.0025	0.8764	2	2.4920	-0.0020	0.5023	
3	1.1761	0.0186	1.5510	3	1.5075	-0.0020	1.0259	3	2.4233	-0.0017	0.5821	
4	1.1464	0.0219	1.7355	4	1.4650	-0.0022	1.1507	4	2.3601	-0.0018	0.6489	
5	1.1426	0.0282	1.9343	5	1.4588	-0.0021	1.2870	5	2.3528	-0.0015	0.7236	
6	1.1317	0.0322	2.0830	6	1.4425	-0.0021	1.3899	6	2.3293	-0.0015	0.7786	
$m_{\rm eff} = 0.433$					$m_{ m eff}$	f = 2.487			$m_{ m eff}=9.997$			

 $Q = 1^*$ -Skyrmions were obtained through 1D minimization inside the rational map ansatz.

False vacuum Skyrmions $(m_1 = 0.5)$

 $m_2, m_{\rm eff}, E/Q$ increases and $\sqrt{\langle r^2 \rangle}$ decreases

	$m_2 = 0.5$					$m_2 = 2.5$				$m_2 = 10$			
70 70	Q	E/Q	${\cal D}$	$\sqrt{\langle r^2 \rangle}$	Q	E/Q	${\cal D}$	$\sqrt{\langle r^2 \rangle}$	\overline{Q}	E/Q	${\cal D}$	$\sqrt{\langle r^2 \rangle}$	
decreases increases	1*	1.2716	-0.0016	0.9655	1*	1.6384	0.0001	0.6288	1*	2.6055	0.0000	0.3609	
ea ea	1	1.2761	0.0213	0.9510	1	1.6381	-0.0025	0.6332	1	2.6047	-0.0022	0.3634	
decr	2	1.2146	0.0155	1.3204	2	1.5591	-0.0025	0.8764	2	2.4920	-0.0020	0.5023	
<u> </u>	3	1.1761	0.0186	1.5510	3	1.5075	-0.0020	1.0259	3	2.4233	-0.0017	0.5821	
\mathcal{E}/Q $\langle r^2 angle$	4	1.1464	0.0219	1.7355	4	1.4650	-0.0022	1.1507	4	2.3601	-0.0018	0.6489	
$E/\sqrt{1}$	5	1.1426	0.0282	1.9343	5	1.4588	-0.0021	1.2870	5	2.3528	-0.0015	0.7236	
	6	1.1317	0.0322	2.0830	6	1.4425	-0.0021	1.3899	6	2.3293	-0.0015	0.7786	
	$m_{\rm eff} = 0.433$					$m_{\mathrm{eff}} = 2.487$				$m_{ m eff} = 9.997$			

 $Q = 1^*$ -Skyrmions were obtained through 1D minimization inside the rational map ansatz.

Type	m_1	m_2	$m_{ m eff}$	$Q_{-}(10^{-3})$	\mathcal{Q}_+	$\int \frac{1}{\max} \frac{1}{\min} \frac{1}{1}$
Standard $Q = 3$ Skyrmion	0.0	0.0	0.0000	-3.50	0.245	$\mathcal{Q}_{+} = \max_{\mathbb{R}^{3}} \left(\mathcal{Q} \right), \ \mathcal{Q}_{-} = \min_{\mathbb{R}^{3}} \left(\mathcal{Q} \right)$
Massive $Q = 3$ Skyrmion	0.5	0.0	0.2500	-3.65	0.255	$ = \prod_{i=1}^{n} \mathbb{E}_{\mathbb{R}^3} = \prod_{i=1}^{n} \mathbb{E}_{\mathbb{R}^3} = \mathbb$
False vac. $Q = 3$ Skyrmion	0.5	0.5	0.4330	-3.56	0.262	For both cases: m_{eff} increases
False vac. $Q = 3$ Skyrmion	0.5	2.5	2.4875	-6.99	0.790	\mathcal{Q}_+ and $ \mathcal{Q} $ increases
False vac. $Q = 3$ Skyrmion	0.5	10.0	9.9969	-15.22	4.036	$\begin{array}{c} & & \\$

Skyrmions and false vacuum Skyrmions

 κ is a zoom factor between the Skyrmions (in blue) and the false vacuum Skyrmions (in red). For $\kappa > 0$ ($\kappa < 0$) we are more close (distant) of the center of the soliton.

Skyrmions $(m_1 = 0.5, m_2 = 0)$

False vacuum Skyrmions $(m_1 = 0.5, m_2 = 10)$

10

Q=3

Obtain the Skyrmion \rightarrow select a lattice region \rightarrow 3D interpolation \rightarrow SA

For the Q = 3-Skyrmions such structure were previously observed in: J. Phys. A 46, 265401 (2013)

*Spacing
$$\Delta x_{(a)} = 0.08$$
 and $\Delta x_{(e)} = 0.04$

False vacuum Skyrmions $(m_1 = 0.5, m_2 = 10)$

Q=5

*Spacing $\Delta x_{(a)} = 0.08$ and $\Delta x_{(e)} = 0.04$

Skyrmions $(m_1 = 0.5, m_2 = 0)$

False vacuum Skyrmions $(m_1 = 0.5, m_2 = 10)$

Q=6-Skyrmion

*Spacing $\Delta x_{(a),(b)} = 0.08$, $\Delta x_{(c),(d),(e)} = 0.02$ and $\Delta x_{(f),(g)} = 0.005$

Skyrmions $(m_1 = 0.5, m_2 = 0)$

False vacuum Q=6-Skyrmion

*Spacing $\Delta x_{(a),(b)} = 0.04$, $\Delta x_{(c),(d),(e)} = 0.01$, $\Delta x_{(f)} = 0.0025$ and $\Delta x_{(g)} = 0.005$

False vacuum Skyrmions $(m_1 = 0.5, m_2 = 10)$

Conclusion

3

4

We have obtained false vacuum Skyrmions with Q=1-6 using 3D simulated annealing method.

As the effective mass remains positive, the shapes of the soliton solutions for both the Skyrmions and false vacuum Skyrmions are qualitative similar.

We explored numerically very small regions of negative topological density which appear for the solutions with degrees Q = 3, 5, 6. For Q=1, 2, 4 such structures were not found.

Interesting ways to proceed

- False vacuum Skyrmions of higher degrees.
- Introduction of the sixtic term in the space-time derivatives.
- Study false vacuum Skyrmions stability.
- The U(1) gauged Skyrme model + false vacuum potential.

